In software engineering, a design pattern is a general repeatable solution to a commonly occurring problem in software design. A design pattern isn't a finished design that can be transformed directly into code. It is a description or template for how to solve a problem that can be used in many different situations.
Design patterns can speed up the development process by providing tested, proven development paradigms. Effective software design requires considering issues that may not become visible until later in the implementation. Reusing design patterns helps to prevent subtle issues that can cause major problems and improves code readability for coders and architects familiar with the patterns.
Design patterns provide general solutions which are easy to apply to a broader range of problems, documented in a format that doesn't require specifics tied to a particular problem. In addition, patterns allow developers to communicate using well-known, well understood names for software interactions. Common design patterns can be improved over time, making them more robust than ad-hoc designs.
Creational design patterns are concerned with the way of creating objects. These design patterns are used when a decision must be made at the time of instantiation of a class (i.e. creating an object of a class). But everyone knows an object is created by using new keyword in java. Hard-Coded code is not the good programming approach. Here, we are creating the instance by using the new keyword. Sometimes, the nature of the object must be changed according to the nature of the program. In such cases, we must get the help of creational design patterns to provide more general and flexible approach.
- Factory Method
- Abstract Factory
- Singleton
- Prototype
- Builder
- Object Pool
Structural design patterns are concerned with how classes and objects can be composed, to form larger structures. The structural design patterns simplifies the structure by identifying the relationships. These patterns focus on, how the classes inherit from each other and how they are composed from other classes.
- Adapter
- Bridge
- Composite
- Decorator
- Facade
- Flyweight
- Proxy
Behavioral design patterns are concerned with the interaction and responsibility of objects. In these design patterns,the interaction between the objects should be in such a way that they can easily talk to each other and still should be loosely coupled. That means the implementation and the client should be loosely coupled in order to avoid hard coding and dependencies.
- Observer
- State
- Strategy
- Chain of Responsibiliy
- Command
- Interpreter
- Iterator
- Mediator
- Memento
- Template
- Visitor
- Null Object
Abstract factory (recognizeable by creational methods returning the factory itself which in turn can be used to create another abstract/interface type)
javax.xml.parsers.DocumentBuilderFactory#newInstance()
javax.xml.transform.TransformerFactory#newInstance()
javax.xml.xpath.XPathFactory#newInstance()
Builder (recognizeable by creational methods returning the instance itself)
java.lang.StringBuilder#append()
(unsynchronized)java.lang.StringBuffer#append()
(synchronized)java.nio.ByteBuffer#put()
(also onCharBuffer
,ShortBuffer
,IntBuffer
,LongBuffer
,FloatBuffer
andDoubleBuffer
)javax.swing.GroupLayout.Group#addComponent()
- All implementations of
java.lang.Appendable
java.util.stream.Stream.Builder
Factory method (recognizeable by creational methods returning an implementation of an abstract/interface type)
java.util.Calendar#getInstance()
java.util.ResourceBundle#getBundle()
java.text.NumberFormat#getInstance()
java.nio.charset.Charset#forName()
java.net.URLStreamHandlerFactory#createURLStreamHandler(String)
(Returns singleton object per protocol)java.util.EnumSet#of()
javax.xml.bind.JAXBContext#createMarshaller()
and other similar methods
Prototype (recognizeable by creational methods returning a different instance of itself with the same properties)
java.lang.Object#clone()
(the class has to implementjava.lang.Cloneable
)
Singleton (recognizeable by creational methods returning the same instance (usually of itself) everytime)
Adapter (recognizeable by creational methods taking an instance of different abstract/interface type and returning an implementation of own/another abstract/interface type which decorates/overrides the given instance)
java.util.Arrays#asList()
java.util.Collections#list()
java.util.Collections#enumeration()
java.io.InputStreamReader(InputStream)
(returns aReader
)java.io.OutputStreamWriter(OutputStream)
(returns aWriter
)javax.xml.bind.annotation.adapters.XmlAdapter#marshal()
and#unmarshal()
Bridge (recognizeable by creational methods taking an instance of different abstract/interface type and returning an implementation of own abstract/interface type which delegates/uses the given instance)
- None comes to mind yet. A fictive example would be
new LinkedHashMap(LinkedHashSet<K>, List<V>)
which returns an unmodifiable linked map which doesn't clone the items, but uses them. Thejava.util.Collections#newSetFromMap()
andsingletonXXX()
methods however comes close.
