-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbernoulli_numbers.tex
40 lines (30 loc) · 1.37 KB
/
bernoulli_numbers.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
\documentclass{article}
\usepackage{latexsym}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{amsthm}
\newtheorem{theorem}{Theorem}[section]
\newtheorem*{problem}{Problem}
\begin{document}
\title{Bernoulli Numbers}
\author{Dave Neary}
\maketitle
\section{Introduction}
I first came across the Bernoulli numbers in Faulhaber's formula for summing the $k$th
powers of integers. Faulhaber's formula uses exponential generating functions to prove that:
\[ \sum_{i=1}^n i^k = \frac{1}{k+1} \sum_{j=0}^k \binom{k+1}{j} B_j n^{k+1-j} \]
where $\{B_j\}$ are the Bernoulli numbers. The first few Bernoulli numbers are:
\[ \{B_i\} = \{1, \frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \cdots\} \]
We can use this formula to show, for example, that the sum of the 4th powers of integers:
\begin{align*}
\sum_{i=1}^n i^4 &= \frac{1}{5}\left( \binom{5}{0} B_0 n^{5} + \binom{5}{1} B_1 n^{4} +
\binom{5}{2} B_2 n^{3} + \binom{5}{3} B_3 n^{2} + \binom{5}{4} B_4 n^{1} \right) \\
&= \frac{1}{5}\left( n^{5} + \frac{5}{2} n^{4} +
\frac{5}{3} n^{3} - \frac{1}{6} n \right) \\
&= \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3 - \frac{1}{30}n
\end{align*}
But where do these numbers come from, what other applications do they have, and why are they
important enough to have been given a name?
\section{Bernoulli polynomials}
\end{document}