diff --git "a/week3/[MLNovice]\355\231\251\354\247\200\354\233\220_week3-1.ipynb" "b/week3/[MLNovice]\355\231\251\354\247\200\354\233\220_week3-1.ipynb" new file mode 100644 index 0000000..2c537a3 --- /dev/null +++ "b/week3/[MLNovice]\355\231\251\354\247\200\354\233\220_week3-1.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyN+NosSh6cOGlVX9GZGUYoV"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"mUPgayDTIuMU"},"outputs":[],"source":["# 럭키백의 확률\n","\n","# 데이터 준비하기\n","import pandas as pd\n","\n","fish = pd.read_csv('https://bit.ly/fish_csv_data')\n","fish.head() # 테이블로 출력해\n","\n","# input 데이터\n","fish_input = fish[['Weight','Length','Diagonal','Height','Width']].to_numpy()\n","# target 데이터\n","fish_target = fish['Species'].to_numpy()"]},{"cell_type":"code","source":["# 데이터 전처리\n","# train set, test set 나누기\n","from sklearn.model_selection import train_test_split\n","\n","train_input, test_input, train_target, test_target = train_test_split(\n"," fish_input, fish_target, random_state=42)\n","\n","# data scaling\n","from sklearn.preprocessing import StandardScaler\n","\n","ss = StandardScaler()\n","ss.fit(train_input)\n","train_scaled = ss.transform(train_input)\n","test_scaled = ss.transform(test_input)"],"metadata":{"id":"vUaGxPeON4Rb"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# K-최근접 이웃의 다중분류 확률 예측\n","from sklearn.neighbors import KNeighborsClassifier\n","\n","kn = KNeighborsClassifier(n_neighbors=3) # 기본값은 5, 이번엔 3으로 설정\n","kn.fit(train_scaled, train_target)\n","\n","print(kn.classes_)\n","# class가 어떤식으로 나눠졌지 확인\n","\n","import numpy as np\n","\n","# 확률 출력 (predict_proba 메소드 사용)\n","proba = kn.predict_proba(test_scaled[:5])\n","print(np.round(proba, decimals=4))\n","\n","distances, indexes = kn.kneighbors(test_scaled[3:4])\n","print(train_target[indexes])"],"metadata":{"id":"5ZCyyrihN7sA"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 시그모이드 함수 만들기\n","import numpy as np\n","import matplotlib.pyplot as plt\n","\n","z = np.arange(-5, 5, 0.1)\n","phi = 1 / (1 + np.exp(-z))\n","\n","plt.plot(z, phi)\n","plt.xlabel('z')\n","plt.ylabel('phi')\n","plt.show()"],"metadata":{"id":"taWW1UNoOClC"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 로지스틱 회귀로 이진 분류\n","bream_smelt_indexes = (train_target == 'Bream') | (train_target == 'Smelt') # 불린 인덱싱\n","train_bream_smelt = train_scaled[bream_smelt_indexes]\n","target_bream_smelt = train_target[bream_smelt_indexes]\n","\n","from sklearn.linear_model import LogisticRegression\n","\n","# 객체 만들기\n","lr = LogisticRegression()\n","lr.fit(train_bream_smelt, target_bream_smelt)\n","\n","# 샘플 5개 (도미, 빙어)\n","print(lr.predict(train_bream_smelt[:5]))\n","# 샘플에 대한 확률\n","print(lr.predict_proba(train_bream_smelt[:5]))\n","\n","# 가중치\n","print(lr.coef_, lr.intercept_)\n","\n","# z값 계산\n","decisions = lr.decision_function(train_bream_smelt[:5])\n","print(decisions)\n","\n","# scipy에서 시그모이드함수 불러오기\n","from scipy.special import expit\n","print(expit(decisions))"],"metadata":{"id":"tWN1R-diOD7t"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 로지스틱 회귀로 다중 분류\n","lr = LogisticRegression(C=20, max_iter=1000)\n","lr.fit(train_scaled, train_target)\n","\n","# 정확도 예측\n","print(lr.score(train_scaled, train_target))\n","print(lr.score(test_scaled, test_target))\n","\n","# predict_proba 메소드로 확률 출력\n","proba = lr.predict_proba(test_scaled[:5])\n","print(np.round(proba, decimals=3))\n","\n","decision = lr.decision_function(test_scaled[:5])\n","print(np.round(decision, decimals=2))\n","\n","# 소프트맥스 함수\n","from scipy.special import softmax\n","\n","proba = softmax(decision, axis=1)\n","print(np.round(proba, decimals=3))"],"metadata":{"id":"w7q7UdRFOORO"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"FRzXkTPzPqlU"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"ftJkVWXTPqtU"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git "a/week3/[MLNovice]\355\231\251\354\247\200\354\233\220_week3-2.ipynb" "b/week3/[MLNovice]\355\231\251\354\247\200\354\233\220_week3-2.ipynb" new file mode 100644 index 0000000..41f1719 --- /dev/null +++ "b/week3/[MLNovice]\355\231\251\354\247\200\354\233\220_week3-2.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyPp4SoE1DvNF6xZT3xKSAFg"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"k-tsR6BKTlHO"},"outputs":[],"source":["#SGD Classifier (확률적 경사 하강법 분류기)"]},{"cell_type":"code","source":["# 데이터 전처리\n","import pandas as pd\n","\n","fish = pd.read_csv('https://bit.ly/fish_csv_data')\n","\n","fish_input = fish[['Weight','Length','Diagonal','Height','Width']].to_numpy()\n","fish_target = fish['Species'].to_numpy()\n","\n","from sklearn.model_selection import train_test_split\n","\n","train_input, test_input, train_target, test_target = train_test_split(\n"," fish_input, fish_target, random_state=42)\n","\n","from sklearn.preprocessing import StandardScaler\n","\n","ss = StandardScaler()\n","ss.fit(train_input)\n","train_scaled = ss.transform(train_input)\n","test_scaled = ss.transform(test_input)"],"metadata":{"id":"bHmNSvnpTmxX"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 사이킷런에서 제공하는 SGD 모델\n","from sklearn.linear_model import SGDClassifier\n","\n","# 로지스틱 손실함수 지정\n","sc = SGDClassifier(loss='log_loss', max_iter=10, random_state=42)\n","sc.fit(train_scaled, train_target)\n","\n","# 정확도 출력\n","print(sc.score(train_scaled, train_target))\n","print(sc.score(test_scaled, test_target))\n","\n","# 이전에 훈련한 걸 다시 사용할지\n","sc.partial_fit(train_scaled, train_target)\n","\n","print(sc.score(train_scaled, train_target))\n","print(sc.score(test_scaled, test_target))"],"metadata":{"id":"HCBeluU2Tm2i"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 에포크와 과대/과소적합\n","\n","import numpy as np\n","\n","sc = SGDClassifier(loss='log_loss', random_state=42)\n","\n","train_score = []\n","test_score = []\n","\n","# partial_fit 메소드로 훈련\n","classes = np.unique(train_target)\n","for _ in range(0, 300):\n"," sc.partial_fit(train_scaled, train_target, classes=classes)\n","\n"," train_score.append(sc.score(train_scaled, train_target))\n"," test_score.append(sc.score(test_scaled, test_target))\n","\n","sc = SGDClassifier(loss='log_loss', max_iter=100, tol=None, random_state=42)\n","sc.fit(train_scaled, train_target)\n","\n","print(sc.score(train_scaled, train_target))\n","print(sc.score(test_scaled, test_target))"],"metadata":{"id":"GFBSr9OPe7Uq"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 훈련세트와 테스트셋의 성능 측정 그래프\n","import matplotlib.pyplot as plt\n","\n","plt.plot(train_score)\n","plt.plot(test_score)\n","plt.xlabel('epoch')\n","plt.ylabel('accuracy')\n","plt.show()"],"metadata":{"id":"fomxBb2IgKyN"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 소프트맥스 함수 사용할때는 손실함수에 'hinge'\n","sc = SGDClassifier(loss='hinge', max_iter=100, tol=None, random_state=42)\n","sc.fit(train_scaled, train_target)\n","\n","print(sc.score(train_scaled, train_target))\n","print(sc.score(test_scaled, test_target))"],"metadata":{"id":"5ZFYqBype7ho"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git "a/week4/[MLNovice]\355\231\251\354\247\200\354\233\220_week4-1.ipynb" "b/week4/[MLNovice]\355\231\251\354\247\200\354\233\220_week4-1.ipynb" new file mode 100644 index 0000000..560728c --- /dev/null +++ "b/week4/[MLNovice]\355\231\251\354\247\200\354\233\220_week4-1.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyNpugaSWMPn0ue9hSmkzVix"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"5QrsbuJIMTLD"},"outputs":[],"source":["# 데이터준비\n","import pandas as pd\n","\n","wine = pd.read_csv('https://bit.ly/wine_csv_data')\n","\n","# 누락된 데이터 값이 있는지 간단히 확인\n","wine.describe()\n","\n","data = wine[['alcohol', 'sugar', 'pH']].to_numpy()\n","target = wine['class'].to_numpy()"]},{"cell_type":"code","source":["# 데이터 스케일링\n","from sklearn.model_selection import train_test_split\n","\n","train_input, test_input, train_target, test_target = train_test_split(\n"," data, target, test_size=0.2, random_state=42)\n","\n","\n","from sklearn.preprocessing import StandardScaler\n","\n","ss = StandardScaler()\n","ss.fit(train_input)\n","\n","train_scaled = ss.transform(train_input)\n","test_scaled = ss.transform(test_input)"],"metadata":{"id":"z61hBwLES0oq"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 로지스틱 회귀\n","from sklearn.linear_model import LogisticRegression\n","\n","lr = LogisticRegression()\n","lr.fit(train_scaled, train_target)\n","\n","print(lr.score(train_scaled, train_target))\n","print(lr.score(test_scaled, test_target))\n","\n","print(lr.coef_, lr.intercept_)\n","# [[ 0.51268071 1.67335441 -0.68775646]] [1.81773456]"],"metadata":{"id":"gX6Q_8EES0rm"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 결정 트리\n","from sklearn.tree import DecisionTreeClassifier\n","\n","dt = DecisionTreeClassifier(random_state=42) # 사용할 특성을 랜덤하게 선택\n","dt.fit(train_scaled, train_target)\n","\n","# 트리 구조 보기\n","import matplotlib.pyplot as plt\n","from sklearn.tree import plot_tree\n","\n","plt.figure(figsize=(10,7))\n","plot_tree(dt)\n","plt.show()"],"metadata":{"id":"hq3oVCKYS0t4"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 트리 구조 간단히 보기\n","plt.figure(figsize=(10,7))\n","plot_tree(dt, max_depth=1, filled=True, feature_names=['alcohol', 'sugar', 'pH'])\n","plt.show()"],"metadata":{"id":"KR1woCnmS0wM"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 가지치기\n","dt = DecisionTreeClassifier(max_depth=3, random_state=42)\n","# max_depth로 트리의 깊이 조절\n","dt.fit(train_scaled, train_target)\n","\n","plt.figure(figsize=(20,15))\n","plot_tree(dt, filled=True, feature_names=['alcohol', 'sugar', 'pH'])\n","plt.show()\n","\n","dt = DecisionTreeClassifier(max_depth=3, random_state=42)\n","dt.fit(train_input, train_target)\n","\n","plt.figure(figsize=(20,15))\n","plot_tree(dt, filled=True, feature_names=['alcohol', 'sugar', 'pH'])\n","plt.show()"],"metadata":{"id":"Hn-P2w22S8YQ"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git "a/week4/[MLNovice]\355\231\251\354\247\200\354\233\220_week4-2.ipynb" "b/week4/[MLNovice]\355\231\251\354\247\200\354\233\220_week4-2.ipynb" new file mode 100644 index 0000000..288a8a5 --- /dev/null +++ "b/week4/[MLNovice]\355\231\251\354\247\200\354\233\220_week4-2.