-
Notifications
You must be signed in to change notification settings - Fork 0
/
graph.hh
1024 lines (876 loc) · 33.5 KB
/
graph.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef BLISS_GRAPH_HH
#define BLISS_GRAPH_HH
/*
Copyright (c) 2003-2015 Tommi Junttila
Released under the GNU Lesser General Public License version 3.
This file is part of bliss.
bliss is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, version 3 of the License.
bliss is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with bliss. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* \namespace bliss_digraphs
* The namespace bliss_digraphs contains all the classes and functions of the bliss
* tool except for the C programming language API.
*/
namespace bliss_digraphs {
class AbstractGraph;
}
#include <cstdio>
#include <vector>
#include "kstack.hh"
#include "kqueue.hh"
#include "heap.hh"
#include "orbit.hh"
#include "partition.hh"
#include "bignum.hh"
#include "uintseqhash.hh"
namespace bliss_digraphs {
typedef std::vector<unsigned int>::iterator uint_pointer_substitute;
typedef std::vector<unsigned int>::const_iterator uint_pointer_to_const_substitute;
/**
* \brief Statistics returned by the bliss search algorithm.
*/
class Stats
{
friend class AbstractGraph;
/** \internal The size of the automorphism group. */
BigNum group_size;
/** \internal An approximation (due to possible overflows) of
* the size of the automorphism group. */
long double group_size_approx;
/** \internal The number of nodes in the search tree. */
long unsigned int nof_nodes;
/** \internal The number of leaf nodes in the search tree. */
long unsigned int nof_leaf_nodes;
/** \internal The number of bad nodes in the search tree. */
long unsigned int nof_bad_nodes;
/** \internal The number of canonical representative updates. */
long unsigned int nof_canupdates;
/** \internal The number of generator permutations. */
long unsigned int nof_generators;
/** \internal The maximal depth of the search tree. */
unsigned long int max_level;
/** */
void reset()
{
group_size.assign(1);
group_size_approx = 1.0;
nof_nodes = 0;
nof_leaf_nodes = 0;
nof_bad_nodes = 0;
nof_canupdates = 0;
nof_generators = 0;
max_level = 0;
}
public:
Stats() { reset(); }
/** Print the statistics. */
size_t print(FILE* const fp) const
{
size_t r = 0;
r += fprintf(fp, "Nodes: %lu\n", nof_nodes);
r += fprintf(fp, "Leaf nodes: %lu\n", nof_leaf_nodes);
r += fprintf(fp, "Bad nodes: %lu\n", nof_bad_nodes);
r += fprintf(fp, "Canrep updates: %lu\n", nof_canupdates);
r += fprintf(fp, "Generators: %lu\n", nof_generators);
r += fprintf(fp, "Max level: %lu\n", max_level);
r += fprintf(fp, "|Aut|: ")+group_size.print(fp)+fprintf(fp, "\n");
fflush(fp);
return r;
}
/** An approximation (due to possible overflows/rounding errors) of
* the size of the automorphism group. */
long double get_group_size_approx() const {return group_size_approx;}
/** The number of nodes in the search tree. */
long unsigned int get_nof_nodes() const {return nof_nodes;}
/** The number of leaf nodes in the search tree. */
long unsigned int get_nof_leaf_nodes() const {return nof_leaf_nodes;}
/** The number of bad nodes in the search tree. */
long unsigned int get_nof_bad_nodes() const {return nof_bad_nodes;}
/** The number of canonical representative updates. */
long unsigned int get_nof_canupdates() const {return nof_canupdates;}
/** The number of generator permutations. */
long unsigned int get_nof_generators() const {return nof_generators;}
/** The maximal depth of the search tree. */
unsigned long int get_max_level() const {return max_level;}
};
/**
* \brief An abstract base class for different types of graphs.
*/
class AbstractGraph
{
friend class Partition;
public:
AbstractGraph();
virtual ~AbstractGraph();
/**
* Set the verbose output level for the algorithms.
* \param level the level of verbose output, 0 means no verbose output
*/
void set_verbose_level(const unsigned int level);
/**
* Set the file stream for the verbose output.
* \param fp the file stream; if null, no verbose output is written
*/
void set_verbose_file(FILE * const fp);
/**
* Add a new vertex with color \a color in the graph and return its index.
