-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
89 lines (72 loc) · 2.77 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import pandas as pd
from flask import Flask, request, jsonify, render_template
import pickle
import model
app= Flask(__name__, static_url_path='/static')
my_model=pickle.load(open('model.pkl', 'rb'))
@app.route('/')
def home():
return render_template('home.html')
@app.route('/index')
def predictionpage():
return render_template('index.html')
@app.route('/predict', methods=['POST'])
def predict():
input_values = [float(i) for i in request.form.values()] #fetching the input values
df_row=[[i] for i in input_values] #This will form the input row
df_keys = [i for i in request.form.keys()] #fetching the input keys
rescaling_cols=['temp', 'hum', 'windspeed'] #declaring list of keys which has to be rescaled
#Declaring dictionary to convert into dataframe in the next step.
html_dict = {df_keys[i]: df_row[i] for i in range(len(df_keys))}
def creating_input_to_model(dict):
df_dict = {}
if dict['weather']==[1.0]:
df_dict['Best']=[1.0]
df_dict['Neutral']=[0.0]
elif dict['weather']==[2.0]:
df_dict['Best']=[0.0]
df_dict['Neutral']=[1.0]
else:
df_dict['Best'] = [0.0]
df_dict['Neutral'] = [0.0]
if dict['Seasons']==[1.0]:
df_dict['spring']=[1.0]
df_dict['temp']=dict['temp']
else:
df_dict['spring'] = [0.0]
df_dict['temp'] = dict['temp']
if dict['Seasons']==[4.0]:
df_dict['winter']=[1.0]
df_dict['summer']=[0.0]
elif dict['Seasons']==[2.0]:
df_dict['winter'] = [0.0]
df_dict['summer'] = [1.0]
else:
df_dict['winter'] = [0.0]
df_dict['summer'] = [0.0]
df_dict['hum']=dict['hum']
if dict['Month']==[7.0]:
df_dict['Jul']=[1.0]
df_dict['Sep']=[0.0]
elif dict['Month']==[9.0]:
df_dict['Jul'] = [0.0]
df_dict['Sep'] = [1.0]
else:
df_dict['Jul'] = [0.0]
df_dict['Sep'] = [0.0]
df_dict['windspeed'] = dict['windspeed']
df_dict['yr']= dict['yr']
df_dict['holiday']=dict['holiday']
return df_dict
func_dict=creating_input_to_model(html_dict)
df=pd.DataFrame(func_dict)
df[df.columns[df.columns.isin(rescaling_cols)]] = model.scaler.transform(df[df.columns[df.columns.isin(rescaling_cols)]])
#Prediction of the trained model
prediction= my_model.predict(df)
#Output derived from the ML model
output= round(prediction[0], 2)
#Output sent to the html page
return render_template('index.html', prediction_text='Prediction: \n {} cycle rents.'.format(output))
if __name__=="__main__":
app.run(debug=True)