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyNy8oz0bYMZiwhj1kBoh0/Z"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"nDI_gzaCTPjJ"},"outputs":[],"source":["# 검증 세트\n","\n","# 데이터\n","import pandas as pd\n","\n","wine = pd.read_csv('https://bit.ly/wine_csv_data')\n","data = wine[['alcohol', 'sugar', 'pH']].to_numpy()\n","target = wine['class'].to_numpy()\n","\n","# train, test 나누기\n","from sklearn.model_selection import train_test_split\n","\n","train_input, test_input, train_target, test_target = train_test_split(\n"," data, target, test_size=0.2, random_state=42)\n","\n","sub_input, val_input, sub_target, val_target = train_test_split(\n"," train_input, train_target, test_size=0.2, random_state=42)\n","\n","from sklearn.tree import DecisionTreeClassifier\n","\n","dt = DecisionTreeClassifier(random_state=42)\n","dt.fit(sub_input, sub_target)"]},{"cell_type":"code","source":["# 교차 검증\n","from sklearn.model_selection import cross_validate\n","\n","# 처음 나눈 세트로 교차검증\n","scores = cross_validate(dt, train_input, train_target)\n","\n","# 검증의 점수 평균 내보기\n","import numpy as np\n","print(np.mean(scores['test_score']))"],"metadata":{"id":"-n5UDAQ7bGsQ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 분할기를 사용한 교차 검증\n","from sklearn.model_selection import StratifiedKFold\n","\n","scores = cross_validate(dt, train_input, train_target, cv=StratifiedKFold())\n","\n","\n","splitter = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)\n","scores = cross_validate(dt, train_input, train_target, cv=splitter"],"metadata":{"id":"FEygEuZsbGv0"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 하이퍼 파라미터 튜닝\n","from sklearn.model_selection import GridSearchCV\n","\n","# 매개변수를 딕셔너리에 정의\n","params = {'min_impurity_decrease': [0.0001, 0.0002, 0.0003, 0.0004, 0.0005]}\n","\n","gs = GridSearchCV(DecisionTreeClassifier(random_state=42), params, n_jobs=-1)\n","gs.fit(train_input, train_target)\n","\n","# 최적의 값을 찾아서 best_estimator_에 넣어줌\n","dt = gs.best_estimator_\n","print(dt.score(train_input, train_target))\n","\n","print(gs.best_params_)\n","print(gs.cv_results_['mean_test_score'])"],"metadata":{"id":"5pD2hPx0hZt6"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 확률 분포 선택\n","from scipy.stats import uniform, randint # 균등 분포 샘플링\n","\n","rgen = randint(0, 10)\n","rgen.rvs(10)\n","\n","np.unique(rgen.rvs(1000), return_counts=True)\n","\n","ugen = uniform(0, 1) # 실수값을 샘플링\n","ugen.rvs(10)"],"metadata":{"id":"yX1FcDMzhZwq"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 랜덤 서치\n","params = {'min_impurity_decrease': uniform(0.0001, 0.001),\n"," 'max_depth': randint(20, 50),\n"," 'min_samples_split': randint(2, 25),\n"," 'min_samples_leaf': randint(1, 25),\n"," }\n","\n","from sklearn.model_selection import RandomizedSearchCV # 랜덤 서치 함수\n","\n","gs = RandomizedSearchCV(DecisionTreeClassifier(random_state=42), params,\n"," n_iter=100, n_jobs=-1, random_state=42)\n","# n_iter : 모델 개수\n","\n","gs.fit(train_input, train_target)m sklearn.model_selection import RandomizedSearchCV\n","\n","gs = RandomizedSearchCV(DecisionTreeClassifier(random_state=42), params,\n"," n_iter=100, n_jobs=-1, random_state=42)\n","gs.fit(train_input, train_target)"],"metadata":{"id":"QJxx6uh2bGyu"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git "a/week4/[MLNovice]\355\231\251\354\247\200\354\233\220_week4-3.ipynb" "b/week4/[MLNovice]\355\231\251\354\247\200\354\233\220_week4-3.ipynb" new file mode 100644 index 0000000..bc22488 --- /dev/null +++ "b/week4/[MLNovice]\355\231\251\354\247\200\354\233\220_week4-3.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyM4+2lCH8tm12reo9hz8z2m"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"g-eXJt1LbCY5"},"outputs":[],"source":["# 랜덤 포레스트\n","\n","# 데이터 불러오기\n","import numpy as np\n","import pandas as pd\n","from sklearn.model_selection import train_test_split\n","\n","wine = pd.read_csv('https://bit.ly/wine_csv_data')\n","\n","data = wine[['alcohol', 'sugar', 'pH']].to_numpy()\n","target = wine['class'].to_numpy()\n","\n","train_input, test_input, train_target, test_target = train_test_split(data, target, test_size=0.2, random_state=42)\n","\n","# 앙상블에서 랜덤포레스트 류기\n","from sklearn.model_selection import cross_validate\n","from sklearn.ensemble import RandomForestClassifier\n","\n","rf = RandomForestClassifier(n_jobs=-1, random_state=42)\n","scores = cross_validate(rf, train_input, train_target, return_train_score=True, n_jobs=-1)\n","# 훈련세트, 검증세트 점수 확인\n","print(np.mean(scores['train_score']), np.mean(scores['test_score']))\n","\n","# OOB 샘플 : 남는 샘플데이터를 활용하여 검증\n","rf.fit(train_input, train_target)\n","rf = RandomForestClassifier(oob_score=True, n_jobs=-1, random_state=42)\n","rf.fit(train_input, train_target)"]},{"cell_type":"code","source":["# 엑스트라 트리\n","from sklearn.ensemble import ExtraTreesClassifier\n","\n","et = ExtraTreesClassifier(n_jobs=-1, random_state=42)\n","scores = cross_validate(et, train_input, train_target, return_train_score=True, n_jobs=-1)\n","\n","print(np.mean(scores['train_score']), np.mean(scores['test_score']))\n","\n","et.fit(train_input, train_target)\n","print(et.feature_importances_)"],"metadata":{"id":"gcS6Ifvbqmq5"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 그래디언트 부스팅\n","from sklearn.ensemble import GradientBoostingClassifier\n","\n","gb = GradientBoostingClassifier(random_state=42)\n","scores = cross_validate(gb, train_input, train_target, return_train_score=True, n_jobs=-1)\n","\n","# 트리 개수 늘리기 (500개로 늘림)\n","gb = GradientBoostingClassifier(n_estimators=500, learning_rate=0.2, random_state=42)\n","scores = cross_validate(gb, train_input, train_target, return_train_score=True, n_jobs=-1)\n","\n","gb.fit(train_input, train_target)"],"metadata":{"id":"XuvMPwC9qmtZ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 히스토그램 기반 부스팅\n","from sklearn.ensemble import HistGradientBoostingClassifier\n","\n","hgb = HistGradientBoostingClassifier(random_state=42)\n","scores = cross_validate(hgb, train_input, train_target, return_train_score=True, n_jobs=-1)\n","\n","from sklearn.inspection import permutation_importance\n","\n","hgb.fit(train_input, train_target)\n","result = permutation_importance(hgb, train_input, train_target, n_repeats=10,random_state=42, n_jobs=-1)\n","\n","result = permutation_importance(hgb, test_input, test_target, n_repeats=10, random_state=42, n_jobs=-1)\n","hgb.score(test_input, test_target)"],"metadata":{"id":"qmHHje1UqqOL"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git a/week4/ch5_TreeAlgorithm b/week4/ch5_TreeAlgorithm new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/week4/ch5_TreeAlgorithm @@ -0,0 +1 @@ + diff --git a/week5/Ch6 Clustering b/week5/Ch6 Clustering new file mode 100644 index 0000000..11dcf5d --- /dev/null +++ b/week5/Ch6 Clustering @@ -0,0 +1 @@ +Ch6 Clustering diff --git "a/week5/[MLNovice]\355\231\251\354\247\200\354\233\220_week5.ipynb" "b/week5/[MLNovice]\355\231\251\354\247\200\354\233\220_week5.ipynb" new file mode 100644 index 0000000..b506c42 --- /dev/null +++ "b/week5/[MLNovice]\355\231\251\354\247\200\354\233\220_week5.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyMscckwFuxfW+EJASgZe3lf"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","source":["# 군집 알고리즘"],"metadata":{"id":"s60iWWQdJjWH"},"execution_count":null,"outputs":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"TikC71eZ2kFf"},"outputs":[],"source":["# 과일 데이터 준비\n","\n","# numpy 파일로 준비, 코랩에 데이터 파일로 불러오기\n","!wget https://bit.ly/fruits_300_data -O fruits_300.npy\n","\n","import numpy as np\n","import matplotlib.pyplot as plt\n","\n","fruits = np.load('fruits_300.npy')\n","\n","print(fruits.shape) #총 300개, 100x100 크기의 데이터\n","\n","# numpy 배열의 데이터를 이미지로 보여줌\n","plt.imshow(fruits[0], cmap='gray')\n","plt.show()\n","\n","# 색상 반전을 하여 보기 좋게 만들기\n","plt.imshow(fruits[0], cmap='gray_r')\n","plt.show()\n","\n","fig, axs = plt.subplots(1, 2)\n","axs[0].imshow(fruits[100], cmap='gray_r') # 파인애플\n","axs[1].imshow(fruits[200], cmap='gray_r') # 바나나\n","plt.show()"]},{"cell_type":"code","source":["# 샘플 차원 변경하기 (픽셀을 100x100 1차원 배열에 넣기)\n","apple = fruits[0:100].reshape(-1, 100*100)\n","pineapple = fruits[100:200].reshape(-1, 100*100)\n","banana = fruits[200:300].reshape(-1, 100*100)\n","\n","# 샘플 평균의 히스토그램\n","plt.hist(np.mean(apple, axis=1), alpha=0.8)\n","plt.hist(np.mean(pineapple, axis=1), alpha=0.8)\n","plt.hist(np.mean(banana, axis=1), alpha=0.8)\n","plt.legend(['apple', 'pineapple', 'banana'])\n","plt.show()\n","\n","# 픽셀 평균의 히스토그램\n","fig, axs = plt.subplots(1, 3, figsize=(20, 5))\n","axs[0].bar(range(10000), np.mean(apple, axis=0))\n","axs[1].bar(range(10000), np.mean(pineapple, axis=0))\n","axs[2].bar(range(10000), np.mean(banana, axis=0))\n","plt.show()\n","\n","# 평균 이미지 그리기\n","apple_mean = np.mean(apple, axis=0).reshape(100, 100)\n","pineapple_mean = np.mean(pineapple, axis=0).reshape(100, 100)\n","banana_mean = np.mean(banana, axis=0).reshape(100, 100)\n","\n","fig, axs = plt.subplots(1, 3, figsize=(20, 5))\n","axs[0].imshow(apple_mean, cmap='gray_r')\n","axs[1].imshow(pineapple_mean, cmap='gray_r')\n","axs[2].imshow(banana_mean, cmap='gray_r')\n","plt.show()"],"metadata":{"id":"VQyFRn5pJjRM"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 평균값과 가까운 사진 고르기\n","abs_diff = np.abs(fruits - apple_mean)\n","bs_mean = np.mean(abs_diff, axis=(1,2))\n","\n","apple_index = np.argsort(abs_mean)[:100]\n","fig, axs = plt.subplots(10, 10, figsize=(10,10))\n","for i in range(10):\n"," for j in range(10):\n"," axs[i, j].imshow(fruits[apple_index[i*10 + j]], cmap='gray_r')\n"," axs[i, j].axis('off')\n","plt.show()"],"metadata":{"id":"rJrdVi_AJjUA"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# K-평균"],"metadata":{"id":"-ed-hq3jKAnr"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 데이터 준비\n","!wget https://bit.ly/fruits_300_data -O fruits_300.npy\n","\n","import numpy as np\n","\n","fruits = np.load('fruits_300.npy')\n","fruits_2d = fruits.reshape(-1, 100*100)"],"metadata":{"id":"elmjftpzKL2a"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 모델 훈련\n","from sklearn.cluster import KMeans\n","\n","km = KMeans(n_clusters=3, random_state=42)\n","km.fit(fruits_2d) # 데이터를 2차원 배열로 변경\n","\n","# 잘 분류가 되었는지 확인해보기 (데이터 수가 적어서 가능)\n","print(np.unique(km.labels_, return_counts=True))"],"metadata":{"id":"e98fIQq2KL4w"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 첫번째 클러스터\n","\n","import matplotlib.pyplot as plt\n","\n","def draw_fruits(arr, ratio=1):\n"," n = len(arr) # n은 샘플 개수\n"," # 한 줄에 10개씩 이미지를 그립니다. 샘플 개수를 10으로 나누어 전체 행 개수를 계산합니다.\n"," rows = int(np.ceil(n/10))\n"," # 행이 1개 이면 열 개수는 샘플 개수입니다. 그렇지 않으면 10개입니다.\n"," cols = n if rows < 2 else 10\n"," fig, axs = plt.subplots(rows, cols,\n"," figsize=(cols*ratio, rows*ratio), squeeze=False)\n"," for i in range(rows):\n"," for j in range(cols):\n"," if i*10 + j < n: # n 개까지만 그립니다.\n"," axs[i, j].imshow(arr[i*10 + j], cmap='gray_r')\n"," axs[i, j].axis('off')\n"," plt.show()\n","\n"," draw_fruits(fruits[km.labels_==0])"],"metadata":{"id":"yH-WWn51KL7i"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 클러스터 중심\n","draw_fruits(km.cluster_centers_.reshape(-1, 100, 100), ratio=3)"],"metadata":{"id":"qRcRHRNHKL-I"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 최적의 K 찾기\n","inertia = []\n","for k in range(2, 7):\n"," km = KMeans(n_clusters=k, n_init='auto', random_state=42)\n"," km.fit(fruits_2d)\n"," inertia.append(km.inertia_)\n","\n","plt.plot(range(2, 7), inertia)\n","plt.xlabel('k')\n","plt.ylabel('inertia')\n","plt.show()"],"metadata":{"id":"Ii4uhzJVYMPJ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 주성분 분석"],"metadata":{"id":"FUoTpNERYMVe"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 데이터 불러오기\n","!wget https://bit.ly/fruits_300_data -O fruits_300.npy\n","\n","import numpy as np\n","\n","fruits = np.load('fruits_300.npy')\n","fruits_2d = fruits.reshape(-1, 100*100)"],"metadata":{"id":"P6M9z9_mYRt4"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# PCA\n","from sklearn.decomposition import PCA\n","\n","pca = PCA(n_components=50)\n","pca.fit(fruits_2d)\n","\n","import matplotlib.pyplot as plt\n","\n","def draw_fruits(arr, ratio=1):\n"," n = len(arr) # n은 샘플 개수입니다\n"," # 한 줄에 10개씩 이미지를 그립니다. 샘플 개수를 10으로 나누어 전체 행 개수를 계산합니다.\n"," rows = int(np.ceil(n/10))\n"," # 행이 1개 이면 열 개수는 샘플 개수입니다. 그렇지 않으면 10개입니다.\n"," cols = n if rows < 2 else 10\n"," fig, axs = plt.subplots(rows, cols,\n"," figsize=(cols*ratio, rows*ratio), squeeze=False)\n"," for i in range(rows):\n"," for j in range(cols):\n"," if i*10 + j < n: # n 개까지만 그립니다.\n"," axs[i, j].imshow(arr[i*10 + j], cmap='gray_r')\n"," axs[i, j].axis('off')\n"," plt.show()\n","\n","draw_fruits(pca.components_.reshape(-1, 100, 100))"],"metadata":{"id":"sWZd0aucYRoP"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 뽑은 주성분으로 원본 데이터 복원\n","\n","fruits_inverse = pca.inverse_transform(fruits_pca)\n","print(fruits_inverse.shape)\n","\n","fruits_reconstruct = fruits_inverse.reshape(-1, 100, 100)\n","\n","for start in [0, 100, 200]:\n"," draw_fruits(fruits_reconstruct[start:start+100])\n"," print(\"\\n\")"],"metadata":{"id":"bjvZuPo4fOFh"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 설명된 분산\n","print(np.sum(pca.explained_variance_ratio_))\n","\n","plt.plot(pca.explained_variance_ratio_)"],"metadata":{"id":"Uf0x2rjIfPud"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git a/week7/Ch8 Convolution b/week7/Ch8 Convolution new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/week7/Ch8 Convolution @@ -0,0 +1 @@ + diff --git "a/week7/[MLNovice]\355\231\251\354\247\200\354\233\220_week7.ipynb" "b/week7/[MLNovice]\355\231\251\354\247\200\354\233\220_week7.ipynb" new file mode 100644 index 0000000..0bba6e6 --- /dev/null +++ "b/week7/[MLNovice]\355\231\251\354\247\200\354\233\220_week7.