*/
virtual unsigned int add_vertex(const unsigned int color = 0) = 0;
/**
* Add an edge between vertices \a source and \a target.
* Duplicate edges between vertices are ignored but try to avoid introducing
* them in the first place as they are not ignored immediately but will
* consume memory and computation resources for a while.
*/
virtual void add_edge(const unsigned int source, const unsigned int target) = 0;
/**
* Change the color of the vertex \a vertex to \a color.
*/
virtual void change_color(const unsigned int vertex, const unsigned int color) = 0;
/**
* Check whether \a perm is an automorphism of this graph.
* Unoptimized, mainly for debugging purposes.
*/
virtual bool is_automorphism(const std::vector<unsigned int>& perm) const;
/** Activate/deactivate failure recording.
* May not be called during the search, i.e. from an automorphism reporting
* hook function.
* \param active if true, activate failure recording, deactivate otherwise
*/
void set_failure_recording(const bool active) {assert(!in_search); opt_use_failure_recording = active;}
/** Activate/deactivate component recursion.
* The choice affects the computed canonical labelings;
* therefore, if you want to compare whether two graphs are isomorphic by
* computing and comparing (for equality) their canonical versions,
* be sure to use the same choice for both graphs.
* May not be called during the search, i.e. from an automorphism reporting
* hook function.
* \param active if true, activate component recursion, deactivate otherwise
*/
void set_component_recursion(const bool active) {assert(!in_search); opt_use_comprec = active;}
/**
* Return the number of vertices in the graph.
*/
virtual unsigned int get_nof_vertices() const = 0;
/**
* Return a new graph that is the result of applying the permutation \a perm
* to this graph. This graph is not modified.
* \a perm must contain N=this.get_nof_vertices() elements and be a bijection
* on {0,1,...,N-1}, otherwise the result is undefined or a segfault.
*/
virtual AbstractGraph* permute(const unsigned int* const perm) const = 0;
virtual AbstractGraph* permute(const std::vector<unsigned int>& perm) const = 0;
/**
* Find a set of generators for the automorphism group of the graph.
* The function \a hook (if non-null) is called each time a new generator
* for the automorphism group is found.
* The first argument \a user_param for the hook is the
* \a hook_user_param given below,
* the second argument \a n is the length of the automorphism (equal to
* get_nof_vertices()) and
* the third argument \a aut is the automorphism
* (a bijection on {0,...,get_nof_vertices()-1}).
* The memory for the automorphism \a aut will be invalidated immediately
* after the return from the hook function;
* if you want to use the automorphism later, you have to take a copy of it.
* Do not call any member functions in the hook.
* The search statistics are copied in \a stats.
*/
void find_automorphisms(Stats& stats,
void (*hook)(void* user_param,
unsigned int n,
const unsigned int* aut),
void* hook_user_param);
/**
* Otherwise the same as find_automorphisms() except that
* a canonical labeling of the graph (a bijection on
* {0,...,get_nof_vertices()-1}) is returned.
* The memory allocated for the returned canonical labeling will remain
* valid only until the next call to a member function with the exception
* that constant member functions (for example, bliss::Graph::permute()) can
* be called without invalidating the labeling.
* To compute the canonical version of an undirected graph, call this
* function and then bliss::Graph::permute() with the returned canonical
* labeling.
* Note that the computed canonical version may depend on the applied version
* of bliss as well as on some other options (for instance, the splitting
* heuristic selected with bliss::Graph::set_splitting_heuristic()).
*/
uint_pointer_to_const_substitute canonical_form(Stats& stats,
void (*hook)(void* user_param,
unsigned int n,
const unsigned int* aut),
void* hook_user_param);
/**
* Write the graph to a file in a variant of the DIMACS format.
* See the <A href="http://www.tcs.hut.fi/Software/bliss/">bliss website</A>
* for the definition of the file format.
* Note that in the DIMACS file the vertices are numbered from 1 to N while
* in this C++ API they are from 0 to N-1.
* Thus the vertex n in the file corresponds to the vertex n-1 in the API.
* \param fp the file stream where the graph is written
*/
virtual void write_dimacs(FILE * const fp) = 0;
/**
* Write the graph to a file in the graphviz dotty format.
* \param fp the file stream where the graph is written
*/
virtual void write_dot(FILE * const fp) = 0;
/**
* Write the graph in a file in the graphviz dotty format.
