-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrite_bin_polygon.py
226 lines (191 loc) · 7.51 KB
/
write_bin_polygon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import json
import geopandas as gpd
from shapely.geometry import mapping
from consts import files_path, binary_data_dir
import pickle
import os
from collections import defaultdict
def build_threshold_rgba(a, C):
# Bins normalized between 0 and 1
norm = [(float(i) - min(a)) / (max(a) - min(a)) for i in a]
# Generate the desired output format
output = []
for value, color in zip(a, C):
rgba_color = (int(color[0]), int(color[1]), int(color[2]), 255)
output.append({"value": value, "color": rgba_color})
return output
def get_color_for_value(var_threshold, value):
"""
Given a value and a list of thresholds, return the corresponding color.
If the value is non-numeric, return a fully transparent color.
If the value is below the first threshold, return the first color.
If the value is above the last threshold, return the last color.
"""
if not isinstance(value, (int, float)) or value == 0:
# Fully transparent
return (0, 0, 0, 0)
for threshold in var_threshold:
if value <= threshold["value"]:
return threshold["color"]
# If value exceeds all var_threshold, return the last color
return var_threshold[-1]["color"]
def process_files(files, tracts_gdf):
"""
Process each variable file to compute average values by census tract and include geometries.
"""
# Directory to save processed pickle files
os.makedirs(binary_data_dir, exist_ok=True) # Create the directory if it doesn't exist
for file in files:
var_name = file["var_name"]
file_path = file["path"]
print(f"Processing variable: {var_name}")
# Open and load the GeoJSON file using geopandas
try:
points_gdf = gpd.read_file(file_path)
except FileNotFoundError:
print(f"File not found: {file_path}. Skipping {var_name}.")
continue
except Exception as e:
print(f"Error loading {file_path}: {e}. Skipping {var_name}.")
continue
# Ensure the GeoDataFrame has a geometry column
if points_gdf.empty or 'geometry' not in points_gdf:
print(f"No geometry found in {file_path}. Skipping {var_name}.")
continue
# Ensure CRS matches between points and tracts
if points_gdf.crs != tracts_gdf.crs:
points_gdf = points_gdf.to_crs(tracts_gdf.crs)
# Extract all years from the properties
# Assuming year properties are all keys that are purely digits
sample_properties = points_gdf.iloc[0].drop(labels='geometry').to_dict()
years = sorted([key for key in sample_properties.keys() if key.isdigit()])
if not years:
print(f"No year properties found in {file_path}. Skipping {var_name}.")
continue
print(f"Processing variable '{var_name}' for years: {', '.join(years)}")
for year in years:
# Select the value column for the current year
if year not in points_gdf.columns:
print(f"Year '{year}' not found in {file_path}. Skipping year.")
continue
# Create a GeoDataFrame with only necessary columns
df_year = points_gdf[['geometry', year]].copy()
df_year = df_year.dropna(subset=[year])
# Spatial join with tracts to assign each point to a tract
try:
joined = gpd.sjoin(df_year, tracts_gdf, how='inner', predicate='within')
except Exception as e:
print(f"Error during spatial join for {var_name} {year}: {e}")
continue
# Group by tract and compute average
grouped = joined.groupby('GEOID')[year].mean().reset_index()
grouped.rename(columns={year: 'average_value'}, inplace=True)
# Assign colors based on average values
grouped['color'] = grouped['average_value'].apply(lambda x: get_color_for_value(file["threshold"], x))
# Merge with tracts_gdf to get geometries
grouped = grouped.merge(tracts_gdf[['GEOID', 'geometry']], on='GEOID', how='left')
# Convert geometries to GeoJSON-like dicts
grouped['geometry'] = grouped['geometry'].apply(lambda geom: mapping(geom))
# Prepare the binary data
binary_data = {
"tracts": grouped[['GEOID', 'average_value', 'color', 'geometry']].to_dict(orient='records')
}
# Define the filename
filename = f"ct_{var_name}_{year}.pickle"
filepath = os.path.join(binary_data_dir, filename)
# Save the binary data using pickle
try:
with open(filepath, 'wb') as pf:
pickle.dump(binary_data, pf)
print(f"Saved binary data for {var_name} {year} to {filepath}")
except IOError as e:
print(f"Failed to save binary data to {filepath}: {e}")
# Define thresholds and colors as in your original code
start, end, n = -50, 50, 38
temp_range = [round(start + (end - start) * i / (n - 1), 1) for i in range(n)]
temp_colors = np.array([
[145, 0, 63],
[206, 18, 86],
[231, 41, 138],
[223, 101, 176],
[255, 115, 223],
[255, 190, 232],
[255, 255, 255],
[218, 218, 235],
[188, 189, 220],
[158, 154, 200],
[117, 107, 177],
[84, 39, 143],
[13, 0, 125],
[13, 61, 156],
[0, 102, 194],
[41, 158, 255],
[74, 199, 255],
[115, 215, 255],
[173, 255, 255],
[48, 207, 194],
[0, 153, 150],
[18, 87, 87],
[6, 109, 44],
[49, 163, 84],
[116, 196, 118],
[161, 217, 155],
[211, 255, 190],
[255, 255, 179],
[255, 237, 160],
[254, 209, 118],
[254, 174, 42],
[253, 141, 60],
[252, 78, 42],
[227, 26, 28],
[177, 0, 38],
[128, 0, 38],
[89, 0, 66],
[40, 0, 40]
])
prcp_range_inches = [0, 0.01, 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 15, 20, 30]
prcp_range_mm = [round(value * 25.4, 2) for value in prcp_range_inches]
prcp_colors = np.array([
[255, 255, 255],
[199, 233, 192],
[161, 217, 155],
[116, 196, 118],
[49, 163, 83],
[0, 109, 44],
[255, 250, 138],
[255, 204, 79],
[254, 141, 60],
[252, 78, 42],
[214, 26, 28],
[173, 0, 38],
[112, 0, 38],
[59, 0, 48],
[76, 0, 115],
[255, 219, 255]
])
temp_threshold = build_threshold_rgba(temp_range, temp_colors)
prcp_threshold = build_threshold_rgba(prcp_range_mm, prcp_colors)
# List of files
geojson_files = [
{"var_name": "tmin", "path": f"{files_path}/Yearly_tmin_round.json", "threshold": temp_threshold},
{"var_name": "tmax", "path": f"{files_path}/Yearly_tmax_round.json", "threshold": temp_threshold},
{"var_name": "prcp", "path": f"{files_path}/Illinois_prcp_risks_round.json", "threshold": prcp_threshold},
]
# Load Census Tracts GeoJSON
tracts_geojson_path = f"{files_path}/tl_2023_17_tract.json" # Update the path accordingly
try:
tracts_gdf = gpd.read_file(tracts_geojson_path)
except FileNotFoundError:
print(f"Census tract file not found: {tracts_geojson_path}. Exiting.")
exit(1)
except Exception as e:
print(f"Error loading census tracts GeoJSON: {e}. Exiting.")
exit(1)
# Ensure there is a unique identifier for each tract
# Replace 'GEOID' with the actual property name in your GeoJSON
if 'GEOID' not in tracts_gdf.columns:
print("Error: 'GEOID' field not found in census tracts GeoJSON. Please update the code with the correct field name.")
exit(1)
# Process the files
process_files(geojson_files, tracts_gdf)