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyPQbvi+FLkxdQa8dUROlnkk"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"usXAq7K9w_Go"},"outputs":[],"source":["# 합성곱 신경망을 사용한 이미지 분류"]},{"cell_type":"code","source":["# 패션 MNIST 데이터 불러오기\n","from tensorflow import keras\n","from sklearn.model_selection import train_test_split\n","\n","(train_input, train_target), (test_input, test_target) = \\\n"," keras.datasets.fashion_mnist.load_data()\n","\n","train_scaled = train_input.reshape(-1, 28, 28, 1) / 255.0 # 마지막 차원만 늘\n","\n","train_scaled, val_scaled, train_target, val_target = train_test_split(\n"," train_scaled, train_target, test_size=0.2, random_state=42)"],"metadata":{"id":"yEqM-KJDxHMT"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 합성곱 신경망 만들기\n","model = keras.Sequential()\n","\n","# 첫번째 층 (필터 사이즈, 활성함수, 패딩)\n","model.add(keras.layers.Conv2D(32, kernel_size=3, activation='relu',padding='same', input_shape=(28,28,1)))\n","# 풀링 레이어 추가\n","model.add(keras.layers.MaxPooling2D(2))\n","\n","model.add(keras.layers.Conv2D(64, kernel_size=(3,3), activation='relu',padding='same'))\n","model.add(keras.layers.MaxPooling2D(2))\n","\n","model.add(keras.layers.Flatten())\n","model.add(keras.layers.Dense(100, activation='relu'))\n","model.add(keras.layers.Dropout(0.4))\n","model.add(keras.layers.Dense(10, activation='softmax'))\n","\n","model.summary()"],"metadata":{"id":"BsPngWqCxHR5"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 컴파일과 훈련\n","model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])\n","\n","checkpoint_cb = keras.callbacks.ModelCheckpoint('best-model.keras', save_best_only=True)\n","early_stopping_cb = keras.callbacks.EarlyStopping(patience=2, restore_best_weights=True)\n","\n","history = model.fit(train_scaled, train_target, epochs=20, verbose=0,\n"," validation_data=(val_scaled, val_target),\n"," callbacks=[checkpoint_cb, early_stopping_cb])"],"metadata":{"id":"DHYHpWrNI2F8"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 합성곱 신경망 시각화"],"metadata":{"id":"qwXQZqzyI2IK"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"XCgVeRnYxHVe"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"gxv2VKQMI9XQ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":[],"metadata":{"id":"l078ZGmFI9Zu"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git a/week8/Ch9 RNN b/week8/Ch9 RNN new file mode 100644 index 0000000..e6224a1 --- /dev/null +++ b/week8/Ch9 RNN @@ -0,0 +1 @@ +RNN diff --git "a/week8/[MLNovice]\355\231\251\354\247\200\354\233\220_week8.ipynb" "b/week8/[MLNovice]\355\231\251\354\247\200\354\233\220_week8.ipynb" new file mode 100644 index 0000000..2f73ed5 --- /dev/null +++ "b/week8/[MLNovice]\355\231\251\354\247\200\354\233\220_week8.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"authorship_tag":"ABX9TyMrIgdGhNXr0VrXkQp6YpAN"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"3aYY73BdpXJE"},"outputs":[],"source":["# 순환 신경망으로 IMDB 리뷰 분류하기"]},{"cell_type":"code","source":["# IMDB 리뷰 데이터셋 불러오기\n","from tensorflow.keras.datasets import imdb\n","(train_input, train_target), (test_input, test_target) = imdb.load_data(num_words=200)\n","\n","# train, test set 설정\n","from sklearn.model_selection import train_test_split\n","train_input, val_input, train_target, val_target = train_test_split(train_input, train_target, test_size=0.2, random_state=42)\n","\n","# 리뷰 길이 시각화\n","import matplotlib.pyplot as plt\n","\n","plt.hist(lengths)\n","plt.xlabel('length')\n","plt.ylabel('frequency')\n","plt.show()"],"metadata":{"id":"skd11nHjpZqi"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 시퀀스 패딩\n","from tensorflow.keras.preprocessing.sequence import pad_sequences\n","train_seq = pad_sequences(train_input, maxlen=100)\n","# 100보다 긴 리뷰는 자르고, 100보다 짧은 리뷰는 100으로 패딩"],"metadata":{"id":"h8bPpFaspZso"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 순환 신경망 만들기\n","from tensorflow import keras\n","\n","model = keras.Sequential()\n","\n","model.add(keras.layers.SimpleRNN(8, input_shape=(100, 200)))\n","model.add(keras.layers.Dense(1, activation='sigmoid'))\n","\n","train_oh = keras.utils.to_categorical(train_seq)\n","\n","val_oh = keras.utils.to_categorical(val_seq)\n","model.summary()"],"metadata":{"id":"07wvb3FV2Vuq"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 모델 훈련\n","rmsprop = keras.optimizers.RMSprop(learning_rate=1e-4)\n","model.compile(optimizer=rmsprop, loss='binary_crossentropy', metrics=['accuracy'])\n","\n","checkpoint_cb = keras.callbacks.ModelCheckpoint('best-simplernn-model.keras', save_best_only=True)\n","early_stopping_cb = keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True)\n","\n","history = model.fit(train_oh, train_target, epochs=100, batch_size=64, validation_data=(val_oh, val_target),\n","callbacks=[checkpoint_cb, early_stopping_cb])\n","\n","# 성능 평가\n","plt.plot(history.history['loss'])\n","plt.plot(history.history['val_loss'])\n","plt.xlabel('epoch')\n","plt.ylabel('loss')\n","plt.legend(['train', 'val'])\n","plt.show()"],"metadata":{"id":"NFxdY1NO2VxQ"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 임베딩 사용 모델\n","model2 = keras.Sequential()\n","\n","model2.add(keras.layers.Embedding(200, 16, input_shape=(100,)))\n","model2.add(keras.layers.SimpleRNN(8))\n","model2.add(keras.layers.Dense(1, activation='sigmoid'))\n","\n","model2.summary()"],"metadata":{"id":"QfqCQ9SW2Vzw"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 모델 훈련\n","rmsprop = keras.optimizers.RMSprop(learning_rate=1e-4)\n","model2.compile(optimizer=rmsprop, loss='binary_crossentropy',\n"," metrics=['accuracy'])\n","\n","checkpoint_cb = keras.callbacks.ModelCheckpoint('best-embedding-model.keras', save_best_only=True)\n","early_stopping_cb = keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True)\n","\n","history = model2.fit(train_seq, train_target, epochs=100, batch_size=64, validation_data=(val_seq, val_target),\n","callbacks=[checkpoint_cb, early_stopping_cb])\n","\n","plt.plot(history.history['loss'])\n","plt.plot(history.history['val_loss'])\n","plt.xlabel('epoch')\n","plt.ylabel('loss')\n","plt.legend(['train', 'val'])\n","plt.show()"],"metadata":{"id":"xB1NEr8RpZu7"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# LSTM과 GRU 셀"],"metadata":{"id":"NJJ1DYp72gN_"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# LSTM 신경망 훈련하기\n","from tensorflow.keras.datasets import imdb\n","from sklearn.model_selection import train_test_split\n","\n","(train_input, train_target), (test_input, test_target) = imdb.load_data(num_words=500)\n","train_input, val_input, train_target, val_target = train_test_split(train_input, train_target, test_size=0.2, random_state=42)\n","\n","\n","from tensorflow.keras.preprocessing.sequence import pad_sequences\n","\n","train_seq = pad_sequences(train_input, maxlen=100)\n","val_seq = pad_sequences(val_input, maxlen=100)"],"metadata":{"id":"3VeHwT612gQ1"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 모델 만들기 (keras에서 RNN을 LSTM으로 바꾸면 됨)\n","from tensorflow import keras\n","\n","model = keras.Sequential()\n","\n","model.add(keras.layers.Embedding(500, 16, input_shape=(100,)))\n","model.add(keras.layers.LSTM(8))\n","model.add(keras.layers.Dense(1, activation='sigmoid'))\n","\n","model.summary()"],"metadata":{"id":"P87IZIAs3j2V"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 모델 훈련\n","rmsprop = keras.optimizers.RMSprop(learning_rate=1e-4)\n","model.compile(optimizer=rmsprop, loss='binary_crossentropy', metrics=['accuracy'])\n","\n","checkpoint_cb = keras.callbacks.ModelCheckpoint('best-lstm-model.keras', save_best_only=True)\n","early_stopping_cb = keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True)\n","\n","history = model.fit(train_seq, train_target, epochs=100, batch_size=64,\n"," validation_data=(val_seq, val_target),\n"," callbacks=[checkpoint_cb, early_stopping_cb])"],"metadata":{"id":"PsMwgtkL6QVM"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 성능 평가\n","import matplotlib.pyplot as plt\n","\n","plt.plot(history.history['loss'])\n","plt.plot(history.history['val_loss'])\n","plt.xlabel('epoch')\n","plt.ylabel('loss')\n","plt.legend(['train', 'val'])\n","plt.show()"],"metadata":{"id":"7JgudiBv3j5R"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 순환 층에 드롭아웃 적용하기\n","model2 = keras.Sequential()\n","\n","model2.add(keras.layers.Embedding(500, 16, input_shape=(100,)))\n","model2.add(keras.layers.LSTM(8, dropout=0.3))\n","model2.add(keras.layers.Dense(1, activation='sigmoid'))"],"metadata":{"id":"FjAaqHXp6TgE"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# 2개의 층을 연결하기\n","model3 = keras.Sequential()\n","\n","model3.add(keras.layers.Embedding(500, 16, input_shape=(100,)))\n","model3.add(keras.layers.LSTM(8, dropout=0.3, return_sequences=True)) # return_sequences=True 기억하기\n","model3.add(keras.layers.LSTM(8, dropout=0.3))\n","model3.add(keras.layers.Dense(1, activation='sigmoid'))\n","\n","model3.summary()"],"metadata":{"id":"HgpUGpro6Tiz"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["# GRU 신경망 훈련하기\n","model4 = keras.Sequential()\n","\n","model4.add(keras.layers.Embedding(500, 16, input_shape=(100,)))\n","model4.add(keras.layers.GRU(8))\n","model4.add(keras.layers.Dense(1, activation='sigmoid'))\n","\n","model4.summary()"],"metadata":{"id":"56W6-nEx6X4r"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git a/week9/CIFAR-10 - Object Recognition in Images b/week9/CIFAR-10 - Object Recognition in Images new file mode 100644 index 0000000..7e2e2e5 --- /dev/null +++ b/week9/CIFAR-10 - Object Recognition in Images @@ -0,0 +1 @@ +CIFAR-10 - Object Recognition in Images diff --git "a/week9/[MLNovice]\355\231\251\354\247\200\354\233\220_week9.ipynb" "b/week9/[MLNovice]\355\231\251\354\247\200\354\233\220_week9.ipynb" new file mode 100644 index 0000000..ca0f0be --- /dev/null +++ "b/week9/[MLNovice]\355\231\251\354\247\200\354\233\220_week9.ipynb" @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"gpuType":"T4","authorship_tag":"ABX9TyPCfux6edvQfIJjc2rYVezW"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"},"accelerator":"GPU"},"cells":[{"cell_type":"code","execution_count":1,"metadata":{"id":"Dg_KLBMMxDPB","executionInfo":{"status":"ok","timestamp":1733275384623,"user_tz":-540,"elapsed":3518,"user":{"displayName":"황지원","userId":"01099698570160424720"}}},"outputs":[],"source":["import keras\n","from keras.datasets import cifar10\n","#from keras.preprocessing.image import ImageDataGenerator\n","from keras.models import Sequential\n","from keras.layers import Dense, Dropout, Activation, Flatten\n","from keras.layers import Conv2D, MaxPooling2D\n","\n","import numpy as np\n","\n","import seaborn as sns\n","import matplotlib\n","import matplotlib.pyplot as plt\n","\n","from sklearn.metrics import confusion_matrix, classification_report\n","import itertools"]},{"cell_type":"code","source":["batch_size = 32 # The default batch size of keras.\n","num_classes = 10 # Number of class for the dataset\n","epochs = 20\n","data_augmentation = False"],"metadata":{"id":"HMlthHjvxE3N","executionInfo":{"status":"ok","timestamp":1733275390231,"user_tz":-540,"elapsed":294,"user":{"displayName":"황지원","userId":"01099698570160424720"}}},"execution_count":2,"outputs":[]},{"cell_type":"code","source":["# The data, split between train and test sets:\n","(x_train, y_train), (x_test, y_test) = cifar10.load_data()\n","print('x_train shape:', x_train.shape)\n","print('y_train shape:', y_train.shape)\n","print(x_train.shape[0], 'train samples')\n","print(x_test.shape[0], 'test samples')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"_Sfr5RTNxE7Z","executionInfo":{"status":"ok","timestamp":1733275393261,"user_tz":-540,"elapsed":1520,"user":{"displayName":"황지원","userId":"01099698570160424720"}},"outputId":"cc75bfa2-e76b-4ee4-9189-00a9fe3ec759"},"execution_count":3,"outputs":[{"output_type":"stream","name":"stdout","text":["x_train shape: (50000, 32, 32, 3)\n","y_train shape: (50000, 1)\n","50000 train samples\n","10000 test samples\n"]}]},{"cell_type":"code","source":["# Normalize the data. Before we need to connvert data type to float for computation.