* Do nothing if the file cannot be written.
* \param file_name the name of the file to which the graph is written
*/
virtual void write_dot(const char * const file_name) = 0;
/**
* Get a hash value for the graph.
* \return the hash value
*/
virtual unsigned int get_hash() = 0;
/**
* Disable/enable the "long prune" method.
* The choice affects the computed canonical labelings;
* therefore, if you want to compare whether two graphs are isomorphic by
* computing and comparing (for equality) their canonical versions,
* be sure to use the same choice for both graphs.
* May not be called during the search, i.e. from an automorphism reporting
* hook function.
* \param active if true, activate "long prune", deactivate otherwise
*/
void set_long_prune_activity(const bool active) {
assert(!in_search);
opt_use_long_prune = active;
}
protected:
/** \internal
* How much verbose output is produced (0 means none) */
unsigned int verbose_level;
/** \internal
* The output stream for verbose output. */
FILE *verbstr;
protected:
/** \internal
* The ordered partition used in the search algorithm. */
Partition p;
/** \internal
* Whether the search for automorphisms and a canonical labeling is
* in progress.
*/
bool in_search;
/** \internal
* Is failure recording in use?
*/
bool opt_use_failure_recording;
/* The "tree-specific" invariant value for the point when current path
* got different from the first path */
unsigned int failure_recording_fp_deviation;
/** \internal
* Is component recursion in use?
*/
bool opt_use_comprec;
unsigned int refine_current_path_certificate_index;
bool refine_compare_certificate;
bool refine_equal_to_first;
unsigned int refine_first_path_subcertificate_end;
int refine_cmp_to_best;
unsigned int refine_best_path_subcertificate_end;
static const unsigned int CERT_SPLIT = 0; //UINT_MAX;
static const unsigned int CERT_EDGE = 1; //UINT_MAX-1;
/** \internal
* Add a triple (v1,v2,v3) in the certificate.
* May modify refine_equal_to_first and refine_cmp_to_best.
* May also update eqref_hash and failure_recording_fp_deviation. */
void cert_add(const unsigned int v1,
const unsigned int v2,
const unsigned int v3);
/** \internal
* Add a redundant triple (v1,v2,v3) in the certificate.
* Can also just dicard the triple.
* May modify refine_equal_to_first and refine_cmp_to_best.
* May also update eqref_hash and failure_recording_fp_deviation. */
void cert_add_redundant(const unsigned int x,
const unsigned int y,
const unsigned int z);
/**\internal
* Is the long prune method in use?
*/
bool opt_use_long_prune;
/**\internal
* Maximum amount of memory (in megabytes) available for
* the long prune method
*/
static const unsigned int long_prune_options_max_mem = 50;
/**\internal
* Maximum amount of automorphisms stored for the long prune method;
* less than this is stored if the memory limit above is reached first
*/
static const unsigned int long_prune_options_max_stored_auts = 100;
unsigned int long_prune_max_stored_autss;
std::vector<std::vector<bool> > long_prune_fixed;
std::vector<std::vector<bool> > long_prune_mcrs;
std::vector<bool> long_prune_temp;
unsigned int long_prune_begin;
unsigned int long_prune_end;
/** \internal
* Initialize the "long prune" data structures.
*/
void long_prune_init();
/** \internal
* Release the memory allocated for "long prune" data structures.
*/
void long_prune_deallocate();
void long_prune_add_automorphism(uint_pointer_to_const_substitute aut);
std::vector<bool>& long_prune_get_fixed(const unsigned int index);
std::vector<bool>& long_prune_allocget_fixed(const unsigned int index);
std::vector<bool>& long_prune_get_mcrs(const unsigned int index);
std::vector<bool>& long_prune_allocget_mcrs(const unsigned int index);
/** \internal
* Swap the i:th and j:th stored automorphism information;
* i and j must be "in window, i.e. in [long_prune_begin,long_prune_end[
*/
void long_prune_swap(const unsigned int i, const unsigned int j);
/*
* Data structures and routines for refining the partition p into equitable
*/
Heap neighbour_heap;
virtual bool split_neighbourhood_of_unit_cell(Partition::Cell *) = 0;
virtual bool split_neighbourhood_of_cell(Partition::Cell * const) = 0;
void refine_to_equitable();
void refine_to_equitable(Partition::Cell * const unit_cell);
void refine_to_equitable(Partition::Cell * const unit_cell1, Partition::Cell * const unit_cell2);
/** \internal
* \return false if it was detected that the current certificate
* is different from the first and/or best (whether this is checked
* depends on in_search and refine_compare_certificate flags.
