-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdemo.py
26 lines (19 loc) · 1.51 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import os
from models import Noise2Same
import gradio as gr
os.system("mkdir trained_models/denoising_ImageNet")
os.system("cd trained_models/denoising_ImageNet; gdown https://drive.google.com/uc?id=1asrwULW1lDFasystBc3UfShh5EeTHpkW; gdown https://drive.google.com/uc?id=1Re1ER7KtujBunN0-74QmYrrOx77WpVXK; gdown https://drive.google.com/uc?id=1QdlyUPUKyyGtqD0zBrj5F7qQZtmUELSu; gdown https://drive.google.com/uc?id=1LQsYR26ldHebcdQtP2zt4Mh-ZH9vXQ2S; gdown https://drive.google.com/uc?id=1AxTDD4dS0DtzmBywjGyeJYgDrw-XjYbc; gdown https://drive.google.com/uc?id=1w4UdNAbOjvWSL0Jgbq8_hCniaxqsbLaQ; cd ../..")
os.system("wget -O arch.png https://i.imgur.com/NruRABn.png")
os.system("wget -O parrot.png https://i.imgur.com/zdji3xv.png")
os.system("wget -O lion.png https://i.imgur.com/qNT0lJJ.png")
model = Noise2Same('trained_models/', 'denoising_ImageNet', dim=2, in_channels=3)
def norm(x):
x = (x-x.min())/(x.max()-x.min())
return x
def predict(img):
pred = model.predict(img.astype('float32'))
return norm(pred)
img = gr.inputs.Image()
title = "Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising"
description = "A demo of Noise2Same, an image denoising method developed by Yaochen Xie et al. and presented in NeurIPS 2020. This demo uses the ImageNet-trained model. Try it by uploading an image or clicking on an example (could take up to 20s if running on CPU)."
gr.Interface(predict, "image", "image", examples=[["lion.png"], ["arch.png"], ["parrot.png"]], title=title, description=description).launch()