\n","x_train = x_train.astype('float32')\n","x_test = x_test.astype('float32')\n","x_train /= 255\n","x_test /= 255\n","\n","# Convert class vectors to binary class matrices. This is called one hot encoding.\n","y_train = keras.utils.to_categorical(y_train, num_classes)\n","y_test = keras.utils.to_categorical(y_test, num_classes)"],"metadata":{"id":"ndjfxvyPxE-A","executionInfo":{"status":"ok","timestamp":1733275394555,"user_tz":-540,"elapsed":285,"user":{"displayName":"황지원","userId":"01099698570160424720"}}},"execution_count":4,"outputs":[]},{"cell_type":"code","source":["#define the convnet\n","model = Sequential()\n","# CONV => RELU => CONV => RELU => POOL => DROPOUT\n","model.add(Conv2D(32, (3, 3), padding='same',input_shape=x_train.shape[1:]))\n","model.add(Activation('relu'))\n","model.add(Conv2D(32, (3, 3)))\n","model.add(Activation('relu'))\n","model.add(MaxPooling2D(pool_size=(2, 2)))\n","model.add(Dropout(0.25))\n","\n","# CONV => RELU => CONV => RELU => POOL => DROPOUT\n","model.add(Conv2D(64, (3, 3), padding='same'))\n","model.add(Activation('relu'))\n","model.add(Conv2D(64, (3, 3)))\n","model.add(Activation('relu'))\n","model.add(MaxPooling2D(pool_size=(2, 2)))\n","model.add(Dropout(0.25))\n","\n","# FLATTERN => DENSE => RELU => DROPOUT\n","model.add(Flatten())\n","model.add(Dense(512))\n","model.add(Activation('relu'))\n","model.add(Dropout(0.5))\n","# a softmax classifier\n","model.add(Dense(num_classes))\n","model.add(Activation('softmax'))\n","\n","model.summary()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":805},"id":"HTgGR2ylOk3k","executionInfo":{"status":"ok","timestamp":1733275398029,"user_tz":-540,"elapsed":1926,"user":{"displayName":"황지원","userId":"01099698570160424720"}},"outputId":"96d25dcf-72f3-4099-ed6a-9b1d985b3fbb"},"execution_count":5,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/keras/src/layers/convolutional/base_conv.py:107: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n"," super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"]},{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"sequential\"\u001b[0m\n"],"text/html":["
Model: \"sequential\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n","│ conv2d (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m896\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation (\u001b[38;5;33mActivation\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ conv2d_1 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m9,248\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation_1 (\u001b[38;5;33mActivation\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ max_pooling2d (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ conv2d_2 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m18,496\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation_2 (\u001b[38;5;33mActivation\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m15\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ conv2d_3 (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m36,928\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation_3 (\u001b[38;5;33mActivation\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m13\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ max_pooling2d_1 (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m6\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2304\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m1,180,160\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation_4 (\u001b[38;5;33mActivation\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m5,130\u001b[0m │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation_5 (\u001b[38;5;33mActivation\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                          Output Shape                         Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n","│ conv2d (Conv2D)                      │ (None, 32, 32, 32)          │             896 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation (Activation)              │ (None, 32, 32, 32)          │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ conv2d_1 (Conv2D)                    │ (None, 30, 30, 32)          │           9,248 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation_1 (Activation)            │ (None, 30, 30, 32)          │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ max_pooling2d (MaxPooling2D)         │ (None, 15, 15, 32)          │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ dropout (Dropout)                    │ (None, 15, 15, 32)          │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ conv2d_2 (Conv2D)                    │ (None, 15, 15, 64)          │          18,496 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation_2 (Activation)            │ (None, 15, 15, 64)          │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ conv2d_3 (Conv2D)                    │ (None, 13, 13, 64)          │          36,928 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation_3 (Activation)            │ (None, 13, 13, 64)          │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ max_pooling2d_1 (MaxPooling2D)       │ (None, 6, 6, 64)            │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ dropout_1 (Dropout)                  │ (None, 6, 6, 64)            │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ flatten (Flatten)                    │ (None, 2304)                │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ dense (Dense)                        │ (None, 512)                 │       1,180,160 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation_4 (Activation)            │ (None, 512)                 │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ dropout_2 (Dropout)                  │ (None, 512)                 │               0 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ dense_1 (Dense)                      │ (None, 10)                  │           5,130 │\n","├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n","│ activation_5 (Activation)            │ (None, 10)                  │               0 │\n","└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m1,250,858\u001b[0m (4.77 MB)\n"],"text/html":["
 Total params: 1,250,858 (4.77 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m1,250,858\u001b[0m (4.77 MB)\n"],"text/html":["
 Trainable params: 1,250,858 (4.77 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"],"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"]},"metadata":{}}]},{"cell_type":"code","source":["from tensorflow.keras.optimizers import Adam\n","\n","model.compile(optimizer=Adam(learning_rate=0.001),\n"," loss='categorical_crossentropy',\n"," metrics=['accuracy'])"],"metadata":{"id":"Ouh0oAs2Ok5_","executionInfo":{"status":"ok","timestamp":1733275400369,"user_tz":-540,"elapsed":264,"user":{"displayName":"황지원","userId":"01099698570160424720"}}},"execution_count":6,"outputs":[]},{"cell_type":"code","source":["history = model.fit(x_train, y_train,\n"," batch_size=batch_size,\n"," epochs=epochs,\n"," validation_data=(x_test, y_test),\n"," shuffle=True)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"tFcSRLjwP7Md","executionInfo":{"status":"ok","timestamp":1733275583714,"user_tz":-540,"elapsed":181586,"user":{"displayName":"황지원","userId":"01099698570160424720"}},"outputId":"3cb0b8dc-86cd-4342-831f-aea6880cda3e"},"execution_count":7,"outputs":[{"output_type":"stream","name":"stdout","text":["Epoch 1/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m18s\u001b[0m 8ms/step - accuracy: 0.3391 - loss: 1.7770 - val_accuracy: 0.5835 - val_loss: 1.1544\n","Epoch 2/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 5ms/step - accuracy: 0.5852 - loss: 1.1565 - val_accuracy: 0.6666 - val_loss: 0.9254\n","Epoch 3/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.6601 - loss: 0.9585 - val_accuracy: 0.6949 - val_loss: 0.8740\n","Epoch 4/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.6969 - loss: 0.8537 - val_accuracy: 0.7167 - val_loss: 0.8012\n","Epoch 5/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.7166 - loss: 0.8056 - val_accuracy: 0.7430 - val_loss: 0.7391\n","Epoch 6/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.7375 - loss: 0.7515 - val_accuracy: 0.7589 - val_loss: 0.6972\n","Epoch 7/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.7506 - loss: 0.7052 - val_accuracy: 0.7678 - val_loss: 0.6748\n","Epoch 8/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.7622 - loss: 0.6690 - val_accuracy: 0.7476 - val_loss: 0.7262\n","Epoch 9/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 5ms/step - accuracy: 0.7727 - loss: 0.6430 - val_accuracy: 0.7708 - val_loss: 0.6646\n","Epoch 10/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.7856 - loss: 0.6121 - val_accuracy: 0.7751 - val_loss: 0.6579\n","Epoch 11/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.7913 - loss: 0.5902 - val_accuracy: 0.7688 - val_loss: 0.6792\n","Epoch 12/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.7928 - loss: 0.5859 - val_accuracy: 0.7846 - val_loss: 0.6281\n","Epoch 13/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 4ms/step - accuracy: 0.8015 - loss: 0.5587 - val_accuracy: 0.7875 - val_loss: 0.6388\n","Epoch 14/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8054 - loss: 0.5511 - val_accuracy: 0.7831 - val_loss: 0.6376\n","Epoch 15/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8108 - loss: 0.5380 - val_accuracy: 0.7855 - val_loss: 0.6367\n","Epoch 16/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 4ms/step - accuracy: 0.8147 - loss: 0.5268 - val_accuracy: 0.7903 - val_loss: 0.6240\n","Epoch 17/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8188 - loss: 0.5127 - val_accuracy: 0.7909 - val_loss: 0.6292\n","Epoch 18/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 4ms/step - accuracy: 0.8240 - loss: 0.5044 - val_accuracy: 0.7760 - val_loss: 0.6655\n","Epoch 19/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8275 - loss: 0.4970 - val_accuracy: 0.7817 - val_loss: 0.6755\n","Epoch 20/20\n","\u001b[1m1563/1563\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 4ms/step - accuracy: 0.8321 - loss: 0.4833 - val_accuracy: 0.7771 - val_loss: 0.6703\n"]}]},{"cell_type":"code","source":["%matplotlib inline\n","\n","fig, axs = plt.subplots(1,2,figsize=(15,5))\n","\n","# summarize history for accuracy\n","axs[0].plot(history.history['accuracy'])\n","axs[0].plot(history.history['val_accuracy'])\n","axs[0].set_title('Model Accuracy')\n","axs[0].set_ylabel('Accuracy')\n","axs[0].set_xlabel('Epoch')\n","axs[0].legend(['train', 'validate'], loc='upper left')\n","\n","# summarize history for loss\n","axs[1].plot(history.history['loss'])\n","axs[1].plot(history.history['val_loss'])\n","axs[1].set_title('Model Loss')\n","axs[1].set_ylabel('Loss')\n","axs[1].set_xlabel('Epoch')\n","axs[1].legend(['train', 'validate'], loc='upper