*/
bool do_refine_to_equitable();
unsigned int eqref_max_certificate_index;
/** \internal
* Whether eqref_hash is updated during equitable refinement process.
*/
bool compute_eqref_hash;
UintSeqHash eqref_hash;
/** \internal
* Check whether the current partition p is equitable.
* Performance: very slow, use only for debugging purposes.
*/
virtual bool is_equitable() const = 0;
std::vector<unsigned int> first_path_labeling_vec;
uint_pointer_substitute first_path_labeling;
std::vector<unsigned int> first_path_labeling_inv_vec;
uint_pointer_substitute first_path_labeling_inv;
Orbit first_path_orbits;
std::vector<unsigned int> first_path_automorphism_vec;
uint_pointer_substitute first_path_automorphism;
std::vector<unsigned int> best_path_labeling_vec;
uint_pointer_substitute best_path_labeling;
std::vector<unsigned int> best_path_labeling_inv_vec;
uint_pointer_substitute best_path_labeling_inv;
Orbit best_path_orbits;
std::vector<unsigned int> best_path_automorphism_vec;
uint_pointer_substitute best_path_automorphism;
void update_labeling(uint_pointer_substitute const lab);
void update_labeling_and_its_inverse(uint_pointer_substitute const lab,
uint_pointer_substitute const lab_inv);
void update_orbit_information(Orbit &o, uint_pointer_substitute perm);
void reset_permutation(uint_pointer_substitute perm);
/* Mainly for debugging purposes */
virtual bool is_automorphism(uint_pointer_substitute const perm);
std::vector<unsigned int> certificate_current_path;
std::vector<unsigned int> certificate_first_path;
std::vector<unsigned int> certificate_best_path;
unsigned int certificate_index;
virtual void initialize_certificate() = 0;
virtual void remove_duplicate_edges() = 0;
virtual void make_initial_equitable_partition() = 0;
virtual Partition::Cell* find_next_cell_to_be_splitted(Partition::Cell *cell) = 0;
void search(const bool canonical, Stats &stats);
void (*report_hook)(void *user_param,
unsigned int n,
const unsigned int *aut);
void *report_user_param;
/*
*
* Nonuniform component recursion (NUCR)
*
*/
/** The currently traversed component */
unsigned int cr_level;
/** \internal
* The "Component End Point" data structure
*/
class CR_CEP {
public:
/** At which level in the search was this CEP created */
unsigned int creation_level;
/** The current component has been fully traversed when the partition has
* this many discrete cells left */
unsigned int discrete_cell_limit;
/** The component to be traversed after the current one */
unsigned int next_cr_level;
/** The next component end point */
unsigned int next_cep_index;
bool first_checked;
bool best_checked;
};
/** \internal
* A stack for storing Component End Points
*/
std::vector<CR_CEP> cr_cep_stack;
/** \internal
* Find the first non-uniformity component at the component recursion
* level \a level.
* The component is stored in \a cr_component.
* If no component is found, \a cr_component is empty.
* Returns false if all the cells in the component recursion level \a level
* were discrete.
* Modifies the max_ival and max_ival_count fields of Partition:Cell
* (assumes that they are 0 when called and
* quarantees that they are 0 when returned).
*/
virtual bool nucr_find_first_component(const unsigned int level) = 0;
virtual bool nucr_find_first_component(const unsigned int level,
std::vector<unsigned int>& component,
unsigned int& component_elements,
Partition::Cell*& sh_return) = 0;
/** \internal
* The non-uniformity component found by nucr_find_first_component()
* is stored here.
*/
std::vector<unsigned int> cr_component;
/** \internal
* The number of vertices in the component \a cr_component
*/
unsigned int cr_component_elements;
};
/**
* \brief The class for undirected, vertex colored graphs.
*
* Multiple edges between vertices are not allowed (i.e., are ignored).
*/
class Graph : public AbstractGraph
{
public:
/**
* The possible splitting heuristics.
