forked from apigott/GridLearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaselineEval.py
63 lines (53 loc) · 1.59 KB
/
baselineEval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import multiprocessing
import sys
from pettingzoo.test import parallel_api_test
import multiprocessing
import sys
from pettingzoo.test import parallel_api_test
from citylearn import GridLearn
from citylearn import MyEnv
from pathlib import Path
from stable_baselines3.ppo import MlpPolicy
from stable_baselines3 import PPO
import gym
import numpy as np
import multiprocessing
import sys
import supersuit as ss
import time
import os
import random
random.seed(12)
np.random.seed(12)
model_name = "default_baseline"
climate_zone = 1
data_path = Path("../citylearn/data/Climate_Zone_"+str(climate_zone))
buildings_states_actions = '../citylearn/buildings_state_action_space.json'
config = {
"model_name":model_name,
"data_path":data_path,
"climate_zone":climate_zone,
"buildings_states_actions_file":buildings_states_actions,
"hourly_timesteps":4,
"percent_rl":0.5,
# "percent_rl":1,
"nclusters":1,
"max_num_houses":None
# "max_num_houses":4
}
grid = GridLearn(**config)
grid.normalize_reward()
envs = [MyEnv(grid) for _ in range(config['nclusters'])]
print('setting the grid...')
for env in envs:
env.grid = grid
# env.venv.vec_envs[n].par_env.aec_env.env.env.env.env.initialize_rbc_agents()
env.initialize_rbc_agents('all')
sum_reward = 0
obss = [env.reset() for env in envs]
for ts in range(365*24*4): # test on 5 timesteps
for m in range(len(envs)): # again, alternate through models
obss[m], reward, done, info = envs[m].step({}) # update environment
for building in grid.rl_agents:
print(building, grid.buildings[building].bus)
grid.plot_all()