left')\n","plt.show()"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":487},"id":"InwcPZgyQeqJ","executionInfo":{"status":"ok","timestamp":1733275692749,"user_tz":-540,"elapsed":881,"user":{"displayName":"황지원","userId":"01099698570160424720"}},"outputId":"ab6acb4e-866b-4ff0-c021-ace6c8b8b651"},"execution_count":8,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABNoAAAHWCAYAAAChceSWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADKa0lEQVR4nOzdd3hU1dbH8e9Meg8hHQKEGnoVBEVQQESlKSKgoqjYwIbeq7z2ir0XbFiuqAgqFhAElCrSEYEQek8hhPQ+c94/TghEQBMyk0n5fZ7nPHPmzJm19yQomzV772UxDMNAREREREREREREKsXq6g6IiIiIiIiIiIjUBkq0iYiIiIiIiIiIOIASbSIiIiIiIiIiIg6gRJuIiIiIiIiIiIgDKNEmIiIiIiIiIiLiAEq0iYiIiIiIiIiIOIASbSIiIiIiIiIiIg6gRJuIiIiIiIiIiIgDKNEmIiIiIiIiIiLiAEq0iUiNYrFYePzxxyv8vr1792KxWPjkk08c3icRERERqV40ZhQRV1GiTUQq7JNPPsFisWCxWFi+fPkprxuGQUxMDBaLhcsvv9wFPXSMuXPnYrFYiI6Oxm63u7o7IiIiIjVKbR4zLl68GIvFwqxZs1zdFRGpZpRoE5Gz5u3tzRdffHHK9SVLlnDw4EG8vLxc0CvHmT59Ok2aNCExMZFff/3V1d0RERERqZFq+5hRRORkSrSJyFm79NJLmTlzJsXFxWWuf/HFF3Tt2pXIyEgX9azycnJy+P7775k0aRKdO3dm+vTpru7SGeXk5Li6CyIiIiJnVJvHjCIif6dEm4ictdGjR3P06FEWLFhQeq2wsJBZs2YxZsyY074nJyeH++67j5iYGLy8vGjVqhUvvfQShmGUua+goIB7772XsLAwAgICGDJkCAcPHjxtzEOHDnHjjTcSERGBl5cXbdu2Zdq0aZX6bN999x15eXlcddVVjBo1im+//Zb8/PxT7svPz+fxxx+nZcuWeHt7ExUVxRVXXMGuXbtK77Hb7bz++uu0b98eb29vwsLCuOSSS1i7di3wz3uB/H1/kccffxyLxcLWrVsZM2YM9erV4/zzzwdg06ZN3HDDDTRt2hRvb28iIyO58cYbOXr06Gl/ZjfddBPR0dF4eXkRGxvL7bffTmFhIbt378ZisfDqq6+e8r7ff/8di8XCl19+WdEfqYiIiNRRtXnM+G92797NVVddRUhICL6+vpx77rnMmTPnlPvefPNN2rZti6+vL/Xq1aNbt25lZgFmZWVxzz330KRJE7y8vAgPD2fAgAGsX7/eqf0XkYpzd3UHRKTmatKkCT179uTLL79k0KBBAPz8889kZGQwatQo3njjjTL3G4bBkCFD+O2337jpppvo1KkT8+fP5z//+Q+HDh0qk9i5+eab+fzzzxkzZgy9evXi119/5bLLLjulD8nJyZx77rlYLBYmTpxIWFgYP//8MzfddBOZmZncc889Z/XZpk+fzoUXXkhkZCSjRo3iwQcf5Mcff+Sqq64qvcdms3H55ZezaNEiRo0axd13301WVhYLFixg8+bNNGvWDICbbrqJTz75hEGDBnHzzTdTXFzMsmXL+OOPP+jWrdtZ9e+qq66iRYsWPPvss6UDzgULFrB7927GjRtHZGQkW7Zs4f3332fLli388ccfWCwWAA4fPkz37t1JT0/nlltuIS4ujkOHDjFr1ixyc3Np2rQp5513HtOnT+fee+895ecSEBDA0KFDz6rfIiIiUvfU5jHjP0lOTqZXr17k5uZy1113Ub9+fT799FOGDBnCrFmzGD58OAAffPABd911FyNGjODuu+8mPz+fTZs2sWrVqtJE5G233casWbOYOHEibdq04ejRoyxfvpz4+Hi6dOni8L6LSCUYIiIV9PHHHxuAsWbNGuOtt94yAgICjNzcXMMwDOOqq64yLrzwQsMwDKNx48bGZZddVvq+2bNnG4Dx9NNPl4k3YsQIw2KxGDt37jQMwzA2btxoAMYdd9xR5r4xY8YYgPHYY4+VXrvpppuMqKgoIzU1tcy9o0aNMoKCgkr7tWfPHgMwPv7443/9fMnJyYa7u7vxwQcflF7r1auXMXTo0DL3TZs2zQCMV1555ZQYdrvdMAzD+PXXXw3AuOuuu854zz/17e+f97HHHjMAY/To0afce/yznuzLL780AGPp0qWl18aOHWtYrVZjzZo1Z+zTe++9ZwBGfHx86WuFhYVGaGiocf3115/yPhEREZG/q81jxt9++80AjJkzZ57xnnvuuccAjGXLlpVey8rKMmJjY40mTZoYNpvNMAzDGDp0qNG2bdt/bC8oKMiYMGHCP94jItWDlo6KSKWMHDmSvLw8fvrpJ7Kysvjpp5/OuARg7ty5uLm5cdddd5W5ft9992EYBj///HPpfcAp9/39m0bDMPjmm28YPHgwhmGQmppaegwcOJCMjIyzmk7/1VdfYbVaufLKK0uvjR49mp9//pljx46VXvvmm28IDQ3lzjvvPCXG8dlj33zzDRaLhccee+yM95yN22677ZRrPj4+pef5+fmkpqZy7rnnApT+HOx2O7Nnz2bw4MGnnU13vE8jR47E29u7zN508+fPJzU1lWuvvfas+y0iIiJ1U20cM/6buXPn0r1799JtPgD8/f255ZZb2Lt3L1u3bgUgODiYgwcPsmbNmjPGCg4OZtWqVRw+fNjh/RQRx1KiTUQqJSwsjP79+/PFF1/w7bffYrPZGDFixGnv3bdvH9HR0QQEBJS53rp169LXjz9ardbSpZfHtWrVqszzI0eOkJ6ezvvvv09YWFiZY9y4cQCkpKRU+DN9/vnndO/enaNHj7Jz50527txJ586dKSwsZObMmaX37dq1i1atWuHufuZV+Lt27SI6OpqQkJAK9+OfxMbGnnItLS2Nu+++m4iICHx8fAgLCyu9LyMjAzB/ZpmZmbRr1+4f4wcHBzN48OAye4NMnz6dBg0acNFFFznwk4iIiEhdUBvHjP9m3759p/TldJ/jgQcewN/fn+7du9OiRQsmTJjAihUryrznhRdeYPPmzcTExNC9e3cef/xxdu/e7fA+i0jlaY82Eam0MWPGMH78eJKSkhg0aBDBwcFV0q7dbgfg2muv5frrrz/tPR06dKhQzB07dpR+m9iiRYtTXp8+fTq33HJLBXv6z840s81ms53xPSfPXjtu5MiR/P777/znP/+hU6dO+Pv7Y7fbueSSS0p/VhUxduxYZs6cye+//0779u354YcfuOOOO7Ba9R2NiIiIVFxtGjM6UuvWrUlISOCnn35i3rx5fPPNN7zzzjs8+uijPPHEE4A5zuvduzffffcdv/zyCy+++CLPP/883377bem+dyJSPSjRJiKVNnz4cG699Vb++OMPZsyYccb7GjduzMKFC8nKyirzDeW2bdtKXz/+aLfbS2eMHZeQkFAm3vHqUjabjf79+zvks0yfPh0PDw/+97//4ebmVua15cuX88Ybb7B//34aNWpEs2bNWLVqFUVFRXh4eJw2XrNmzZg/fz5paWlnnNVWr149ANLT08tcP/4tZ3kcO3aMRYsW8cQTT/Doo4+WXt+xY0eZ+8LCwggMDGTz5s3/GvOSSy4hLCyM6dOn06NHD3Jzc7nuuuvK3ScRERGRk9WmMWN5NG7c+JS+wKmfA8DPz4+rr76aq6++msLCQq644gqeeeYZJk+ejLe3NwBRUVHccccd3HHHHaSkpNClSxeeeeYZJdpEqhlNSxCRSvP39+fdd9/l8ccfZ/DgwWe879JLL8Vms/HWW2+Vuf7qq69isVhKBwnHH/9egeq1114r89zNzY0rr7ySb7755rSJoyNHjlT4s0yfPp3evXtz9dVXM2LEiDLHf/7zHwC+/PJLAK688kpSU1NP+TxAaSXQK6+8EsMwSr+NPN09gYGBhIaGsnTp0jKvv/POO+Xu9/GkoPG3kvd//5lZrVaGDRvGjz/+yNq1a8/YJwB3d3dGjx7N119/zSeffEL79u1d+m2viIiI1Gy1acxYHpdeeimrV69m5cqVpddycnJ4//33adKkCW3atAHg6NGjZd7n6elJmzZtMAyDoqIibDZb6TYgx4WHhxMdHU1BQYFT+i4iZ08z2kTEIc40Df9kgwcP5sILL+Shhx5i7969dOzYkV9++YXvv/+ee+65p3R/jU6dOjF69GjeeecdMjIy6NWrF4sWLWLnzp2nxHzuuef47bff6NGjB+PHj6dNmzakpaWxfv16Fi5cSFpaWrk/w6pVq9i5cycTJ0487esNGjSgS5cuTJ8+nQceeICxY8fy2WefMWnSJFavXk3v3r3Jyclh4cKF3HHHHQwdOpQLL7yQ6667jjfeeIMdO3aULuNctmwZF154YWlbN998M8899xw333wz3bp1Y+nSpWzfvr3cfQ8MDOSCCy7ghRdeoKioiAYNGvDLL7+wZ8+eU+599tln+eWXX+jTpw+33HILrVu3JjExkZkzZ7J8+fIyyzjGjh3LG2+8wW+//cbzzz9f7v6IiIiInE5tGDOe7Jtvvimdofb3z/nggw/y5ZdfMmjQIO666y5CQkL49NNP2bNnD998803pdhwXX3wxkZGRnHfeeURERBAfH89bb73FZZddRkBAAOnp6TRs2JARI0bQsWNH/P39WbhwIWvWrOHll18+q36LiBO5ptipiNRkJ5dq/yd/L9VuGGZJ83vvvdeIjo42PDw8jBYtWhgvvviiYbfby9yXl5dn3HXXXUb9+vUNPz8/Y/DgwcaBAwdOKdVuGIaRnJxsTJgwwYiJiTE8PDyMyMhIo1+/fsb7779fek95SrXfeeedBmDs2rXrjPc8/vjjBmD8+eefhmEYRm5urvHQQw8ZsbGxpW2PGDGiTIzi4mLjxRdfNOLi4gxPT08jLCzMGDRokLFu3brSe3Jzc42bbrrJCAoKMgICAoyRI0caKSkpp3zexx57zACMI0eOnNK3gwcPGsOHDzeCg4ONoKAg46qrrjIOHz582p/Zvn37jLFjxxphYWGGl5eX0bRpU2PChAlGQUHBKXHbtm1rWK1W4+DBg2f8uYiIiIj8XW0dMxqGYfz2228GcMZj2bJlhmEYxq5du4wRI0YYwcHBhre3t9G9e3fjp59+KhPrvffeMy644AKjfv36hpeXl9GsWTPjP//5j5GRkWEYhmEUFBQY//nPf4yOHTsaAQEBhp+fn9GxY0fjnXfe+cc+iohrWAzjb+uMRERETtK5c2dCQkJYtGiRq7siIiIiIiJSrWmPNhEROaO1a9eyceNGxo4d6+quiIiIiIiIVHua0SYiIqfYvHkz69at4+WXXyY1NZXdu3eXVrwSERERERGR09OMNhEROcWsWbMYN24cRUVFfPnll0qyiYiIiIiIlINmtImIiIiIiIiIiDiAZrSJiIiIiIiIiIg4gBJtIiIiIiIiIiIiDuDu6g5UR3a7ncOHDxMQEIDFYnF1d0RERKQGMAyDrKwsoqOjsVr1XWZ1pXGeiIiInI3yjvWUaDuNw4cPExMT4+puiIiISA104MABGjZs6OpuyBlonCciIiKV8W9jPSXaTiMgIAAwf3iBgYEu7o2IiIjUBJmZmcTExJSOI6R60jhPREREzkZ5x3pKtJ3G8WUEgYGBGoCJiIhIhWg5YvWmcZ6IiIhUxr+N9bSBiIiIiIiIiIiIiAMo0SYiIiIiIiIiIuIASrSJiIiIiIiIiIg4gPZoO0uGYVBcXIzNZnN1V+Rv3NzccHd31x45IiIiclY0zqu+NM4TEZHqTom2s1BYWEhiYiK5ubmu7oqcga+vL1FRUXh6erq6KyIiIlKDaJxX/WmcJyIi1ZkSbRVkt9vZs2cPbm5uREdH4+npqW/UqhHDMCgsLOTIkSPs2bOHFi1aYLVqhbSIiIj8O43zqjeN80REpCZQoq2CCgsLsdvtxMTE4Ovr6+ruyGn4+Pjg4eHBvn37KCwsxNvb29VdEhERkRpA47zqT+M8ERGp7vQV0FnSt2fVm34/IiIicrY0jqje9PsREZHqTH9LiYiIiIiIiIiIOIASbSIiIiIiIiIiIg6gRJuclSZNmvDaa6+5uhsiIiIi4mAa54mIiJw9FUOoQ/r27UunTp0cMnBas2YNfn5+le+UiIiIiFSaxnkiIiLVgxJtUsowDGw2G+7u//7HIiwsrAp6JCIiIiKOoHGeiIhI1dDSUQcwDIPcwuIqPwzDKHcfb7jhBpYsWcLrr7+OxWLBYrHwySefYLFY+Pnnn+natSteXl4sX76cXbt2MXToUCIiIvD39+ecc85h4cKFZeL9fUmBxWLhww8/ZPjw4fj6+tKiRQt++OEHR/2IRUREysVuN0jJyuevgxks2JrM//7Yx0vzE7jv6z+59sNV9H9lCbM3HHJ1N6UGqcg4L7ugiC2HM1i//xiZeYUa54mIiNRBmtHmAHlFNto8Or/K29365EB8Pcv3K3z99dfZvn077dq148knnwRgy5YtADz44IO89NJLNG3alHr16nHgwAEuvfRSnnnmGby8vPjss88YPHgwCQkJNGrU6IxtPPHEE7zwwgu8+OKLvPnmm1xzzTXs27ePkJCQyn9YERGp8/KLbCRn5pOUkU9SZj7JmfkkZuSXXkvOLCAlK58i2z8nKPYdza2iHkttoHGeSeM8ERGR8lGirY4ICgrC09MTX19fIiMjAdi2bRsATz75JAMGDCi9NyQkhI4dO5Y+f+qpp/juu+/44YcfmDhx4hnbuOGGGxg9ejQAzz77LG+88QarV6/mkksuccZHEhGRWiS3sJh9R3PNBFpJIi3ppMfkzHyO5RaVK5bFAmH+XkQGeRMR6E1UyWNkoDeRQd40D/d38qcRqVoa54mIiFQfSrQ5gI+HG1ufHOiSdh2hW7duZZ5nZ2fz+OOPM2fOHBITEykuLiYvL4/9+/f/Y5wOHTqUnvv5+REYGEhKSopD+igiIrVHXqGNrYkZ/HUwg02HMth8KIOdKdnYy7FSztvDSmRgSeIsqOQoSaJFBJlJtTB/L9zdtDuGOEZFx3nJGQUcyc6nnq8nDer5VKpdR9A4T0REpGop0eYAFoul3FP7q6O/V5W6//77WbBgAS+99BLNmzfHx8eHESNGUFhY+I9xPDw8yjy3WCzY7XaH91dERGqO/CIbWxMz+etgBn8dMpNrO1KyTptUC/b1ICrIh8hAr5IEmg+RQV6lSbWoQB8CfdyxWCxV/0GkzqroOK+en52sgiIsFqrF+FDjPBERkarl+r/9pcp4enpis9n+9b4VK1Zwww03MHz4cMD85nPv3r1O7p2IiNR0+UU24hMz2Xwog00libUdKdnYTpNVC/X3okPDINo3KDkaBhER6O2CXos41vGZaPlFdgzDqLLEsMZ5IiIi1YMSbXVIkyZNWLVqFXv37sXf3/+M30K2aNGCb7/9lsGDB2OxWHjkkUf0jaWIiJSRX2QjISnLXPpZsgR0R3IWxadNqnmelFALpn2DICICvTQzTWolT3crVosFu2FQUGzH20FLQP+NxnkiIiLVgxJtdcj999/P9ddfT5s2bcjLy+Pjjz8+7X2vvPIKN954I7169SI0NJQHHniAzMzMKu6tiIhUFwXFZlLt+NLPvw5lkJB0+qRafT9P2v9tplpkoLeSalJnWCwWvD2s5BbayC+yVVmiTeM8ERGR6sFiGEY5th6uWzIzMwkKCiIjI4PAwMAyr+Xn57Nnzx5iY2Px9tYSl+pKvycRkYorLLaz92gO25Oz2J6czY7kLLYnZ7H3aO5pl3+G+J2YqdauQRAdGgYRFVR3k2r/NH6Q6qMqxnkHj+WSllNIeIC5v6A4lsZ5IiLiCuUd62lGm4iISB1TZLOz72gO25Oz2Z6cxY6Sxz2pOaedpQZQz9ejNJl2fAlodB1Oqon8E+/Sfdr+fc80ERERqV2UaBMREamlim129qXllsxMO5FU252aTZHt9Ak1fy93WkT40zI8wHyMCKBlRID2VBOpACXaRERE6i4l2kRERGo4m91gf1puSSLtRFJt95EcCm2n3+Tc19ONFuH+tIgIoGXE8ccAzVITcQBvdysAhTY7NrsdN6vVxT0SERGRqqJEm4iISDVitxtkFRSTmVdERl4R6bnm4/EjPa+w9LWMvCKOZheyJzWHguLTJ9R8PNxoHu5/0uw0f1qEB9Ag2AerVQk1EWdwd7Pi4WalyGYnv8iOn5cSbSIiInWFEm0iIiJOYLMbJGfmn5QoKyybMPtbAu34kZlXxBm2SftHXu5WmoebybTjSz9bRgTQsJ4SaiKu4OPhRpHNTl6RDT8vDblFRETqCv2tLyIiUklpOYVsS8pkW2KW+ZiURUJS1hlnmZWHl7uVYF8PgnxOHIE+HgT7eJY8dyfI13weG+pHTIgvbkqoiVQb3h5WMvO1T5uIiEhdo0SbiIhIORUW29mdms22xCziT0qsJWcWnPZ+DzcLQT6eZlLMx4NgX8+/Jc1OSqT5nnge6ONRupm6iNRMJwoinH3CXURERGoeJdpERET+xjAMUrIKiE80Z6dtK3ncdeTM1Tob1/clLjKAuMhA8zEqkEaaZSZSZ51cedQwDBUZERERqSOUaBMRkTotr9DGjpSsU2apHcstOu39Ad7utI4MJC6qJKkWZe6F5q89mETkJF7uVqwWC3bDoLDYjpdmqYqIiNQJ+leBlFuTJk245557uOeeewCwWCx89913DBs27LT37927l9jYWDZs2ECnTp2qrJ8iImdSUGxj08EM1uxNY8uhTOKTMtmbmnPa4gNWCzQN8ycuMoDWUSdmqUUHeWtmioj8K4vFgpe7lbwiG/lFtmqfaNM4T0RExDGUaJOzlpiYSL169Rwa84YbbiA9PZ3Zs2c7NK6I1E0ZeUWs33eMNXvTWLM3jT8PZlB4mgIFIX6etI46seyzdVQgzcP9tU+aiFSKj4cbeUU28ortBLm6MxWkcZ6IiMjZUaJNzlpkZKSruyAiUkZSRj6r96axdm8aq/ekkZCchfG32Wqh/p50axxC50bB5ky1qADC/L00S01EHK50n7bCmld5VOM8ERGRs2N1dQdqBcOAwpyqP/7+r8d/8P777xMdHY3dXnYmx9ChQ7nxxhvZtWsXQ4cOJSIiAn9/f8455xwWLlz4jzEtFkuZbyRXr15N586d8fb2plu3bmzYsKHM/TabjZtuuonY2Fh8fHxo1aoVr7/+eunrjz/+OJ9++inff/89FosFi8XC4sWLAThw4AAjR44kODiYkJAQhg4dyt69e8v9+UWk9jEMgx3JWXyxaj+TZmzk/Od/5dwpi7jryw18tnIf25LMJFuT+r6M6NqQF67swK/39WHNQ/2Zel1Xbu3TjAtahhEeoKWgIvIPKjHO8zbysRTlUpCXpXGexnkiIlJHuHxG29tvv82LL75IUlISHTt25M0336R79+5nvP+1117j3XffZf/+/YSGhjJixAimTJmCt7f3WcestKJceDbaefHP5P8Og6dfuW696qqruPPOO/ntt9/o168fAGlpacybN4+5c+eSnZ3NpZdeyjPPPIOXlxefffYZgwcPJiEhgUaNGv1r/OzsbC6//HIGDBjA559/zp49e7j77rvL3GO322nYsCEzZ86kfv36/P7779xyyy1ERUUxcuRI7r//fuLj48nMzOTjjz8GICQkhKKiIgYOHEjPnj1ZtmwZ7u7uPP3001xyySVs2rQJT0/PCv7gRKQmKiy2s/lwRslstWOs25d2SsECqwXaRAdyTpMQzmkSQrfG9QgP9D5DRBGRcqjEOM8faH+27Wqcp3GeiIjUSC5NtM2YMYNJkyYxdepUevTowWuvvcbAgQNJSEggPDz8lPu/+OILHnzwQaZNm0avXr3Yvn07N9xwAxaLhVdeeeWsYtYV9erVY9CgQXzxxRelA7BZs2YRGhrKhRdeiNVqpWPHjqX3P/XUU3z33Xf88MMPTJw48V/jf/HFF9jtdj766CO8vb1p27YtBw8e5Pbbby+9x8PDgyeeeKL0eWxsLCtXruTrr79m5MiR+Pv74+PjQ0FBQZnlCp9//jl2u50PP/ywdNbJxx9/THBwMIsXL+biiy+u9M9HRKqf7IJi1u87ZibW9qax8UA6+UVlZ2t4e1jpFBNM9yYhdGsSQpfG9VT9U0TqHI3zREREqg+X/mvklVdeYfz48YwbNw6AqVOnMmfOHKZNm8aDDz54yv2///475513HmPGjAHM6kijR49m1apVZx3TITx8zW8dq5qHb4Vuv+aaaxg/fjzvvPMOXl5eTJ8+nVGjRmG1WsnOzubxxx9nzpw5JCYmUlxcTF5eHvv37y9X7Pj4eDp06FBmZmHPnj1Pue/tt99m2rRp7N+/n7y8PAoLC/+1UtWff/7Jzp07CQgIKHM9Pz+fXbt2lat/IlK9GIZBdkExR7MLOZpTQGp2oXmeXUByVj4bD6Sz9XDmKdVAg3096NY4hO6x9ejWJIR20UF4umsXBBFxokqO8/YezSUrv4joIG/q+3tVrN0K0DhPRESkenBZoq2wsJB169YxefLk0mtWq5X+/fuzcuXK076nV69efP7556xevZru3buze/du5s6dy3XXXXfWMQEKCgooKCgofZ6ZmVmxD2OxlHtqvysNHjwYwzCYM2cO55xzDsuWLePVV18F4P7772fBggW89NJLNG/eHB8fH0aMGEFhYaHD2v/qq6+4//77efnll+nZsycBAQG8+OKLZRKlp5OdnU3Xrl2ZPn36Ka+FhYU5rH8iUjmFxXbScgpJzS7gaE4hqVkFHM0p4Gh2oZlIKzk/ml1Aak7haat//l3Dej6ly0DPaVKPZmH+WK3aT01EqlAlx3levlYybQXkWTzBs2LJs4rQOE9ERKR6cFmiLTU1FZvNRkRERJnrERERbNu27bTvGTNmDKmpqZx//vkYhkFxcTG33XYb//d//3fWMQGmTJlSZqp7beXt7c0VV1zB9OnT2blzJ61ataJLly4ArFixghtuuIHhw4cD5qCnIpvQtm7dmv/973/k5+eXftv5xx9/lLlnxYoV9OrVizvuuKP02t+/qfT09MRmK1uZq0uXLsyYMYPw8HACAwPL3ScRcRzDMNienM3qvWkcySrgaHZB6Ww0M5FWQGZ+cYXj+nq6Ud/fk1B/L+r7eRHq70mInydxUYGc06QeUUE+Tvg0IiJVx+d45dGif/9yoTI0zhMREakeatRGNosXL+bZZ5/lnXfeoUePHuzcuZO7776bp556ikceeeSs406ePJlJkyaVPs/MzCQmJsYRXa52rrnmGi6//HK2bNnCtddeW3q9RYsWfPvttwwePBiLxcIjjzxySuWqfzJmzBgeeughxo8fz+TJk9m7dy8vvfRSmXtatGjBZ599xvz584mNjeV///sfa9asITY2tvSeJk2aMH/+fBISEqhfvz5BQUFcc801vPjiiwwdOpQnn3yShg0bsm/fPr799lv++9//0rBhw8r/YETkFAXFNlbtTmNRfDKLtqVw8Fjev77HzWqhvp8n9f3NpNnx8/r+noT6mY/1/b1Krnvi61mj/hoSEakw79JEmw3DMJxa5VjjPBEREddz2b9wQkNDcXNzIzk5ucz15OTkMhuknuyRRx7huuuu4+abbwagffv25OTkcMstt/DQQw+dVUwALy8vvLwqsGdGDXbRRRcREhJCQkJC6V53YO5td+ONN9KrVy9CQ0N54IEHKrSE1t/fnx9//JHbbruNzp0706ZNG55//nmuvPLK0ntuvfVWNmzYwNVXX43FYmH06NHccccd/Pzzz6X3jB8/nsWLF9OtWzeys7P57bff6Nu3L0uXLuWBBx7giiuuICsriwYNGtCvXz998yniYKnZBfy2LYVF8Sks23GEnMITMw+83K30aFqfRiE+pbPPTiTNzOeB3h5a2ikichIvdysWiwW7YVBos+Pl7ua0tjTOExERcT2LYRjGv9/mHD169KB79+68+eabgFkWvFGjRkycOPG0hQu6du1K//79ef7550uvffnll9x0001kZWXh5uZW4Zink5mZSVBQEBkZGaf8BZ+fn8+ePXuIjY0tsyGsVC/6PYmUj2EYJCRnsSg+hYXxyWw8kM7JfyuEB3jRr3U4F8VFcH7zUHw8nfcPRJGa7p/GD1J9uGKctyM5i7wiG43r+xHk4+GwuHWVxnkiIuIK5R3ruXTNzqRJk7j++uvp1q0b3bt357XXXiMnJ6e0YujYsWNp0KABU6ZMAcxNXl955RU6d+5cunT0kUceYfDgwbi5uZUrpohIXVdQbOOP40tC41M4lF52SWi7BoH0i4ugX+tw2kUHaYaaiEgleXu4kVdkI7/IpkSbiIhILefSRNvVV1/NkSNHePTRR0lKSqJTp07MmzevtJjB/v37sVqtpfc//PDDWCwWHn74YQ4dOkRYWBiDBw/mmWeeKXdMEZG66EhWyZLQbcks25FK7t+WhJ7fPJR+rSO4KC6cyCDNDhARcaST92kTERGR2s2lS0erKy0drfn0e5K6zjAM4hOzSgsZ/Hmw7JLQiEAvLoqLoH/rcHo105JQEUfQ0tGawRXjvOz8Inan5uDpbiUuUn82KkvjPBERcYUasXRUREQcJ7/IxsrdR1kUn8yv8Skczsgv83r7BkH0ax1Ov7gI2jUIdGrluzovOwVStkL6AbAVgK0YbIVgLwLb8aMQ7CXXj1+zl1wvz/3Hz7FAm6FwwX/AP8zVn1xETuP4jLbCYjs2u4GbluSLiIjUWkq0nSVNBKze9PuR2qig2EZKZgGJGfkkZeaTnJFPYkY+yZn5JGbksS0pq8ySUG+PsktCIwL1rb/D5WdAyjYzqZYSf+IxN7Vq+7H6Pdg4HXpOhF4TwSugatsXqWUcPY5wd7Pi4WalyGYnv8iGn5eG4JWhcZ6IiFRn+lu+gjw8zA1sc3Nz8fHxcXFv5Exyc3OBE78vkerMMAwy84tLEmZmAi0p80QSLankeVpO4b/Gigz05qLW4aVLQo/PopBKKsqDIwllk2kp8ZB58AxvsEBILIQ0BXdvcPMEN4+SwxOsHv/y3L0c7ym5J/MwLH4WDm+AJc/Bmg/N2W3dxoG7V5X+mERqOmeO87w93JRocxCN80REpDrT3/IV5ObmRnBwMCkpKQD4+vpq+VU1YhgGubm5pKSkEBwcXFqNVsSVMnKL2Hs0h6STkmZlZ6Plk1fODbK93K1EBnkTGeh9ymOTUD/iIgMq9/+k4kLISoSsJMg6DJmJJc8TzfP8DKjXGEJbQGhLCG1lnnvXkj2HbMWQtuvUGWppu8Gwn/49gQ0gvHXJ0cZ8DG0Fnr5V0+fIdtBiAGydDYueMvs/7wH442248GFofxWcVFhIRM7MmeM8N6MIo7iQ7BwDP3fNyDobGueJiEhNoETbWYiMjAQoHYRJ9RMcHFz6exKpaja7wcYD6SzZfoQl24+w6W+FCM4kyMeDqCBvIgK9Sx8jg04k0qKCvAny8Ti7f/TZ7ZCXZs5+Ojlx9vfz8ix5TP7r1GsBUSXJt1YlCbgWENbKvF4dv4yw2yHjQEkybcuJGWqp20v2PTsNn3oQ3vbUpJpPcJV2/bQsFmg7HOIuhw3/g8XPQ/p++O4W+P0N6PeYmYyrjr8LkWrGWeO83MJi0nKKyHC3khug2aaVoXGeiIhUZ6o6ehrlrSRhs9koKiqqwp5JeXh4eOgbTqlyKZn5pYm1ZTtSycgr+/+GiEAvIoN8iPpb8uzkpFqlKn8WZMHhjX9LnB02Z6YdT6LZy/n/KzdPM0EWEAWBURAQDQGREBgNXoFwbI+ZkDqSAKk7IDvpzLE8A07MfgtrWZKEa2kuqXRz8JKfwlzIOQI5qSWPR07zvOQ8N9UsJnA6Hn4QHleSSGtzIqnmH15zElWFubDqXVj+OhRkmNcanwf9n4CYc1zbt1pMVUdrBleN8/YcyeHmz9bg6+nODxPP04qIs6RxnoiIuIqqjlYBNzc3/UUvUkcV2eys23fMTK4lHGFrYmaZ1wO93endMow+JYfTChHYimDtNFg8BfKO/fv9fmFm0iwg+tQk2vHkmm9IxRJKeelwdGfZ5FtqAqTtgcIsOLzePE5mdYd6seast7/PhDu+DNVWbM7CO23C7Ahk/y2ZVpRT/j6DuedZWKtTZ6gFNar5Sy09faH3fdB1HCx/BVa9D/tWwEf9zVlv/R41P7uIiy1dupQXX3yRdevWkZiYyHfffcewYcPK9d4VK1bQp08f2rVrx8aNGx3eN0eP85pHe3Ik16Awq4DUPIOYEO31KyIiUhsp0SYiUk6H0vNYknCEJdtTWLHzKNkFJ2ZEWSzQoUGQmVhrFUbHhsG4uzkxWWMYsOMX+OVhM8EFZtKsfrOTZqIdn5VWkkzzjwR3T8f3xScYGnYzj5MVF5p7m6VuNxNvqTtKzndAYTYc3WEef+cfYc42y00DKjjp2s3LTCb6hZY8/v38pOf+4Y6fVVfd+IbAxU9Dj9vMZOzGL2DbT5AwFzqNgb6TIaihq3spdVhOTg4dO3bkxhtv5Iorrij3+9LT0xk7diz9+vUjOTnZiT10HA83K83D/dmamEl8YiYxIVW0j6OIiIhUKSXaRETOIL/Ixpq9aSXJtSPsSMku83p9P08uKJmx1rtFKPX9q2jPneStMP//YPdv5nPf+nDhQ9DlenCrRv9bd/csWYIZV/a6YZh7xR1Pvh1JKEnAbYfsZPMoZTE/3z8lzE4+9wqoOcs7q1JQQxj6NvS6CxY9aSbbNnwOm2ZCj1vg/ElmUs4V8tIhcaNZNbUgq2SZcckMR08/1/RJqsygQYMYNGhQhd932223MWbMGNzc3Jg9e7bjO+YkcVEBJYm2LC5uqz3GREREaqNq9C8yERHX25uaU7rX2spdR8tUA7VaoEujevRpGUbfVuG0jQ7Eaq3CpE5OKvz2DKz7xKyAafWAc2+HC+4H76Cq60dlWSwQ1MA8ml1U9rW8dHMWnLu3mTjzDQGrlug7TFgrGDUdDqyBhY/DvuXw+5uw7jM4/27ocbtzq6UWZEPSJji03kysHd5gVkk9LQsEN4KwuBNLfMNamcuMvfyd10ep9j7++GN2797N559/ztNPP/2v9xcUFFBQUFD6PDMz8x/udq7WkYHAIbYlua4PIiIi4lxKtIlInZZbWMwfu4+yJOEIi7cfYd/R3DKvRwR6lSbWzmsWSpCvC5YaFhfAqqmw9CUoKPnHWevBMOBJs6hAbeITDA26uLoXtV/MOXDDT7BzoZlwS95sznRb9T70+S90GVv5ZbVF+Wbck5NqqQlmkvjv6jWB6M5mZdcj2+HINrNgRfo+89gxv+z9QTEnEnBhcSfOvVWAoLbbsWMHDz74IMuWLcPdvXzD2ClTpvDEE084uWfl0zrK/DO6LSnLxT0RERERZ1GiTUTqnPwiG4sTUpi94TC/JqRQWHziH/4ebha6NQ6hbytzr7VWEQGuqwxnGBD/Iyx4BI7tNa9FdoBLpkCT813TJ6k9LBZoMQCa9YPNs+DXp82k1pxJsPJtuOhhaDu8fEtxbUWQsvWkpNp6SIk/fWXXwAZmUi26E0R3Mc9Pt2w1J9VcVnwkvuRxG6Rsg5wUyDhgHjsXnBq7TPKtJAHnE3w2PyGpZmw2G2PGjOGJJ56gZcuW5X7f5MmTmTRpUunzzMxMYmJinNHFfxUXFQDA3qM55BYW4+upobiIiEhto7/dRaROsNkNVu46yvcbDzFvcxJZJxUyaFjPx0ystQynZ7P6+HtVg/81Ht4I8x8yl/aBWSCg32PQcXTNr4gp1YvVCh1GQpthsO5jWPKCuZxz1jhY8Tr0fxyaXXjifrvN3E/v5KRa0mawFZwa2zfUnKEY3bkkqdbJLMxRHn6h5tHkvLLXc9NOn4DLToLMQ+ax69ey7/GPNPcKPJ54a9Tr1L0DpdrLyspi7dq1bNiwgYkTJwJgt9sxDAN3d3d++eUXLrroolPe5+XlhZdXFe2h+S9C/b0I9fciNbuAhKQsOjeq5+ouiYiIiINVg39Niog4h2EY/Hkwg+83HuLHPxNJzT6RCIgO8mZIpwYM6RhN6ygXzlr7u8xE+PUpszokhrlXWa874bx7tC+VOJe7J/S41axGuvJtc++2xI3wv2HQtC+EtzWTaol/QlHuqe/3DipJqHU+MVMtqKHji1P4hkDjnuZxsrxjJ5adlh4JZuItO8k8di827+07GcIfdGy/xOkCAwP566+/ylx75513+PXXX5k1axaxsbEu6lnFtI4KYNmOArYp0SYiIlIrKdEmIrXOzpQsfth4mO//PFxmz7V6vh5c3j6CES0stPc6gvXoYvjrABxuBjE9zNkurtp4vygPfn8Llr8KRTnmtfZXmbPYgl2zxEnqKK8A6PsgdLsJlr0Eaz4yE1THk1QAHn4lSz87nzhCmrq24qtPPWjUwzxOlp9xagIuWvsAVhfZ2dns3Lmz9PmePXvYuHEjISEhNGrUiMmTJ3Po0CE+++wzrFYr7dq1K/P+8PBwvL29T7lenbWOCmTZjlTiE1UQQUREpDZSok1EaoXEjDx+/PMw3288zJbDmfiST6wlkSs9kxkQlkFnvyOEF+zHsmUX/Jl3+iBegdCwm5l0a3iOee7sap6GAZu/gQWPQeZB81rDc2DgFHPDehFX8Q+DQc+blW1XvWfut3Z8plpoi5pTDdY7yPxvSf89VUtr167lwgtPLE0+vpfa9ddfzyeffEJiYiL79+93VfecIi7S3KdtW6IKIoiIiNRGFsMwDFd3orrJzMwkKCiIjIwMAgNVwUykukrPyWfxmk1s3rSGouQEmloO09SSSHPrYaIsaWd+o9XDnH0T2sJc2nZkGxxcC4XZf7vRAuFtIKa7mXyL6e7YWTsH1sD8yXBwjfk8sCEMeALaXenamUEiclY0fqgZXP17ik/MZNDrywjwdmfTYxdXn60LRERE5B+VdwyhGW0iUv0V5sLRnZC6ncKU7aTs+QtbynbCCg4wzFLAMACP07zPN9RMpoW2gPotILSleR7cGNz+9r8/u82smnhgFRxYbT4e2wspW8xj3ccnYh5PusX0MJfPefhU7POkH4CFj5uVHsFchtf7Xug5seKxRESkRmkW5o+Hm4Ws/GIOpefRsJ6vq7skIiIiDqREm4hUT9vmwpoPIHUHZBwovewJNDz+xALFuJHlG4N3ZBw+Ua1KkmktoX5zc9P08rK6QWR78zjnZvNaVjIcXH0i+XZ4I+SmQsIc8wBzdlxUh7LJt8Do07dRkA0rXjM3mS/ONz9Ap2ug3yPlr8QoIiI1mqe7lWZh/mxLymJbYpYSbSIiIrWMEm0iUr0YBix5ARY/W+byMcOfXUY0u+zRpPk0IrJpBzp1PofYFm2p53a66WwOEBABrQebB0BxASRuKkm8lRzZyXBonXn88Y55X1BM2eWm4W3gr5mw6Cmz8iFA4/Nh4DPmjDgREalTWkcFsi0pi/jETPq3iXB1d0RERMSBlGgTkWqjIC+b9C9vIWK/OVvss+IBfG/rxW4jCjf/UC7vEM2QTtF0jgl2zZ427l4nbao+0UwKpu8/sdT0wCpI3mzOwMs4YBY5ALC4gWEzz+s1gQFPmck77csjIlInlRZESFJBBBERkdpGiTaR2qAoH/YsgfgfYOevENsbLn3R+RUzHSAjt4jfElJYvWkLY3Y/QDvLbooMNx4uvpGf3PozsEMkd3VqwHnN6uPuZnV1d8uyWKBeY/PocJV5rSDbnN12PPl2cDXkZ5gVTS/4D/S41UzYiYhIndU6ytxAOT4p08U9EREREUdTok2kpirIgh0LIP5H2PFL2YqZm2bA/pVw5Ufm0sVq5lB6Hgu2JLEgPplVu9OIM3bxoefLRFqOkU4AM5s/yyXdL+HJZvXxcndzdXcrxssfmvYxDwC7HY7tAf9w8Apwbd9ERKRaiIsy/z7Ym5pDXqENH88a9nediIiInJESbSI1SW4aJPxsJtd2/Qq2ghOvBURD68uhQTf47RlI3wfTLoELJ8P5k8zN/l3EMAy2JmayYGsyv2xJZmviiW/wL7X+wSteU/GmkLzgFgReN5Px9WNd1leHs1qhfjNX90JERKqRMH8v6vt5cjSnkO3JWXSMCXZ1l0RERMRBlGgTqe4yD8O2Oeay0L0rTuz1BRDSFFoPMff7iu5iJnUAWl0CP02CzbPg16dh9xK44v0zV8N0giKbndV70liwNZkFW5M5lJ5X+prVAl0bBfOA7w902zPVvNh8AD4jPqoRy11FREQqw2Kx0DoqkOU7U9mWlKlEm4iISC2iRJtIdXR0lzlrbdtPcHBN2dci2p+ohBne+vQb6nsHwZUfQvN+MOd+2LsM3u0FQ9+BuEud1u3sgmKWJBxhwdYkft2WQmZ+8YkueVjp3SKMAW0i6NcsgPoL74Ut35ovnjsBLn7KpbPuREREqlJcZADLd6YSn6iCCCIiIrWJEm0i1YFhQPIWM7kW/yOkbCn7ekwPM7EWdzmElHNZpcUCncZAw+7wzY2Q+Cd8NRq632JWvfTwdkjXUzLzWRBvLglduesohTZ76Wshfp70iwtnQJsIercIM/egyUyEr4bB4Q1gdYfLX4UuYx3SFxERkZqitCBCogoiiIiI1CZKtIm4it0Oh9aaS0Ljf4Rje0+8ZnEzK4e2HgytLoPAqLNvJ7Q53LQAFj0JK9+C1e+bS1BHTIPwuLMKuftINj9vTuKXrcn8eSC9zGtN6vsyoE0EA9pE0rVxPdysJ824O7QevhoDWYngEwJX/w+anH/2n01ERKSGOl4QIT4xE8MwsJxuhrqIiIjUOEq0iVQlWxHsXV6yLHQOZCedeM3dG5r1MwsatLwEfEMc1667Fwx8BppeCLNvM2fMvd8XLpkCXW84/fLTv8kpKGbOX4l8veYAa/cdK/Nap5hgBrSJ4OI2ETQP9z/9PxY2fwuz74DiPAiLg9FflX92noiISC3TPNwfd6uFzPxiEjPyiQ72cXWXRERExAGUaBOpCoW55myyP96BvJOSVJ4B0HKgOXOteX/w8nduP1r0h9t/h+9ug12L4Kd7zMfBb5w2sWcYBuv3p/P1mgP8tOkwOYVmIQarBc5vEcbAthH0bx1BROA/LEM1DFjyPCyeYj5vPsCcTecd6IQPKCIiUjN4ubvRLMyfhOQstiVlKtEmIiJSSyjRJuJMhgGbv4EFj0HmQfOab32Iu8ysFhp7gTnbrCr5h8M1s+CPt2HhE+bsukMb4MoPoHEvAFKzC/h2/UG+XnuQnSnZpW9tUt+Xq7rFMKJrw39Orh1XmAvf3wFbvjOf95wIA55U0QMRERHM5aMJyVnEJ2ZxUVyEq7sjIiIiDqBEm4izHFwH8x6Eg6vN50Ex0P9xaDMM3Fz8n57VCr3uNPdHm3UjpO3G+OQy9rS5gxfzhrBg21GK7QZgVgu9tH0UV3eLoXtsSPn3kMk8bO7HdngDWD3g8ldU9EBEROQkcZGBfM9hFUQQERGpRZRoE3G0zMPmTLFNX5nPPXzh/EnQayJ4VLNlIdGd2TdiHpnf3kv71Dk03fIW4+wL+NM+gbCY5lzdLYbLO0YR6O1RsbinFD34HJqc55zPICIiUkO1LimIsC0py8U9EREREUdRok3EUQpz4fc3YcVrUJRrXus4Bvo9WrmqoU6QV2hj7l+JfL32AKv2pAHXMMTahGc9p9HdmsCywEdwu/BNaHMWyTEVPRARESmX1lHmfqW7j2STX2TD20NbK4iIiNR0Vld3AODtt9+mSZMmeHt706NHD1avXn3Ge/v27YvFYjnluOyyy0rvueGGG055/ZJLLqmKjyJ1kWHAX7PgrXNg8bNmki3mXBj/Gwx/t9ok2QzDYOOBdP7vu7/o/sxC7pv5J6v2pGGxQJ+WYVwy+k48J/wODbriVpgBX4+FH+82E4jlawB+mwKzxplJthYXw00LlGQTERE5g/AAL0L8PLEbsCM5+9/fICIiItWey2e0zZgxg0mTJjF16lR69OjBa6+9xsCBA0lISCA8PPyU+7/99lsKCwtLnx89epSOHTty1VVXlbnvkksu4eOPPy597uVVxRvOS91wcG3JPmxrzOdBjWDAE9B2OJR3LzMnS8sp5LsNh/h6zQESkk8sTYkJ8WFk1xiu7NqwbKWzG+fDb8/A8tdg3Sewb6VZJTSy3ZkbUdEDERGRCrNYLMRFBvD7rqPEJ2bSvmGQq7skIiIileTyRNsrr7zC+PHjGTduHABTp05lzpw5TJs2jQcffPCU+0NCQso8/+qrr/D19T0l0ebl5UVkZKTzOi51W8YhWPQEbJphPvfwg973mgmmarAPm81usGzHEWauPcgvW5MospmFDbzcrQxqF8nIc2I4N7Y+VutpkoFuHmbRhqZ94dtbITUBPrgIBj4D59x8agJRRQ9ERETOWlxkoJloS1JBBBERkdrApYm2wsJC1q1bx+TJk0uvWa1W+vfvz8qVK8sV46OPPmLUqFH4+fmVub548WLCw8OpV68eF110EU8//TT169c/bYyCggIKCgpKn2dmaqAjZ1CYC7+/Yc72Ks4zr3W6Bi56pFosET2aXcCnK/cxa+0BDmfkl15v3yCIkefEMKRjNEE+5Sxs0LQv3L7C3G9tx3yYez/s+hWGvAV+Jf8tqeiBiIhIpZQWREhUQQQREZHawKWJttTUVGw2GxEREWWuR0REsG3btn99/+rVq9m8eTMfffRRmeuXXHIJV1xxBbGxsezatYv/+7//Y9CgQaxcuRI3t1OXsk2ZMoUnnniich9Gaje7HTbPgoWPQ+Yh81qjnnDJFIju7NKuAaRk5fPB0t18/sd+8opsAAT5eDC8cwNGdouhTXTg2QX2C4UxM2D1+/DLw5AwF6aeB1e8DzmpMPt2KM5X0QMREZGzdLwgQnxSJoZhYKkmW0+IiIjI2XH50tHK+Oijj2jfvj3du3cvc33UqFGl5+3bt6dDhw40a9aMxYsX069fv1PiTJ48mUmTJpU+z8zMJCYmxnkdl5rlwBpzH7ZDa83nQY3g4iehzTCX78OWmJHHe0t28+Xq/RQU2wFz9tr4C5pycZsIx1Qvs1igx63QuBfMuhFSt8OnQwBzOSotLoYrPwLvs0zmiYiI1GHNw/1xs1pIzy0iObOAyCBvV3dJREREKsGlibbQ0FDc3NxITk4ucz05Oflf91fLycnhq6++4sknn/zXdpo2bUpoaCg7d+48baLNy8tLxRLkVBkHYeET8NfX5nNPf+g9Cc6dAB6uHQQfPJbLu4t3MXPtQQptZoKtS6Ng7uzXgr4tw5zzbXhke7hlMcybDOs/Na+p6IGIiEileHu40TTUjx0p2cQnZSrRJiIiUsO5NNHm6elJ165dWbRoEcOGDQPAbrezaNEiJk6c+I/vnTlzJgUFBVx77bX/2s7Bgwc5evQoUVGu30NLaoDCHFjxBqx4vWQfNgt0LtmHLcC1BTb2Hc3h7d928u36QxTbzRll3WNDuLtfC3o1q+/85SaefjDkDWh3JdiLoHl/57YnIiJSB8RFBZqJtsRMLmwV7uruiIiISCW4fOnopEmTuP766+nWrRvdu3fntddeIycnp7QK6dixY2nQoAFTpkwp876PPvqIYcOGnVLgIDs7myeeeIIrr7ySyMhIdu3axX//+1+aN2/OwIEDq+xzSQ1kt8NfM8192LIOm9ca9SrZh62TK3vGriPZvP3rTr7/8zC2kgTb+c1DufOi5vRoevoiH07VtE/VtykiIlJLxUUG8OOfKoggIiJSG7g80Xb11Vdz5MgRHn30UZKSkujUqRPz5s0rLZCwf/9+rFZrmfckJCSwfPlyfvnll1Piubm5sWnTJj799FPS09OJjo7m4osv5qmnntLyUDmzwxtgzv0n9mELbgQDnoI2Q126D9v25Cze/HUnP206jFGyJVrfVmHceVELujau57J+iYiIiOO0OV4QITHTxT0RERGRyrIYxvF/vstxmZmZBAUFkZGRQWCgNniv9XYshBnXmNUzPf2h931w7h0u3Ydty+EM3vp1Jz9vTiq91r91BHf1a06HhsEu65eIiJyZxg81Q3X8PSVm5NFzyq+4WS1seWKgY4oZiYiIiEOVdwzh8hltIi61ZTZ8c/OJ/caGvgMBES7rzp8H0nnz1x0sjE8pvXZp+0gmXtiCNtHV4x8DIiIi4liRgd4E+3qQnlvEzpRs2jUIcnWXRERE5Cwp0SZ114bp8MNEMOzQdjgMfx/cPV3SlXX70nhj0U6WbD8CmKtVB3eIZuJFzWkZEeCSPomIiEjVsFgsxEUG8MfuNOITM5VoExERqcGUaJO6adV78PN/zfPO18Hg18Fa9cs0/th9lDd/3cGKnUcBcLNaGNopmgkXNqdZmH+V90dERERcIy4ykD92p7EtSQURREREajIl2qRuMQxY9jL8+pT5/Nw7YOCzVVrwwDAMVuw8yhuLdrB6bxoA7lYLV3ZpyB0XNqNxfb8q64uIiIhUD8cLImxLUkEEERGRmkyJNqk7DAMWPgYrXjef93kQ+j5YZUk2wzBYvP0IbyzawYb96QB4ulkZeU5DbuvTjIb1fKukHyIiIlL9xEWZW0XEJ2ZhGAYWF1Y9FxERkbOnRJvUDXY7zL0P1k4zn1/8NPS6s8qa356cxaPfb+aP3eYMNi93K6O7N+K2Ps2IDHJddVMRERGpHlpGBGC1QFpOIUeyCggP1PhARESkJlKiTWo/WxHMvgP++hqwwOWvQrdxVdJ0Vn4Rry/cwce/78VmN/BytzK2Z2PGX9CU8AANoEVERMTk7eFGbKgfu47kEJ+UpUSbiIhIDaVEm9RuRfkw60ZImANWdxj+HrQf4fRmDcPg+42HeWZuPEeyCgC4uE0Ej1zehpgQLREVERGRU8VFBZqJtsRM+rQMc3V3RERE5Cwo0Sa1V2EOfDUGdi8GNy8Y+Rm0usTpzW5LyuTR77eweo+5TLRJfV8eH9KWvq3Cnd62iIiI1FxtogKZsymRbYkqiCAiIlJTKdEmtVNeOnwxEg6sAg8/GPMVxF7g1CYz84t4dcF2Plu5D5vdwNvDyp0XteDm3rF4ubs5tW0RERGp+eIiTxREEBERkZpJiTapfbKPwOfDIekv8A6Ca76BmHOc1pxhGHy7/hBTft5Gara5THRQu0gevrwNDYJ9nNauiIiI1C5xUYEA7DqSTUGxTV/UiYiI1EBKtEntknEIPhsKR3eAXxhcNxsi2zmtua2HM3nsh82s2XsMgKahfjw+pC0XaF8VERERqaDoIG8Cvd3JzC9mV0oObaIDXd0lERERqSAl2qT2SNsNnw6FjP0Q2BDGfg+hzZ3SVEbe8WWie7Eb4OPhxp39mnPT+VomKiIiImfHYrEQFxXI6j1pxCdmKtEmIiJSAynRJrVDSjx8NgyykyCkKYz9AYJjHN6M3W7w7YZDPPdzPKnZhQBc1j6Khy5rTbSWiYqIiEgltY4MYPWeNLYlqSCCiIhITaREm9R8h9bB51dC3jEIbwvXfQcBEQ5vZsvhDB79fgvr9pUsEw3z48kh7Ti/RajD2xIREZG6qXXJPm3bklQQQUREpCZSok1qtr0r4IuroTALGnSFa2aBb4hDm8jILeLlBQl8/sc+7Ab4erpxV78W3HheLJ7uVoe2JSIiInXb8YII8Yma0SYiIlITKdEmNdeOBTDjWijOhya9YfSX4BXgsPB2u8GsdQd5ft42juaYy0Qv72AuE40K0jJRERERcbyWEf5YLJCaXciRrALCArxc3SURERGpACXapGba8h18Mx7sRdBiIIz8FDwcl/zafCiDR77fzIb96QA0D/fnySFt6dVcy0RFRETEeXw93