* The selected splitting heuristics affects the computed canonical
* labelings; therefore, if you want to compare whether two graphs
* are isomorphic by computing and comparing (for equality) their
* canonical versions, be sure to use the same splitting heuristics
* for both graphs.
*/
typedef enum {
/** First non-unit cell.
* Very fast but may result in large search spaces on difficult graphs.
* Use for large but easy graphs. */
shs_f = 0,
/** First smallest non-unit cell.
* Fast, should usually produce smaller search spaces than shs_f. */
shs_fs,
/** First largest non-unit cell.
* Fast, should usually produce smaller search spaces than shs_f. */
shs_fl,
/** First maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_fm,
/** First smallest maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_fsm,
/** First largest maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_flm
} SplittingHeuristic;
protected:
class Vertex {
public:
Vertex();
~Vertex();
void add_edge(const unsigned int other_vertex);
void remove_duplicate_edges(std::vector<bool>& tmp);
void sort_edges();
unsigned int color;
std::vector<unsigned int> edges;
void clear() {
edges.clear();
}
unsigned int nof_edges() const {return edges.size(); }
};
std::vector<Vertex> vertices;
void sort_edges();
void remove_duplicate_edges();
public:
void clear() {
for (std::vector<Vertex>::iterator it = vertices.begin();
it < vertices.end();
++it) {
it->clear();
}
}
protected:
/** \internal
* Partition independent invariant.
* Returns the color of the vertex.
* Time complexity: O(1).
*/
static unsigned int vertex_color_invariant(const Graph* const g,
const unsigned int v);
/** \internal
* Partition independent invariant.
* Returns the degree of the vertex.
* DUPLICATE EDGES MUST HAVE BEEN REMOVED BEFORE.
* Time complexity: O(1).
*/
static unsigned int degree_invariant(const Graph* const g,
const unsigned int v);
/** \internal
* Partition independent invariant.
* Returns 1 if there is an edge from the vertex to itself, 0 if not.
* Time complexity: O(k), where k is the number of edges leaving the vertex.
*/
static unsigned int selfloop_invariant(const Graph* const g,
const unsigned int v);
bool refine_according_to_invariant(unsigned int (*inv)(const Graph* const g,
const unsigned int v));
/*
* Routines needed when refining the partition p into equitable
*/
bool split_neighbourhood_of_unit_cell(Partition::Cell *);
bool split_neighbourhood_of_cell(Partition::Cell * const);
/** \internal
* \copydoc AbstractGraph::is_equitable() const
*/
bool is_equitable() const;
/* Splitting heuristics, documented in more detail in graph.cc */
SplittingHeuristic sh;
Partition::Cell* find_next_cell_to_be_splitted(Partition::Cell *cell);
Partition::Cell* sh_first();
Partition::Cell* sh_first_smallest();
Partition::Cell* sh_first_largest();
Partition::Cell* sh_first_max_neighbours();
Partition::Cell* sh_first_smallest_max_neighbours();
Partition::Cell* sh_first_largest_max_neighbours();
void make_initial_equitable_partition();
void initialize_certificate();
bool is_automorphism(uint_pointer_substitute const perm);
bool nucr_find_first_component(const unsigned int level);
bool nucr_find_first_component(const unsigned int level,
std::vector<unsigned int>& component,
unsigned int& component_elements,
Partition::Cell*& sh_return);
public:
/**
* Create a new graph with \a N vertices and no edges.
*/
Graph(const unsigned int N = 0);
/**
* Destroy the graph.
*/
~Graph();
/**
* Read the graph from the file \a fp in a variant of the DIMACS format.
* See the <A href="http://www.tcs.hut.fi/Software/bliss/">bliss website</A>
* for the definition of the file format.
* Note that in the DIMACS file the vertices are numbered from 1 to N while
* in this C++ API they are from 0 to N-1.
* Thus the vertex n in the file corresponds to the vertex n-1 in the API.
*
* \param fp the file stream for the graph file
* \param errstr if non-null, the possible error messages are printed
* in this file stream
* \return a new Graph object or 0 if reading failed for some
* reason
*/
static Graph* read_dimacs(FILE* const fp, FILE* const errstr = stderr);
/**
* Write the graph to a file in a variant of the DIMACS format.
* See the <A href="http://www.tcs.hut.fi/Software/bliss/">bliss website</A>
* for the definition of the file format.
