diff --git a/docs/src/examples/solvers/Gol, Lazar & Belta (2013).jl b/docs/src/examples/solvers/Gol, Lazar & Belta (2013).jl index 1cc46364f..bce819cdb 100644 --- a/docs/src/examples/solvers/Gol, Lazar & Belta (2013).jl +++ b/docs/src/examples/solvers/Gol, Lazar & Belta (2013).jl @@ -39,6 +39,79 @@ include(joinpath(dirname(dirname(pathof(Dionysos))), "problems", "gol_lazar_belt # Now we instantiate our optimal control problem using the function provided by [GolLazarBelta.jl](@__REPO_ROOT_URL__/problems/GolLazarBelta.jl) problem = GolLazarBelta.problem(CDDLib.Library(), Float64); +function hybrid_automaton( + modes::AbstractVector{<:MathematicalSystems.AbstractContinuousSystem}, + ::Type{M}, +) where {M<:MathematicalSystems.AbstractMap} + return HybridSystem( + HybridSystems.GraphAutomaton(length(modes)), + modes, + M[], + ControlledSwitching[], # `Fill` is immutable + ) +end + +function HybridSystems.add_transition!( + s::HybridSystems.HybridSystem{A,S,R,W}, + from, + to, + m::MathematicalSystems.AbstractMap, +) where {A,S,R,W} + push!(s.resetmaps, m) + HybridSystems.add_transition!(s.automaton, from, to, length(s.resetmaps)) + push!(s.switchings, W()) + return s +end + +using HybridSystems +function hybrid_automaton( + modes::AbstractVector{<:MathematicalSystems.AbstractContinuousSystem}, + transitions::Vector{Pair{Tuple{Int,Int},M}}, +) where {M<:MathematicalSystems.AbstractMap} + s = hybrid_automaton(modes, M) + for t in transitions + HybridSystems.add_transition!(s, t[1]..., t[2]) + end + return s +end + +using StaticArrays +pX = UT.HyperRectangle(SVector(-10, -10.0), SVector(1.85, 2)) +pU = UT.HyperRectangle(SVector(-2.0), SVector(2.0)) +pA = UT.HyperRectangle(SVector(-6, 1.0), SVector(-5, 2.0)) +pB = UT.HyperRectangle(SVector(-5, -3.0), SVector(-4, -2.0)) +AB = UT.LazyUnionSetArray([pA, pB]) +pT = UT.HyperRectangle(SVector(-0.5, -0.5), SVector(0.5, 0.5)) +pO1 = UT.HyperRectangle(SVector(-10.0, -10.0), SVector(-5.0, -5.0)) +pO2 = UT.HyperRectangle(SVector(-5.0, -4.0), SVector(1.85, -3)) +obstacles = UT.LazyUnionSetArray([pO1, pO2]) + +A = [ + 1.0 1 + 0 1 +] +B = reshape([0.5, 1], 2, 1) + +using SemialgebraicSets, MathematicalSystems +# The `MathematicalSystems.@map` macro doesn't support control input nor constraints yet +rmap = ConstrainedLinearControlMap(A, B, FullSpace(), pU) +ABmap = ConstrainedLinearControlMap(A, B, AB, pU) +target_map = ConstrainedLinearControlMap(zero(A), zeros(size(B, 1), 0), pT, pU) +system = hybrid_automaton( + [ + @system(x' = 0, x ∈ pX), + @system(x' = 0, x ∈ pX), + @system(x' = 0, x ∈ pT), + ], + [ + # Ideally, it should be + # (1, 1) => @map(x -> A * x + B * u, x ∈ FullSpace(), u ∈ pU) + (1, 1) => rmap, + (1, 2) => ABmap, + (2, 3) => target_map, + ] +) + # Finally, we select the method presented in [2] as our optimizer qp_solver = optimizer_with_attributes( @@ -129,6 +202,8 @@ for i in eachindex(problem.system.ext[:obstacles]) UT.text_in_set_plot!(fig, set, "O$i") end +fig + #Plot trajectory x0 = problem.initial_set[2] x_traj = [x0, xu.x...]