forked from bapoczos/deep-dream-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deep_dream_random_noise_demo.py
92 lines (63 loc) · 3 KB
/
deep_dream_random_noise_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# boilerplate code
from __future__ import print_function
import os
from io import BytesIO
import numpy as np
from functools import partial
import PIL.Image
#from IPython.display import clear_output, Image, display, HTML
import tensorflow as tf
#!wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip && unzip inception5h.zip
model_fn = 'tensorflow_inception_graph.pb'
# creating TensorFlow session and loading the model
graph = tf.Graph()
sess = tf.InteractiveSession(graph=graph)
with tf.gfile.FastGFile(model_fn, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
t_input = tf.placeholder(np.float32, name='input') # define the input tensor
imagenet_mean = 117.0
t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0)
tf.import_graph_def(graph_def, {'input':t_preprocessed})
layers = [op.name for op in graph.get_operations() if op.type=='Conv2D' and 'import/' in op.name]
feature_nums = [int(graph.get_tensor_by_name(name+':0').get_shape()[-1]) for name in layers]
print('Number of layers', len(layers))
print('Total number of feature channels:', sum(feature_nums))
#***************************************************
# Picking some internal layer. Note that we use outputs before applying the ReLU nonlinearity
# to have non-zero gradients for features with negative initial activations.
layer = 'mixed4d_3x3_bottleneck_pre_relu'
channel = 139 # picking some feature channel to visualize
# start with a gray image with a little noise
img_noise = np.random.uniform(size=(224, 224, 3)) + 100.0
def showarray(a, fname, fmt='jpeg'):
a = np.uint8(np.clip(a, 0, 1) * 255)
#f = BytesIO()
PIL.Image.fromarray(a).save(fname, fmt)
#display(Image(data=f.getvalue()))
def visstd(a, s=0.1):
'''Normalize the image range for visualization'''
return (a - a.mean()) / max(a.std(), 1e-4) * s + 0.5
def T(layer):
'''Helper for getting layer output tensor'''
return graph.get_tensor_by_name("import/%s:0" % layer)
def render_naive(t_obj, img0=img_noise, iter_n=20, step=1.0):
t_score = tf.reduce_mean(t_obj) # defining the optimization objective. This is mean of a given channel in a tensor layer defined by t_obj
# we want to maaximize this objective
t_grad = tf.gradients(t_score, t_input)[0] # behold the power of automatic differentiation!
img = img0.copy()
showarray(visstd(img),'./results/result_0')
act_obj = sess.run(t_obj, {t_input: img_noise})
print('objective tensor size', act_obj.shape)
for i in range(iter_n):
g, score = sess.run([t_grad, t_score], {t_input: img})
# normalizing the gradient, so the same step size should work
g /= g.std() + 1e-8 # for different layers and networks
img += g * step
print(i, ' ', score)
fname='./results/result_'+str(i)
showarray(visstd(img),fname)
# clear_output()
showarray(visstd(img),'./results/result_final')
render_naive(T(layer)[:, :, :, channel])
#***************************************************