*/
void write_dimacs(FILE* const fp);
/**
* \copydoc AbstractGraph::write_dot(FILE * const fp)
*/
void write_dot(FILE* const fp);
/**
* \copydoc AbstractGraph::write_dot(const char * const file_name)
*/
void write_dot(const char* const file_name);
/**
* \copydoc AbstractGraph::is_automorphism(const std::vector<unsigned int>& perm) const
*/
bool is_automorphism(const std::vector<unsigned int>& perm) const;
/**
* \copydoc AbstractGraph::get_hash()
*/
virtual unsigned int get_hash();
/**
* Return the number of vertices in the graph.
*/
unsigned int get_nof_vertices() const {return vertices.size(); }
/**
* \copydoc AbstractGraph::permute(const unsigned int* const perm) const
*/
Graph* permute(const unsigned int* const perm) const;
Graph* permute(const std::vector<unsigned int>& perm) const;
/**
* Add a new vertex with color \a color in the graph and return its index.
*/
unsigned int add_vertex(const unsigned int color = 0);
/**
* Add an edge between vertices \a v1 and \a v2.
* Duplicate edges between vertices are ignored but try to avoid introducing
* them in the first place as they are not ignored immediately but will
* consume memory and computation resources for a while.
*/
void add_edge(const unsigned int v1, const unsigned int v2);
/**
* Change the color of the vertex \a vertex to \a color.
*/
void change_color(const unsigned int vertex, const unsigned int color);
/**
* Compare this graph with the graph \a other.
* Returns 0 if the graphs are equal, and a negative (positive) integer
* if this graph is "smaller than" ("greater than", resp.) than \a other.
*/
int cmp(Graph& other);
/**
* Set the splitting heuristic used by the automorphism and canonical
* labeling algorithm.
* The selected splitting heuristics affects the computed canonical
* labelings; therefore, if you want to compare whether two graphs
* are isomorphic by computing and comparing (for equality) their
* canonical versions, be sure to use the same splitting heuristics
* for both graphs.
*/
void set_splitting_heuristic(const SplittingHeuristic shs) {sh = shs; }
};
/**
* \brief The class for directed, vertex colored graphs.
*
* Multiple edges between vertices are not allowed (i.e., are ignored).
*/
class Digraph : public AbstractGraph
{
public:
/**
* The possible splitting heuristics.
* The selected splitting heuristics affects the computed canonical
* labelings; therefore, if you want to compare whether two graphs
* are isomorphic by computing and comparing (for equality) their
* canonical versions, be sure to use the same splitting heuristics
* for both graphs.
*/
typedef enum {
/** First non-unit cell.
* Very fast but may result in large search spaces on difficult graphs.
* Use for large but easy graphs. */
shs_f = 0,
/** First smallest non-unit cell.
* Fast, should usually produce smaller search spaces than shs_f. */
shs_fs,
/** First largest non-unit cell.
* Fast, should usually produce smaller search spaces than shs_f. */
shs_fl,
/** First maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_fm,
/** First smallest maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_fsm,
/** First largest maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_flm
} SplittingHeuristic;
protected:
class Vertex {
public:
Vertex();
~Vertex();
void add_edge_to(const unsigned int dest_vertex);
void add_edge_from(const unsigned int source_vertex);
void remove_duplicate_edges(std::vector<bool>& tmp);
void sort_edges();
unsigned int color;
std::vector<unsigned int> edges_out;
std::vector<unsigned int> edges_in;
unsigned int nof_edges_in() const {return edges_in.size(); }
unsigned int nof_edges_out() const {return edges_out.size(); }
void clear() {
edges_out.clear();
edges_in.clear();
}
};
std::vector<Vertex> vertices;
public:
void clear() {
for (std::vector<Vertex>::iterator it = vertices.begin();
it < vertices.end();
++it) {
it->clear();
}
}
protected:
void remove_duplicate_edges();
/** \internal
* Partition independent invariant.
* Returns the color of the vertex.
* Time complexity: O(1).
*/
static unsigned int vertex_color_invariant(const Digraph* const g,
const unsigned int v);
/** \internal
* Partition independent invariant.
* Returns the indegree of the vertex.
* DUPLICATE EDGES MUST HAVE BEEN REMOVED BEFORE.
* Time complexity: O(1).
*/
static unsigned int indegree_invariant(const Digraph* const g,
const unsigned int v);
/** \internal
* Partition independent invariant.