Composite (recognizeable by behavioral methods taking an instance of same abstract/interface type into a tree structure)
java.awt.Container#add(Component)
(practically all over Swing thus)javax.faces.component.UIComponent#getChildren()
(practically all over JSF UI thus)
Decorator (recognizeable by creational methods taking an instance of same abstract/interface type which adds additional behaviour)
- All subclasses of
java.io.InputStream
,OutputStream
,Reader
andWriter
have a constructor taking an instance of same type. java.util.Collections
, thecheckedXXX()
,synchronizedXXX()
andunmodifiableXXX()
methods.javax.servlet.http.HttpServletRequestWrapper
andHttpServletResponseWrapper
javax.swing.JScrollPane
Facade (recognizeable by behavioral methods which internally uses instances of different independent abstract/interface types)
javax.faces.context.FacesContext
, it internally uses among others the abstract/interface typesLifeCycle
,ViewHandler
,NavigationHandler
and many more without that the enduser has to worry about it (which are however overrideable by injection).javax.faces.context.ExternalContext
, which internally usesServletContext
,HttpSession
,HttpServletRequest
,HttpServletResponse
, etc.
Flyweight (recognizeable by creational methods returning a cached instance, a bit the "multiton" idea)
java.lang.Integer#valueOf(int)
(also onBoolean
,Byte
,Character
,Short
,Long
andBigDecimal
)
Proxy (recognizeable by creational methods which returns an implementation of given abstract/interface type which in turn delegates/uses a different implementation of given abstract/interface type)
java.lang.reflect.Proxy
java.rmi.*
javax.ejb.EJB
(explanation here)javax.inject.Inject
(explanation here)javax.persistence.PersistenceContext
Chain of responsibility (recognizeable by behavioral methods which (indirectly) invokes the same method in another implementation of same abstract/interface type in a queue)
Command (recognizeable by behavioral methods in an abstract/interface type which invokes a method in an implementation of a different abstract/interface type which has been encapsulated by the command implementation during its creation)
- All implementations of
java.lang.Runnable
- All implementations of
javax.swing.Action
Interpreter (recognizeable by behavioral methods returning a structurally different instance/type of the given instance/type; note that parsing/formatting is not part of the pattern, determining the pattern and how to apply it is)
java.util.Pattern
java.text.Normalizer
- All subclasses of
java.text.Format
- All subclasses of
javax.el.ELResolver
Iterator (recognizeable by behavioral methods sequentially returning instances of a different type from a queue)
- All implementations of
java.util.Iterator
(thus among others alsojava.util.Scanner
!). - All implementations of
java.util.Enumeration
Mediator (recognizeable by behavioral methods taking an instance of different abstract/interface type (usually using the command pattern) which delegates/uses the given instance)
java.util.Timer
(allscheduleXXX()
methods)java.util.concurrent.Executor#execute()
java.util.concurrent.ExecutorService
(theinvokeXXX()
andsubmit()
methods)java.util.concurrent.ScheduledExecutorService
(allscheduleXXX()
methods)java.lang.reflect.Method#invoke()
Memento (recognizeable by behavioral methods which internally changes the state of the whole instance)
java.util.Date
(the setter methods do that,Date
is internally represented by along
value)- All implementations of
java.io.Serializable
- All implementations of
javax.faces.component.StateHolder
Observer (or Publish/Subscribe) (recognizeable by behavioral methods which invokes a method on an instance of another abstract/interface type, depending on own state)
java.util.Observer
/java.util.Observable
(rarely used in real world though)- All implementations of
java.util.EventListener
(practically all over Swing thus) javax.servlet.http.HttpSessionBindingListener
javax.servlet.http.HttpSessionAttributeListener
javax.faces.event.PhaseListener
State (recognizeable by behavioral methods which changes its behaviour depending on the instance's state which can be controlled externally)
javax.faces.lifecycle.LifeCycle#execute()
(controlled byFacesServlet
, the behaviour is dependent on current phase (state) of JSF lifecycle)
Strategy (recognizeable by behavioral methods in an abstract/interface type which invokes a method in an implementation of a different abstract/interface type which has been passed-in as method argument into the strategy implementation)
java.util.Comparator#compare()
, executed by among othersCollections#sort()
.javax.servlet.http.HttpServlet
, theservice()
and alldoXXX()
methods takeHttpServletRequest
andHttpServletResponse
and the implementor has to process them (and not to get hold of them as instance variables!).javax.servlet.Filter#doFilter()
Template method (recognizeable by behavioral methods which already have a "default" behaviour defined by an abstract type)
- All non-abstract methods of
java.io.InputStream
,java.io.OutputStream
,java.io.Reader
andjava.io.Writer
. - All non-abstract methods of
java.util.AbstractList
,java.util.AbstractSet
andjava.util.AbstractMap
. javax.servlet.http.HttpServlet
, all thedoXXX()
methods by default sends a HTTP 405 "Method Not Allowed" error to the response. You're free to implement none or any of them.