Ymt78fu1BziEzMJC1AlcxERkZpEiTapeTZ8Dj/cCYYd2l4Bw98Dd0+HhE7PLeSlXxKYvmo/hgF+nm7c078lN5zXBA83LRMVERER54uLCmB3ag7bkjK5oKUSbSIiIjWJEm1Ss/wxFeY9YJ53GQuXvwZWt0qHtdsNvl57gOfnbeNYbhEAQzpG89BlrYkI9K50fBEREZHyah0ZyNy/ktiWqIIIIiIiNY0SbVIzGAYsewl+fdp8fu4EGPgMWCyVDp2YkcfdX25k9d40wNwb5Ykh7ejZrH6lY4uIiIhU1PGCCFtVEEFERKTGUaJNqj/DgAWPwu9vmM/7ToY+DzgkyfZbQgqTZmzkWG4Rfp5u3DugJdf30jJRERERcZ24SLO4064j2RQW21XlXEREpAZRok2qN1sxzL0f1n1sPr/4Geg1sdJhi2x2XvolgfeW7AagXYNA3h7Thcb1/SodW0RERKQyGtbzIcDLnayCYnanZhMXGejqLomIiEg5KdEm1Vd2CswcB/uWAxYY/Bp0vaHSYQ+n53HnlxtYt+8YADf0asLkS+Pwcq/8Xm8iIiIilWWxWIiLCmDN3mPEJ2Yq0SYiIlKDKNEm1dOB1fD1WMhKBE9/GD4VWg+udNhF8cncN/NP0nOLCPB254UrOzCofZQDOiwiIiLiOHGRgazZe8wsiNDZ1b0RERGR8lKiTaoXw4A1H8K8yWAvgtBWcPXnENayUmGLbHZenJ/A+0vNpaIdGgbx1uguNKrv64hei4iIiDhUaxVEEBERqZGUaJPqozAXfroHNs0wn7cZBkPfAq+ASoU9eCyXO7/cwIb96QCMO68JDw7SUlERERGpvuKizPHPtqQsF/dEREREKkKJNqke0nbDjOsgeTNY3GDAE9BzYqUriy7Ymsz9M/8kI6+IQG93XryqIwPbRjqo0yIiIiLO0SoiAIsFjmQVkJpdQKi/l6u7JCIiIuWgRJu4XsI8+PYWKMgAvzAY8THE9q5UyMJiO8/P28ZHy/cA0DEmmLdGdyYmREtFRUREpPrz83KncYgve4/msi0xi/NbKNEmIiJSE1hd3QGpw+w2+O1Z+PJqM8nW8By4ZUmlk2wH0nK56r2VpUm2m8+PZeatPZVkExERqWaWLl3K4MGDiY6OxmKxMHv27H+8/9tvv2XAgAGEhYURGBhIz549mT9/ftV01gWOVxvdlqR92kRERGoKJdrENXLT4IuRsOR58/k54+GGuRDUoFJh529J4rI3lvHngXSCfDz4YGw3Hr68DZ7u+qMuIiJS3eTk5NCxY0fefvvtct2/dOlSBgwYwNy5c1m3bh0XXnghgwcPZsOGDU7uqWscL4gQn6h92kRERGoKLR2Vqpf4J8y4FtL3g7s3XP4adBpdqZCFxXam/BzPxyv2AtC5UTBvju5Mw3qaxSYiIlJdDRo0iEGDBpX7/tdee63M82effZbvv/+eH3/8kc6dOzu4d653vCBCvCqPioiI1BhKtEnV2vgF/HQvFOdDvSYw8n8Q1aFSIfcfzWXil+vZdDADgFsuaMp/BrbCw02z2ERERGozu91OVlYWISEhZ7ynoKCAgoKC0ueZmTUnadW6ZOnozpRsimx2jW1ERERqACXapGoUF8C8B2HtNPN5i4vhivfBp16lwv78VyL/nbWJrIJign09ePmqjvRrHeGADouIiEh199JLL5Gdnc3IkSPPeM+UKVN44oknqrBXjtOwng/+Xu5kFxSzJzWHlhEBru6SiIiI/At9LSbOl3EQPh5UkmSzQN/JMHpGpZJsBcU2Hvt+M7dPX09WQTFdG9dj7l29lWQTERGpI7744gueeOIJvv76a8LDw8943+TJk8nIyCg9Dhw4UIW9rByr1UKrSC0fFRERqUmqRaLt7bffpkmTJnh7e9OjRw9Wr159xnv79u2LxWI55bjssstK7zEMg0cffZSoqCh8fHzo378/O3bsqIqPIn+3ewm8dwEcWgfeQTDma+j7IFjP/o/e3tQcrnz3dz5duQ+AW/s05atbziU62MdRvRYREZFq7KuvvuLmm2/m66+/pn///v94r5eXF4GBgWWOmqR16T5tKoggIiJSE7g80TZjxgwmTZrEY489xvr16+nYsSMDBw4kJSXltPd/++23JCYmlh6bN2/Gzc2Nq666qvSeF154gTfeeIOpU6eyatUq/Pz8GDhwIPn5+VX1scQwYPlr8L9hkHsUItvDLUug5cWVCvvTpsNc/uZyNh/KpJ6vBx/fcA6TB7XWniUiIiJ1xJdffsm4ceP48ssvy3zRWlvFRR6vPKoZbSIiIjWBy7MTr7zyCuPHj2fcuHG0adOGqVOn4uvry7Rp0057f0hICJGRkaXHggUL8PX1LU20GYbBa6+9xsMPP8zQoUPp0KEDn332GYcPH2b27NlV+MnqsPxM+Po6WPgYGHboOBpu/AVCYs8+ZJGNh2f/xcQvNpBdUMw5Teox9+7eXBh35qUiIiIiUr1lZ2ezceNGNm7cCMCePXvYuHEj+/fvB8xln2PHji29/4svvmDs2LG8/PLL9OjRg6SkJJKSksjIyHBF96vE8Rlt25KUaBMREakJXJpoKywsZN26dWWm/FutVvr378/KlSvLFeOjjz5i1KhR+Pn5AeYALSkpqUzMoKAgevToccaYBQUFZGZmljnkLKVsgw8ugvgfweoBl70Mw94FT9+zDrknNYcr3vmdz/8wB9139G3Gl+PPJSpIS0VFRERqsrVr19K5c2c6d+4MwKRJk+jcuTOPPvooAImJiaVJN4D333+f4uJiJkyYQFRUVOlx9913u6T/VaFVyYy25MwC0nIKXdwbERER+TcurTqampqKzWYjIqLsBvYRERFs27btX9+/evVqNm/ezEcffVR6LSkpqTTG32Mef+3vanI1qmply3cwewIU5UBANIz8DGLOqVTIXUeyGfb2CrLyiwnx8+TVqzvRp2WYgzosIiIirtS3b18Mwzjj65988kmZ54sXL3Zuh6ohfy93GoX4sj8tl22JmfRqHurqLomIiMg/cPnS0cr46KOPaN++Pd27d69UnJpcjapasBXD/Idg5g1mkq1Jb7h1aaWTbLmFxdz++Tqy8ovpGBPM3Lt6K8kmIiIidU7c8cqjSSqIICIiUt25NNEWGhqKm5sbycnJZa4nJycTGRn5j+/Nycnhq6++4qabbipz/fj7KhKzplejcqnsFPhsKKx8y3x+3t1w3Wzwr1xCzDAMHv5uM9uTswkL8OKDsV2JDPKufH9FREREapjWUebYdJsKIoiIiFR7Lk20eXp60rVrVxYtWlR6zW63s2jRInr27PmP7505cyYFBQVce+21Za7HxsYSGRlZJmZmZiarVq3615hSQUmb4b0LYN9y8PQ3l4oOeBLcKr8i+as1B/h2wyGsFnhzdGfCA5RkExERkbrpeEGEeBVEEBERqfZcukcbmJveXn/99XTr1o3u3bvz2muvkZOTw7hx4wAYO3YsDRo0YMqUKWXe99FHHzFs2DDq169f5rrFYuGee+7h6aefpkWLFsTGxvLII48QHR3NsGHDqupj1X7JW+DTwZCXBqEt4erpENbSIaE3H8rgsR+2AHD/wFac27T+v7xDREREpPaKKymIsD05m2KbHXe3Gr37i4iISK3m8kTb1VdfzZEjR3j00UdJSkqiU6dOzJs3r7SYwf79+7Fayw4mEhISWL58Ob/88stpY/73v/8lJyeHW265hfT0dM4//3zmzZuHt7dmRTlEyjb4dIiZZIvubC4V9Ql2SOiMvCLumL6ewmI7/eLCue2CZg6JKyIiIlJTNQrxxdfTjdxCG3tSc2gREeDqLomIiMgZWIx/KvVUR2VmZhIUFERGRob2a/u7I9vhk8sgJwUiO8D1P4BPPYeENgyDW/+3jl+2JtOwng8/3Xk+wb6eDoktIiLibBo/1Aw19fc0/J0VbNifzhujOzOkY7SruyMiIlLnlHcMoXnnUn5Hd5nLRXNSIKI9jP3eYUk2gA+X7eGXrcl4ull555ouSrKJiIiIlFBBBBERkZpBiTYpn7Td8MnlkJ0E4W3MJJtviMPCr9mbxnPztgHwyOA2dGgY7LDYIiIiIlUmMxE2zXR42NaRJQURlGgTERGp1ly+R5vUAMf2wieDIeswhMXB2B/Az3EFClKzC5j4xXpsdoOhnaK5tkcjh8UWERERqTL5mfBae7AXQcOuENLUYaHjjs9oS8pyWEwRERFxPM1ok3+Wvt9MsmUehPotzCSbf5jDwtvsBnd/tYHkzAKah/vz7PD2WCwWh8UXERERqTLegdC4l3m+9QeHhm5VMqMtMSOf9NxCh8YWERERx1GiTc4s46C5XDRjP4Q0g+t/hIAIhzbx+sLtrNh5FB8PN969pgt+XppkKSIiIjVYmyHmY7xjE22B3h40rOdjhk7UrDYREZHqSok2Ob3Mw2aSLX0f1IuFG36CwCiHNrE4IYU3ft0JwHNXtlepehEREan54gYDFji0zvzS0pGhI48vH9U+bSIiItWVEm1yqqwkM8l2bA8ENy5Jsjm2jPyh9DzunbERgGvPbcTQTg0cGl9ERETEJQIioNG55nn8jw4N3SZKBRFERESqOyXapKysZPh0MKTtgqBGZpItqKFDmygstjNh+nqO5RbRvkEQj1zexqHxRURERFyqdcnyUQfv06aCCCIiItWfEm1yQvYR+GwIpG6HwIZw/Q8Q7PgKoM/OjWfjgXQCvd1555oueLm7ObwNEREREZdpPdh83L/S/BLTUWFLEm0JSVnY7IbD4oqIiIjjKNEmppyjZpLtyDYIiDaTbCGxDm9mzqZEPvl9LwCvjOxETIivw9sQERERcangGIjuAhiw7SeHhW0U4ouPhxsFxXb2pOY4LK6IiIg4jhJtArlp8NlQSNkK/pFmddH6zRzezK4j2fx31p8A3NanGf3bOLaCqYiIiEi14YTqo25WCy0jzX3aVBBBRESkelKira7LO2Ym2ZL/Ar9wM8kW2tzxzRTauOPz9eQU2ugeG8L9F7d0eBsiIiIi1cbxfdr2LDO/1HSQ4wURtiVqnzYREZHqSIm2uiwvHf43HJI2gW+omWQLc3wCzDAMHp69mYTkLEL9vXhrdGfc3fRHT0RERGqx+s0goh0YNkiY67CwcZHmPm2qPCoiIlI9KdtRV+VnwOdXwOEN4FvfTLKFxzmlqa/XHuCb9QexWuDN0Z0JD/R2SjsiIiIi1YoTqo/GlS4d1Yw2ERGR6kiJtrqoIAs+HwGH1oFPPRj7PUS0cUpTWw5n8Mj3WwC47+JW9GxW3yntiIiIiFQ7x/dp2/0b5DtmBlpcSeXRQ+l5ZOQVOSSmiIiIOI4SbXVNQTZMvwoOrgbvIDPJFtneKU1l5hdxx/T1FBbbuSgunNv7OL7AgoiIiEi1FRYH9ZuDrRB2/OKQkEE+HjQI9gFgm5aPioiIVDtKtNUlhTnwxUjYvxK8guC62RDV0SlNGYbBf2b+yb6juTQI9uGVkR2xWi1OaUtERESkWrJYTlo++r3Dwh5fPrrhQLrDYoqIiIhjKNFWVxTmwhdXw74V4BUI130HDbo4rbmPlu9h/pZkPNwsvHNNF4J9PZ3WloiIiEi1dXz56M6F5njMAS6MCwfgfyv3UWSzOySmiIiIOIYSbXVBUR58NRr2LgNPf7j2G2jY1WnNrd2bxnM/bwPg0cvb0DEm2GltiYiIiFRrUZ0guBEU5ZrJNgcY0bUhof6eHErP46dNhx0SU0RERBxDibbarigfZlwLuxeDhx9cMwtiujutuaPZBUz8YgPFdoPBHaO59tzGTmtLREREpNo7eflovGOqj3p7uDHuvFgApi7ejWEYDokrIiIiladEW21WXABfjzW/PfXwhWtmQuOeTmvOZje4Z8ZGkjLzaRbmx5Qr2mOxaF82ERERqeOOJ9q2zzfHZw5wbY/G+Hm6kZCcxW8JKQ6JKSIiIpWnRFttVVwIM8fBjvng7gNjZkCT85za5BuLdrBsRyo+Hm68e21X/L3cndqeiIiISI3Q8BwIiIKCTHOVgQME+XpwTcnKgamLdzskpoiIiFSeEm211cLHIGEOuHvD6C8h9gKnNrd0+xHe+HUHAM9e0Y6WEQFObU9ERESkxrBaIe5y83yrY5aPAtx4XiwebhZW701j3b40h8UVERGRs6dEW21UXAgbppvnw9+DZhc6tbnD6Xnc/dUGDAPG9GjE8M4NndqeiIiISI1zvPpowhywFTkkZGSQN8M7NwDgXc1qExERqRYqnGhr0qQJTz75JPv373dGf8QRdv8GBRngHwmtBzu1qcJiOxO/WM+x3CLaNQjk0cvbOLU9ERERkRqpUS/wrQ95x2DvcoeFveWCZlgssDA+mR3JWQ6LKyIiImenwom2e+65h2+//ZamTZsyYMAAvvrqKwoKHLOpqzjIlu/MxzZDwOrm1Kae+3kb6/enE+DtzjtjuuLt4dz2RERERGokN3eIu8w8d1D1UYDm4f5c3CYCgPeWalabiIiIq51Vom3jxo2sXr2a1q1bc+eddxIVFcXEiRNZv369M/ooFVFcANvmmOdthzu1qSXbjzBtxR4AXhnZiUb1fZ3anoiIiEiN1nqo+Rj/E9htDgt7W59mAMzecIjD6XkOiysiIiIVd9Z7tHXp0oU33niDw4cP89hjj/Hhhx9yzjnn0KlTJ6ZNm4ZhGI7sp5TXrl/Nilb+kRBzrlObemORWfzghl5NGFDyTaqIiIiInEHsBeAVBDkpcGCVw8J2blSPc5uGUGw3+Gj5HofFFRERkYo760RbUVERX3/9NUOGDOG+++6jW7dufPjhh1x55ZX83//9H9dcc40j+ynltWW2+dh2mFnhyknW7E1j3b5jeLpbuePCZk5rR0RERKTWcPeEVoPMcwdWH4UTs9q+XL2f9NxCh8YWERGR8qtwJmb9+vVllou2bduWzZs3s3z5csaNG8cjjzzCwoUL+e6775zRX/knRfmQMNc8d/Ky0amLdwFwZZeGhAd4O7UtERERkVrjePXR+B/BgStA+rQMo3VUILmFNj5buc9hcUVERKRiKpxoO+ecc9ixYwfvvvsuhw4d4qWXXiIuLq7MPbGxsYwaNcphnZRyOr5sNCAaGnZ3WjPbk7NYtC0FiwXG9451WjsiIiIitU6zi8DDDzIPwiHH7W9ssVi4rU9TAD75fS95hY7bA05ERETKr8KJtt27dzNv3jyuuuoqPDw8TnuPn58fH3/8caU7JxVUWm10qFOXjb63xKxodUnbSJqG+TutHREREZFax8MHWl5snsd/79DQl7WPIibEh7ScQmauO+DQ2CIiIlI+Fc7GpKSksGrVqZu3rlq1irVr1zqkU3IWivIh4Wfz3InLRhMz8vh+4yEAbu2jvdlEREREKqx1yfLRrT84dPmou5uV8b3NWW3vL91Nsc3usNgiIiJSPhVOtE2YMIEDB079huzQoUNMmDDBIZ2Ss7BrERRmQWADaHiO05r5aNkeiu0G5zYNoVNMsNPaEREREam1WlwM7t5wbA8kb3Zo6Ku6xlDfz5ODx/KY81eiQ2OLiIjIv6twom3r1q106dLllOudO3dm69atFe7A22+/TZMmTfD29qZHjx6sXr36H+9PT09nwoQJREVF4eXlRcuWLZk7d27p648//jgWi6XM8fc95Gql0mWjw5y2bDQjt4gvV+8HTlS2EhEREZEK8vKHZv3McwdXH/XxdOOGXk0AmLpkN4YDZ8yJiIjIv6twRsbLy4vk5ORTricmJuLu7l6hWDNmzGDSpEk89thjrF+/no4dOzJw4EBSUlJOe39hYSEDBgxg7969zJo1i4SEBD744AMaNGhQ5r62bduSmJhYeixfvrxC/apxivJOWjY6zGnNfL5qHzmFNuIiA+jTMsxp7YiIiIjUeqXVRx2baAO4rmdjfD3diE/MZMn2Iw6PLyIiImdW4UTbxRdfzOTJk8nIyCi9lp6ezv/93/8xYMCACsV65ZVXGD9+POPGjaNNmzZMnToVX19fpk2bdtr7p02bRlpaGrNnz+a8886jSZMm9OnTh44dO5a5z93dncjIyNIjNDS0oh+zZtm5EAqzIbAhNOjmlCbyi2x8vGIPYM5ms1gsTmlHREREpE5oeQlYPeDINjiy3aGhg309Gd29EQDvLt7l0NgiIiLyzyqcaHvppZc4cOAAjRs35sILL+TCCy8kNjaWpKQkXn755XLHKSwsZN26dfTv3/9EZ6xW+vfvz8qVK0/7nh9++IGePXsyYcIEIiIiaNeuHc8++yw2W9ny5Tt27CA6OpqmTZtyzTXXsH///n/sS0FBAZmZmWWOGuX4stG2w5y2bPSb9QdJzS6kQbAPl3WIckobIiIiInWGTzA07WOeO7j6KMDNvWPxcLOwak8aG/Yfc3h8EREROb0KZ2UaNGjApk2beOGFF2jTpg1du3bl9ddf56+//iImJqbccVJTU7HZbERERJS5HhERQVJS0mnfs3v3bmbNmoXNZmPu3Lk88sgjvPzyyzz99NOl9/To0YNPPvmEefPm8e6777Jnzx569+5NVlbWGfsyZcoUgoKCSo+KfA6XK8qDhHnmuZOqjdrsBh8s3Q0cH7Q5J5knIiIiUqecXH3UwaKCfBjaydxeZeoSzWoTERGpKhXbVK2En58ft9xyi6P78q/sdjvh4eG8//77uLm50bVrVw4dOsSLL77IY489BsCgQYNK7+/QoQM9evSgcePGfP3119x0002njTt58mQmTZpU+jwzM7PmJNt2LICiHAiKgQZdndLE/C1J7D2aS7CvB1efU0N+LiIiIiLVXdxl8NM9kLQJ0vZASKxDw9/Wpymz1h3kl63J7EzJpnm4v0Pji4iIyKnOKtEGZvXR/fv3U1hYWOb6kCFDyvX+0NBQ3NzcTimskJycTGRk5GnfExUVhYeHB25ubqXXWrduTVJSEoWFhXh6ep7ynuDgYFq2bMnOnTvP2BcvLy+8vLzK1e9q5+Rlo07YN80wjNJvQcf2bIKv51n/kRERERGRk/mFQuPzYO8yiP8RzrvLoeGbhwcwoE0EC7Ym8/7SXbwwouO/v0lEREQqpcJrAHfv3k3Hjh1p164dl112GcOGDWPYsGEMHz6c4cPLv3TR09OTrl27smjRotJrdrudRYsW0bNnz9O+57zzzmPnzp3Y7fbSa9u3bycqKuq0STaA7Oxsdu3aRVRULdxXrDAXtpcsG23jnGWjK3cfZdPBDLw9rFzfs7FT2hAREZGa5cCBAxw8eLD0+erVq7nnnnt4//33XdirGqrNUPPRCdVHwSxiBfDdhkMkZeQ7pQ0RERE5ocKJtrvvvpvY2FhSUlLw9fVly5YtLF26lG7durF48eIKxZo0aRIffPABn376KfHx8dx+++3k5OQwbtw4AMaOHcvkyZNL77/99ttJS0vj7rvvZvv27cyZM4dnn32WCRMmlN5z//33s2TJEvbu3cvvv//O8OHDcXNzY/To0RX9qNXfjl+gKBeCGkGDLk5pYuoSc2+2kd1iqO9fQ2f9iYiIiEONGTOG3377DYCkpCQGDBjA6tWreeihh3jyySdd3LsaJu5y8/HgGsg87PDwXRvXo3uTEIpsBh8t3+3w+CIiIlJWhRNtK1eu5MknnyQ0NBSr1YrVauX8889nypQp3HVXxaa7X3311bz00ks8+uijdOrUiY0bNzJv3rzSAgn79+8nMTGx9P6YmBjmz5/PmjVr6NChA3fddRd33303Dz74YOk9Bw8eZPTo0bRq1YqRI0dSv359/vjjD8LCwir6Uau/rbPNRyctG91yOIOl249gtcD43k0dHl9ERERqps2bN9O9e3cAvv76a9q1a8fvv//O9OnT+eSTT1zbuZomMApiepjn8T85pYnb+5qz2r5YtZ+M3CKntCEiIiKmCm+4ZbPZCAgIAMx91g4fPkyrVq1o3LgxCQkJFe7AxIkTmThx4mlfO90MuZ49e/LHH3+cMd5XX31V4T7USIU5sH2+ee6kaqPvl1QavaxDNDEhvk5pQ0RERGqeoqKi0v1tFy5cWLpHb1xcXJkvSaWcWg+BA6vM5aM9HF9wrG+rMOIiA9iWlMXnq/Yx4cLmDm9DRERETBWe0dauXTv+/PNPAHr06MELL7zAihUrePLJJ2naVLOeqszxZaPBjSG6s8PDH0jL5adN5kD51gv0exUREZET2rZty9SpU1m2bBkLFizgkksuAeDw4cPUr1/fxb2rgVoPNh/3rYCcVIeHt1gs3NrHHM9NW76H/CKbw9sQERERU4UTbQ8//HBpMYInn3ySPXv20Lt3b+bOncsbb7zh8A7KGTi52uhHy/dgsxv0bhFKuwZBDo8vIiIiNdfzzz/Pe++9R9++fRk9ejQdO5rVLH/44YfSJaVSAfUaQ1QnMOywzTnLRy/vEE2DYB+O5hQyc93Bf3+DiIiInJUKLx0dOHBg6Xnz5s3Ztm0baWlp1KtXD4sTEj5yGoU5sP0X89wJy0bTcgr5as1+4ESlKhEREZHj+vbtS2pqKpmZmdSrV6/0+i233IKvr7abOCtthkDiRtj6A3S9weHhPdysjO8dy+M/buWDpbsZfU4M7m4V/s5dRERE/kWF/nYtKirC3d2dzZs3l7keEhKiJFtV2j4fivOgXhPz208H+2zlXvKL7LRrEEivZlr+ISIiImXl5eVRUFBQmmTbt28fr732GgkJCYSHh7u4dzVU66Hm454lkHfMKU2MPCeGer4e7E/LZe7mJKe0ISIiUtdVKNHm4eFBo0aNsNm0r4NLlS4bHe7wZaO5hcV8+vtewJzNpgSqiIiI/N3QoUP57LPPAEhPT6dHjx68/PLLDBs2jHfffdfFvauhQptDeBuwF0PCPKc04evpzg29YgGYungXhmE4pR0REZG6rMLzxR966CH+7//+j7S0NGf0R/5NQbZZCAGcsmz06zUHOJZbRKMQXwa1i3J4fBEREan51q9fT+/evQGYNWsWERER7Nu3j88++0x79lZGa7N6K/E/OK2JsT0b4+PhxtbETJbtcHzhBRERkbquwom2t956i6VLlxIdHU2rVq3o0qVLmUOcbPs8KM6HerEQ2cGhoYttdj5YtgeA8Rc0xc2q2WwiIiJyqtzcXAICAgD45ZdfuOKKK7BarZx77rns27ev3HGWLl3K4MGDiY6OxmKxMHv27H99z+LFi+nSpQteXl40b96cTz755Cw/RTXUpiTRtnMRFGQ5pYl6fp6M6h4DwLuLdzmlDRERkbqswsUQhg0b5oRuSLk5cdnonL8SOZSeR30/T67q2tChsUVERKT2aN68ObNnz2b48OHMnz+fe++9F4CUlBQCAwPLHScnJ4eOHTty4403csUVV/zr/Xv27OGyyy7jtttuY/r06SxatIibb76ZqKioMgW7aqzwNhDSDNJ2mSsY2l3plGZu7t2U/63cx8rdR/nzQDodY4Kd0o6IiEhdVOFE22OPPeaMfkh5FGTBzoXmuYOXjRqGwdQluwG4oVcTvD3cHBpfREREao9HH32UMWPGcO+993LRRRfRs2dPwJzd1rlz53LHGTRoEIMGDSr3/VOnTiU2NpaXX34ZgNatW7N8+XJeffXV2pFos1jMWW3LXzWrjzop0dYg2IchnaL5dv0hpi7ZxbvXdnVKOyIiInWRanrXJNvnm8tGQ5pBZHuHhl66I5X4xEx8Pd24rmdjh8YWERGR2mXEiBHs37+ftWvXMn/+/NLr/fr149VXX3VauytXrqR///5lrg0cOJCVK1ee8T0FBQVkZmaWOaq11oPNxx0LoCjPac3c1qcZAPO2JLHrSLbT2hEREalrKpxos1qtuLm5nfEQJ3ListGpJXt0jDqnEcG+