* Returns the outdegree of the vertex.
* DUPLICATE EDGES MUST HAVE BEEN REMOVED BEFORE.
* Time complexity: O(1).
*/
static unsigned int outdegree_invariant(const Digraph* const g,
const unsigned int v);
/** \internal
* Partition independent invariant.
* Returns 1 if there is an edge from the vertex to itself, 0 if not.
* Time complexity: O(k), where k is the number of edges leaving the vertex.
*/
static unsigned int selfloop_invariant(const Digraph* const g,
const unsigned int v);
/** \internal
* Refine the partition \a p according to
* the partition independent invariant \a inv.
*/
bool refine_according_to_invariant(unsigned int (*inv)(const Digraph* const g,
const unsigned int v));
/*
* Routines needed when refining the partition p into equitable
*/
bool split_neighbourhood_of_unit_cell(Partition::Cell* const);
bool split_neighbourhood_of_cell(Partition::Cell* const);
/** \internal
* \copydoc AbstractGraph::is_equitable() const
*/
bool is_equitable() const;
/* Splitting heuristics, documented in more detail in the cc-file. */
SplittingHeuristic sh;
Partition::Cell* find_next_cell_to_be_splitted(Partition::Cell *cell);
Partition::Cell* sh_first();
Partition::Cell* sh_first_smallest();
Partition::Cell* sh_first_largest();
Partition::Cell* sh_first_max_neighbours();
Partition::Cell* sh_first_smallest_max_neighbours();
Partition::Cell* sh_first_largest_max_neighbours();
void make_initial_equitable_partition();
void initialize_certificate();
bool is_automorphism(uint_pointer_substitute const perm);
void sort_edges();
bool nucr_find_first_component(const unsigned int level);
bool nucr_find_first_component(const unsigned int level,
std::vector<unsigned int>& component,
unsigned int& component_elements,
Partition::Cell*& sh_return);
public:
/**
* Create a new directed graph with \a N vertices and no edges.
*/
Digraph(const unsigned int N = 0);
/**
* Destroy the graph.
*/
~Digraph();
/**
* Read the graph from the file \a fp in a variant of the DIMACS format.
* See the <A href="http://www.tcs.hut.fi/Software/bliss/">bliss website</A>
* for the definition of the file format.
* Note that in the DIMACS file the vertices are numbered from 1 to N while
* in this C++ API they are from 0 to N-1.
* Thus the vertex n in the file corresponds to the vertex n-1 in the API.
* \param fp the file stream for the graph file
* \param errstr if non-null, the possible error messages are printed
* in this file stream
* \return a new Digraph object or 0 if reading failed for some
* reason
*/
static Digraph* read_dimacs(FILE* const fp, FILE* const errstr = stderr);
/**
* \copydoc AbstractGraph::write_dimacs(FILE * const fp)
*/
void write_dimacs(FILE* const fp);
/**
* \copydoc AbstractGraph::write_dot(FILE *fp)
*/
void write_dot(FILE * const fp);
/**
* \copydoc AbstractGraph::write_dot(const char * const file_name)
*/
void write_dot(const char * const file_name);
/**
* \copydoc AbstractGraph::is_automorphism(const std::vector<unsigned int>& perm) const
*/
bool is_automorphism(const std::vector<unsigned int>& perm) const;
/**
* \copydoc AbstractGraph::get_hash()
*/
virtual unsigned int get_hash();
/**
* Return the number of vertices in the graph.
*/
unsigned int get_nof_vertices() const {return vertices.size(); }
/**
* Add a new vertex with color 'color' in the graph and return its index.
*/
unsigned int add_vertex(const unsigned int color = 0);
/**
* Add an edge from the vertex \a source to the vertex \a target.
* Duplicate edges are ignored but try to avoid introducing
* them in the first place as they are not ignored immediately but will
* consume memory and computation resources for a while.
*/
void add_edge(const unsigned int source, const unsigned int target);
/**
* Change the color of the vertex 'vertex' to 'color'.
*/
void change_color(const unsigned int vertex, const unsigned int color);
/**
* Compare this graph with the graph \a other.
* Returns 0 if the graphs are equal, and a negative (positive) integer
* if this graph is "smaller than" ("greater than", resp.) than \a other.
*/
int cmp(Digraph& other);