-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmetric.py
62 lines (48 loc) · 2.67 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from FlagEmbedding import BGEM3FlagModel
from PIL import Image
import open_clip
import torch
# https://github.com/FlagOpen/FlagEmbedding
class TxtSimCal:
def __init__(self, model_path, use_fp16=True,
max_passage_length = 128, weights_for_different_modes = [0.4, 0.2, 0.4]):
self.model = BGEM3FlagModel(model_path, use_fp16=use_fp16)
self.max_passage_length = max_passage_length
self.weights_for_different_modes = weights_for_different_modes
def compute_score(self, question, response):
assert type(question) == str and type(response) == str
# 'colbert', 'sparse', 'dense', 'sparse+dense', 'colbert+sparse+dense'
return self.model.compute_score([[question, response]],
max_passage_length = self.max_passage_length,
weights_for_different_modes = self.weights_for_different_modes)["colbert+sparse+dense"][0]
# https://github.com/mlfoundations/open_clip
class ImgSimCal:
def __init__(self, model_path):
assert model_path in ["ViT-B-16", "hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224"]
self.model, _, self.preprocess = open_clip.create_model_and_transforms(model_path)
self.tokenizer = open_clip.get_tokenizer(model_path)
self.model.eval()
self.model.cuda()
def compute_score(self, image_path, response):
assert type(image_path) == str and type(response) == str and image_path.lower().endswith(('.jpg', '.png'))
image = self.preprocess(Image.open(image_path).convert("RGB")).unsqueeze(0).cuda()
text = self.tokenizer([response]).cuda()
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = self.model.encode_image(image)
text_features = self.model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
score = (100.0 * image_features @ text_features.T)
return score.item()
if __name__ == '__main__':
image_path = "test.jpg" # 替换为你的测试图像路径
question = "A description of the image."
response = "A description of the image."
model_path = "BAAI/bge-m3"
txt_sim_cal = TxtSimCal(model_path)
score = txt_sim_cal.compute_score(question, response)
# model_path = "ViT-B-16" # 选择合适的模型
# model_path = "hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224"
# img_sim_cal = ImgSimCal(model_path)
# score = img_sim_cal.compute_score(image_path, response)
print(f"Similarity score: {score}")