ng6NLSIiIrVPZGQknTt35vDhwxw8eBCA7t27ExcX57Q2k5KSiIiIKHMtIiKCzMxM8vJOn5SaMmUKQUFBpUdMTIzT+ucQ0V0gKAaKcsy92pykZUQA/eLCMQz4YOlup7UjIiJS11Q40fbdd9/x7bfflh4zZszgwQcfJCoqivfff98ZfRSA/Ezzm02AtsMcGvrPA+ms3H0Ud6uFm3rHOjS2iIiI1D52u50nn3ySoKAgGjduTOPGjQkODuapp57Cbre7untlTJ48mYyMjNLjwIEDru7SP7NYTsxqc2L1UYDb+5qz2r5df4jkzHyntiUiIlJXVHiPtqFDh55ybcSIEbRt25YZM2Zw0003OaRj8jfb54GtAOo3h4h2Dg393lJzNtuQjtE0CPZxaGwRERGpfR566CE++ugjnnvuOc477zwAli9fzuOPP05+fj7PPPOMU9qNjIwkOTm5zLXk5GQCAwPx8Tn9GMbLywsvLy+n9MdpWg+BP96BhHlQXAjuzllt0K1JCN0a12PtvmNMW76HyZe2dko7IiIidYnD9mg799xzWbTIedPb6zwnLRvdm5rDz5uTALi1ZK8OERERkX/y6aef8uGHH3L77bfToUMHOnTowB133MEHH3zAJ5984rR2e/bsecp4c8GCBaXFGGqNmB7gHwEFGbBniVObOr5X2/RV+8nIK3JqWyIiInWBQxJteXl5vPHGGzRo0MAR4eTv8jOdVm30/WW7MQy4KC6cVpEBDo0tIiIitVNaWtpp92KLi4sjLS2t3HGys7PZuHEjGzduBGDPnj1s3LiR/fv3A+ayz7Fjx5bef9ttt7F7927++9//sm3bNt555x2+/vpr7r333sp9oOrGaoW4y83zrd87tamL4sJpGeFPdkEx01ftc2pbIiIidUGFE2316tUjJCSk9KhXrx4BAQFMmzaNF1980Rl9lISfwVYIoS0hvI3Dwh7JKmDWOnPz4lsvaOqwuCIiIlK7dezYkbfeeuuU62+99RYdOnQod5y1a9fSuXNnOnfuDMCkSZPo3Lkzjz76KACJiYmlSTeA2NhY5syZw4IFC+jYsSMvv/wyH374IQMHDqzkJ6qG2gwxH7fNAVux05qxWi3ceoE5q23a8r3kF9mc1paIiEhdUOE92l599VUsJy1dtFqthIWF0aNHD+rVq+fQzkkJJy0b/eT3PRQW2+ncKJjusSEOiysiIiK12wsvvMBll13GwoULS5dtrly5kgMHDjB37txyx+nbty+GYZzx9dMtQ+3bty8bNmyocJ9rnMbng08I5KXBvhXQtI/TmhrSKZqXf0ngcEY+36w/yDU9GjutLRERkdquwom2G264wQndkDPKS4ddJXuRtBnmsLDZBcX8b6W5PODWC5qVSZ6KiIiI/JM+ffqwfft23n77bbZt2wbAFVdcwS233MLTTz9N7969XdzDWsDNHeIuhQ2fm9VHnZho83CzcnPvpjz501beX7qbUec0ws2qsaGIiMjZqPDS0Y8//piZM2eecn3mzJl8+umnDumUnKR02WgrCHdcJaivVu8nM7+YpqF+XNwmwmFxRUREpG6Ijo7mmWee4ZtvvuGbb77h6aef5tixY3z00Ueu7lrt0Xqo+Rj/E9jtTm1qVPcYgn092Hc0l583Jzq1LRERkdqswom2KVOmEBoaesr18PBwnn32WYd0Sk6ydbb56MBlo4XFdj5ctgeAWy5oilXfWIqIiIhUP037gFcgZCfBwdVObcrX052xPZsAMHXJrn9c0isiIiJnVuFE2/79+4mNjT3leuPGjctsVisOkJcOO0uWjbYd5rCwP/x5mKTMfMIDvBjeRZViRURERKoldy9oeYl5vvUHpzd3Q68meHtY2XwokxU7jzq9PRERkdqowom28PBwNm3adMr1P//8k/r16zukU1IiYS7YiyCstcOWjdrtBu8t2QXAjefH4uXu5pC4IiIiIuIEx6uPxv8ITp5lFuLnyahzGgHw7pKdTm1LRESktqpwMYTRo0dz1113ERAQwAUXXADAkiVLuPvuuxk1apTDO1inlVYbHeawkL8lpLAjJZsAL3fG9GjksLgiIiJS+11xxRX/+Hp6enrVdKQuadYPPHwhYz8c3gANuji1uZvOj+V/f+xjxc6j/HUwg/YNg5zanoiISG1T4RltTz31FD169KBfv374+Pjg4+PDxRdfzEUXXaQ92hwp7xjs+s08d2C10akls9nGnNuIQG8Ph8UVERGR2i8oKOgfj8aNGzN27FhXd7N28fSFFgPM83jnLx+NCfFlSMdo4MS4UURERMqvwjPaPD09mTFjBk8//TQbN27Ex8eH9u3b07hxY2f0r+7aVrJsNLwNhMc5JOS6fWms2XsMTzcrN5536j57IiIiIv/k448/dnUX6qbWQ2Dr9+Y+bf0ec1iBrDO5tU9TvttwiLmbE9mTmkNsqJ9T2xMREalNKpxoO65Fixa0aNHCkX2Rk5UuGx3usJBTl+wGYHjnBkQEejssroiIiIg4UcuB4OYFabsgZStEtHVqc3GRgVzYKozfEo7w5q87eGVkJ6e2JyIiUptUeOnolVdeyfPPP3/K9RdeeIGrrrrKIZ2q83LTYLdjl43uTMliwdZkLBYYf0FTh8QUERERkSrgFQDNLjLP43+skiYnXtQCiwW+XX+IuX8lVkmbIiIitUGFE21Lly7l0ksvPeX6oEGDWLp0qUM6VedtmwP2YghvC2EtHRLy/aXmbLYBrSNoHu7vkJgiIiIiUkWOVx/d6vx92gC6Nq7HbX2aAfDAN5s4kJZbJe2KiIjUdBVOtGVnZ+Pp6XnKdQ8PDzIzMx3SqTrPwctGkzLy+W7DIQBuLRkwiYiIiEgN0moQWN0hZQscrZoiBZMGtKRzo2Cy8ou5+6sNFNnsVdKuiIhITVbhRFv79u2ZMWPGKde/+uor2rRp45BO1Wm5abBniXnedphDQn68Yg9FNoPuTULo2rieQ2KKiIiISBXyqQexF5jnW7+vkiY93Ky8MaozAd7urN+fzqsLtldJuyIiIjVZhYshPPLII1xxxRXs2rWLiy4y94pYtGgRX3zxBbNmzXJ4B+ucbT+Zy0Yj2kNo5YtNZOQVMX3VfgBu66u92URERERqrNZDYNevEP8D9J5UJU3GhPjy3BUdmPDFet5dsotezUI5v0VolbQtIiJSE1V4RtvgwYOZPXs2O3fu5I477uC+++7j0KFD/PrrrzRv3twZfaxbSpeNDnNIuOmr9pFdUEzLCH/6tgx3SEwRERERcYG4y8FihcMbIH1/lTV7WYcoRndvhGHAvV9v5EhWQZW1LSIiUtNUONEGcNlll7FixQpycnLYvXs3I0eO5P7776djx46O7l/dknMUdh9fNlr5/dnyi2x8vGIvALde0Ayr1VLpmCIiIiLiIv5h0KiXeV5F1UePe/TyNrSM8OdIVgH3zfwTu92o0vZFRERqirNKtIFZffT6668nOjqal19+mYsuuog//vjDkX2re7b9CIYNIttD/coXLfhuwyGOZBUQFeTN4I7RDuigiIiIiLhUFVcfPc7H0423xnTBy93K0u1H+HD57iptX0REpKaoUKItKSmJ5557jhYtWnDVVVcRGBhIQUEBs2fP5rnnnuOcc85xVj/rhi2zzUcHzGaz2Q0+WGoOgG46PxZP97POqYqIiIhIddF6sPl4YBVkJVVp0y0jAnhscFsAXpiXwMYD6VXavoiISE1Q7uzL4MGDadWqFZs2beK1117j8OHDvPnmm5XuwNtvv02TJk3w9vamR48erF69+h/vT09PZ8KECURFReHl5UXLli2ZO3dupWJWCzmpsGeped5mWKXDLdiaxO7UHAK93RnVvVGl44mIiIhINRAYDQ3PAQz47rYqT7aN7h7DZe2jKLYb3PXlBjLzi6q0fRERkequ3Im2n3/+mZtuuoknnniCyy67DDc3t0o3PmPGDCZNmsRjjz3G+vXr6dixIwMHDiQlJeW09xcWFjJgwAD27t3LrFmzSEhI4IMPPqBBgwZnHbPaiC9ZNhrV0SHLRr9eexCA63o2xt+rwsVlRURERKS66vMAuHnB7t/gnXNPFNOqAhaLhWevaE+DYB/2p+Xy0HebMQzt1yYiInJcuRNty5cvJysri65du9KjRw/eeustUlNTK9X4K6+8wvjx4xk3bhxt2rRh6tSp+Pr6Mm3atNPeP23aNNLS0pg9ezbnnXceTZo0oU+fPmWKMFQ0JkBBQQGZmZlljipXWm208stGAeITzc9wUZwqjYqIiIjUKi0GwK1LIbID5B2DmTfAN+MhL71Kmg/y8eDNMZ1xs1r48c/DzCz5gldEREQqkGg799xz+eCDD0hMTOTWW2/lq6++Ijo6GrvdzoIFC8jKyqpQw4WFhaxbt47+/fuf6IzVSv/+/Vm5cuVp3/PDDz/Qs2dPJkyYQEREBO3atePZZ5/FZrOddUyAKVOmEBQUVHrExMRU6LNUWvYR2LvMPHfAstGM3CISM/IBaBERUOl4IiIiIlLNhMfBzYug9/1gscJfX8O7vWD34ippvkujetx3cUsAHv1hMztTKvZvARERkdqqwjvk+/n5ceONN7J8+XL++usv7rvvPp577jnCw8MZMmRIueOkpqZis9mIiIgocz0iIoKkpNPvNbF7925mzZqFzWZj7ty5PPLII7z88ss8/fTTZx0TYPLkyWRkZJQeBw4cKPfncIhtP4Jhh6hOEBJb6XDbSwY6DYJ9CPT2qHQ8EREREamG3D2h3yNw43wIaQqZh+CzofDzg1CU5/Tmb7ugGec3DyW/yM7ELzaQX2RzepsiIiLVXaVKUbZq1YoXXniBgwcP8uWXXzqqT2dkt9sJDw/n/fffp2vXrlx99dU89NBDTJ06tVJxvby8CAwMLHNUKQcvG01IMhNtLSP8HRJPRERERKqxmO5w6zLodqP5fNW78F4fOLzBqc1arRZeubojof6ebEvK4pk58U5tT0REpCaoVKLtODc3N4YNG8YPP/xQ7veEhobi5uZGcnJymevJyclERkae9j1RUVG0bNmyTCGG1q1bk5SURGFh4VnFdLnsFNi73DxvO8whIY8n2lpFVnHCUERERERcw8sfLn8VxswE/whITYAP+8OSF8FW7LRmwwO8eXlkJwD+98c+5m1OdFpbIiIiNYFDEm1nw9PTk65du7Jo0aLSa3a7nUWLFtGzZ8/Tvue8885j586d2O320mvbt28nKioKT0/Ps4rpcvE/mMtGo7tAvSYOCZmQfDzRphltIiIiInVKy4vh9pXQegjYi+G3p+HjS+DoLqc12adlGLde0BSA/87axMFjuU5rS0REpLpzWaINYNKkSXzwwQd8+umnxMfHc/vtt5OTk8O4ceMAGDt2LJMnTy69//bbbyctLY27776b7du3M2fOHJ599lkmTJhQ7pjVzpbZ5qODZrMZhnFiRluEZrSJiIiI1Dl+9WHkZzD8PfAKhINrYOr5sOZDMAynNHnfxa3oGBNMZn4x93y1kWKb/d/fJCIiUgu5u7Lxq6++miNHjvDoo4+SlJREp06dmDdvXmkxg/3792O1nsgFxsTEMH/+fO699146dOhAgwYNuPvuu3nggQfKHbNayUqGfSvMcwdUGwVIySogI68IN6uFZuF+DokpIiIiIjWMxQIdR0Hj82D27WaF+zn3QcI8GPoWBDh2WxVPdytvjurMZW8sY+2+Y7y+aAf3XdzKoW2IiIjUBBbDcNLXWjVYZmYmQUFBZGRkOLcwwuoPYO790KArjP/VISGXbD/C9dNW0zzcn4WT+jgkpoiIiPy7Khs/SKXUyd+T3Q6rpsLCx8FWAD71zP3cHFSI62Q//nmYO7/cgMUC02/qQa/moQ5vQ0RExBXKO4Zw6dLROq902ajjBjnbS5eNBjgspoiIiIjUYFYr9LwDbl0CkR0g7xjMvAG+GQ956Q5tanDHaEadE4NhwD0zNnI0u8Ch8UVERKo7JdpcJSvppGWjQx0WdltJoq2lEm0iIiIicrLw1nDzIuh9P1is8NfX8G4v2L3Yoc08NrgtzcP9Sckq4P6Zf2K3awGNiIjUHUq0ucrWHwADGnSD4EYOC7u9tOKoEm0iIiIi8jfuntDvEbhxPoQ0hcxD8NlQ+PlBKMpzSBM+nm68NaYznu5Wfks4wrQVexwSV0REpCZQos1Vts42Hx24bNRmN9iRokSbiIiIiPyLmO5w6zLoOs58vupdeK8PHN7gkPBxkYE8cnkbAJ6ft42/DmY4JK6IiEh1p0SbK2Qmwr7fzXMHLhvdn5ZLfpEdbw8rjUJ8HRZXRERERGohL38Y/BqMmQn+EZCaAB/2hyUvgq240uGv7dGIS9pGUmQzmPjlerLyiyrfZxERkWpOiTZXiC9ZNtqwOwTHOCxsQsn+bC3CA3CzWhwWV0RERERqsZYXw+0rofUQsBfDb0/Dx5fA0V2VCmuxWHj+yg40CPZh39FcHp69GcPQfm0iIlK7KdHmClu+Mx8dXFL9eKJNy0ZFREREpEL86sPIz2D4e+AVCAfXwNTz4c8ZlQob5OvB66M64Wa18P3Gw8xad9BBHRYREamelGirapmHYf9K89yBy0bhpEIIqjgqIiIiIhVlsUDHUXD779CkNxTlwne3wLpPKhW2W5MQ7u3fAoBHv9/CriPZDuisiIhI9aREW1XzDYUxX0Pf/4OgBg4NvS0pE9CMNhERERGphOAYGPsDdL/FfP7j3bD6g0qFvL1vc3o1q09ekY2JX2wgv8jmgI6KiIhUP0q0VTV3T2g5EPo+4NCw+UU29h7NBZRoExEREZFKslph0Atw7gTz+dz74Y+pZx3OzWrh1as7Ud/Pk/jETJ77eZuDOioiIlK9KNFWS+w6ko3NbhDk40F4gJeruyMiIiIiNZ3FAgOfgfPuNp/PewB+f/Osw0UEevPSyI4AfPL7Xn7ZkuSIXoqIiFQrSrTVEqX7s0UGYLGo4qiIiIiIOIDFAv2fgAv+Yz7/5WFY9vJZh7uwVTjje8cC8N9vNnE4Pc8RvRQREak2lGirJRKSzE1lVQhBRERERBzKYoGLHjb3GAZY9CQsfv6sw/1nYBwdGgaRnlvEPV9tpNhmd1BHRUREXE+JtloiQYUQRERERMSZ+j4AFz1ini9+Fn59BgyjwmE83a28Maoz/l7urN6bxuuLdji4oyIiIq6jRFstsT25ZEabEm0iIiIi4iwX3A8DnjLPl74Ai544q2Rbk1A/nhneDoA3f93Jf2b+SW5hsSN7KiIi4hJKtNUCmflFHCrZ36Kllo6KiIiIiDOddxcMnGKeL3/V3LftLJJtQzs14D8DW2GxwMx1Bxn61orSfYdFRERqKiXaaoEdJQOSqCBvgnw8XNwbEREREan1et4Bl75knq98C+Y9eFbJtgkXNmf6zT0ID/BiR0o2Q95azow1+zHOIpaIiEh1oERbLbAt6UTFURERERGRKtF9PFz+mnm+airMuQ/sFS9s0KtZKHPv7k3vFqHkF9l54Ju/uGfGRrILtJRURERqHiXaaoHtxxNtWjYqIiIiIlWp2zgY+jZggbUfwU93n1WyLdTfi0/Hdee/l7TCzWrh+42HGfzmcrYcznB8n0VERJxIibZa4PiMNu3PJiIiIiJVrvO1MHwqWKyw/jP4YSLYbRUOY7VauKNvc2bcci5RQd7sSc1h+Du/87+Ve7WUVEREagwl2mo4wzBKN43V0lERERERcYmOo+CKD8DiBhunw3e3ge3sln52axLC3Lt60791OIXFdh75fgsTvlhPRl6RgzstIiLieEq01XBHsgs4lluE1QLNw/1d3R0RERERqavaj4AR08DqDn99Dd+OB9vZJcfq+XnywdhuPHJ5GzzcLMz9K4nL31zGnwfSHdtnERERB1OirYZLKFk22iTUD28PNxf3RkRERETqtLbD4KpPweoBW76FWTdCceFZhbJYLNx0fiyzbutFTIgPB9LyGDH1dz5ctltLSUVEpNpSoq2GS1AhBBERERGpTlpfDld/Dm6eEP8DzLwBigvOOlzHmGB+urM3l7aPpMhm8PSceMZ/tpZjOWeXwBMREXEmJdpquNJEm/ZnExEREZHqotUlMOpLcPOChDkw4zooyj/rcEE+Hrw9pgtPDWuHp7uVhfEpXPbGMtbuTXNgp0VERCpPibYarrQQgma0iYiIiEh10qI/jJkB7j6wYz58NRqK8s46nMVi4bpzG/PdHb2IDfXjcEY+V7//B+8s3ondrqWkIiJSPSjRVoPZ7Qbbk7MBaKkZbSIiIiJS3TS7EK6ZCR6+sOtX+OJqKMytVMi20UH8eOf5DOsUjc1u8MK8BK7/eDWp2We/PFVERMRRlGirwQ4cyyWvyIanu5Um9f1c3R0RERERkVPF9oZrvwFPf9izBKZfBQXZlQrp7+XOq1d34oUrO/x/e3ceHmV1uH38OzNJJvtC9kDYIeygIBHEDZAELILaqmgF94pLVWpVWhXRtvSnvpbWUqgWxNa6VOsOskVRFBALyk7YCdtkg+z7zPP+8WQhkrBOMpPk/lzXXJl51nM4Sa7DnfOcg7+vlVW7chj351Ws2ZPrpkKLiIicGwVtLdiO6vnZesQEY7NaPFwaEREREZFGdBoOt34A9lA48DX8+6dQXnhel7RYLNxwUSIfPzCCHjHBZBWWc8s/1jJ7xU6cepRUREQ8REFbC7ZTCyGIiIhICzdnzhw6d+6Mv78/ycnJrFu37pTHz549m6SkJAICAkhMTOSRRx6hrOzcJ9mXZpQ4FG79EPzDIGMN/OtaKMs/78v2jA3h4wdGcMOQDrgMmL1iFz//x7dkFuj7QkREmp+CthYsXQshiIiISAv2zjvvMG3aNGbMmMGGDRsYOHAgKSkpZGVlNXj8m2++yRNPPMGMGTPYvn078+fP55133uE3v/lNM5dczlmHwTD5YwiIgEPfwT8nQOnx875sgJ+N5386kD/dOJBAPxtr9uYy7s+r+GpnthsKLSIicuYUtLVg6RrRJiIiIi3YSy+9xN13383tt99Onz59mDdvHoGBgSxYsKDB41evXs0ll1zCzTffTOfOnRkzZgyTJk067Sg48TIJg2DKJxAYCUe+h4XjIf+wWy597QUd+PTBEfSODyW3uILJC9bx/JIdVDldbrm+iIjI6Shoa6HKq5zsyykGFLSJiIhIy1NRUcH69esZPXp07Tar1cro0aNZs2ZNg+cMHz6c9evX1wZre/fuZfHixYwbN67R+5SXl1NQUFDvJV4grj9M+RSCoiFzM7w6Eg6vd8ulu0YH88F9w7n14k4A/G3lHm58ZS27Ms9vTjgREZEzoaCthdqbXUyVyyDU34e4UH9PF0dERETkrOTk5OB0OomNja23PTY2FofD0eA5N998M88++ywjRozA19eXbt26ccUVV5zy0dFZs2YRFhZW+0pMTHRrPeQ8xPaBu9Igpg8UOeC1cbDlfbdc2t/XxnMT+/G3Wy4kxO7D+gPHSf3zKp75eCv5JZVuuYeIiEhDvCJoO5tJcBcuXIjFYqn38vevHzTddtttJx2Tmpra1NVoVjsz6x4btVi04qiIiIi0fitXruQPf/gDf/vb39iwYQPvv/8+ixYt4rnnnmv0nOnTp5Ofn1/7OnjwYDOWWE4rohPcsRR6pEBVGbx3O6z8PzDcs2rouP7xLH7oUsb0icXpMli4ej9XvPgF/1p7QI+TiohIk/DxdAFqJsGdN28eycnJzJ49m5SUFNLT04mJiWnwnNDQUNLT02s/NxQ0paam8tprr9V+ttvt7i+8B+2onp+tpxZCEBERkRYoKioKm81GZmZmve2ZmZnExcU1eM5TTz3Frbfeyl133QVA//79KS4u5p577uG3v/0tVuvJf0O22+2trh/Y6viHwqS3YPnTsOavsPIPkJMOE+aAb8B5Xz6xXSCvTB7C17tyePbTrezMLOKpD7fw77UHePonfRjePcoNlRARETF5fETb2U6CC2awFhcXV/v68SMHYHaqTjwmIiKiKavR7HZWB229ND+biIiItEB+fn4MHjyYtLS02m0ul4u0tDSGDRvW4DklJSUnhWk2mw0Aw00joMRDrDZI+T1c8zJYfWDLf2Hh1VDY8GPE52JEjygW//JSnp3Ql7AAX3Y4Crn5H99y77/Wc/BYidvuIyIibZtHg7ZzmQQXoKioiE6dOpGYmMiECRPYunXrScesXLmSmJgYkpKSmDp1Krm5uY1eryVOkqsRbSIiItLSTZs2jVdffZXXX3+d7du3M3XqVIqLi7n99tsBmDx5MtOnT689fvz48cydO5e3336bffv2sXz5cp566inGjx9fG7hJC3fhZLj1QwiIMBdHeHUkHN3otsv72KxMHtaZlY9ewZRhnbBZLSzZ6mDUS1/ywtIdFJdXue1eIiLSNnn00dFTTYK7Y8eOBs9JSkpiwYIFDBgwgPz8fF588UWGDx/O1q1b6dChA2A+NnrdddfRpUsX9uzZw29+8xvGjh3LmjVrGuyEzZo1i5kzZ7q/gk2ksKySw3mlgFYcFRERkZbrxhtvJDs7m6effhqHw8GgQYNYsmRJbd8wIyOj3gi2J598EovFwpNPPsnhw4eJjo5m/Pjx/P73v/dUFaQpdLnUXCThrZsgZycsSIXrXoXeP3HbLSKC/Jg5oR83J3fi2U+38s3uXOZ8sYd3/3eIJ8b2YuKg9litmgdZRETOnsXw4Dj7I0eO0L59e1avXl3vEYHHHnuML7/8km+//fa016isrKR3795MmjSp0Ylw9+7dS7du3VixYgWjRo06aX95eTnl5eW1nwsKCkhMTCQ/P5/Q0NBzqFnT2pBxnOv+tprYUDvf/mb06U8QERGRJldQUEBYWJjX9h/EpHZqQUrzzMUR9nxufh41A0Y8Am5eCMwwDJZty+T3i7aTUf0I6QUdw5kxvi+DEsPdei8REWm5zrQP4dFHR89lEtwf8/X15YILLmD37t2NHtO1a1eioqIaPcZutxMaGlrv5c3SHTUrjnp3OUVEREREzllAONz8Lgy9x/ycNhM+nApV5ac87WxZLBZS+sax7JHLeCw1iUA/G99n5DFxzjdM+88PZBaUufV+IiLSunk0aDuXSXB/zOl0snnzZuLj4xs95tChQ+Tm5p7ymJakNmiLDfZwSUREREREmpDNB8a9AONeBIsNNr4Fr18DRdluv5W/r437rujOF49ewfUXmlPSvL/hMFe+uJI5X+ymrNLp9nuKiEjr4/FVR892Etxnn32WZcuWsXfvXjZs2MDPf/5zDhw4ULvMe1FREb/+9a9Zu3Yt+/fvJy0tjQkTJtC9e3dSUlI8Ukd304g2EREREWlTht4NP38P7GFwcC38YyRkbmuSW8WG+vP/bhjIh/dfwqDEcEoqnLywNJ0xf/qKpVsdWuFWREROyaOLIcDZT4J7/Phx7r77bhwOBxEREQwePJjVq1fTp08fwFzifdOmTbz++uvk5eWRkJDAmDFjeO6557Db7R6po7vtzKwZ0aaFEERERESkjeg2Eu5aAW/eAMf3wfyr4KcLoGfT/DF9UGI4708dzkcbD/PHz3aQcayEX/xrPZd0j+Tpn/TVomQiItIgjy6G4K28eZLc7MJyLvr9CiwW2DYzlQA/LWUvIiLiDby5/yB11E6tQMkx+M9k2L8KsMCY38Gw+92+SMKJisurmLtyD6+s2ktFlQurBX5+cSceGd2TiCC/JruviIh4jxaxGIKcvZrRbJ0jgxSyiYiIiEjbE9gOfv4+XDgFMGDZb+GTX0JVRZPdMsjuw6MpSax45HJS+8bhMuCfaw5wxYsreX31fqqcria7t4iItCwK2lqYHdXzs/XUQggiIiIi0lb5+MH4P0PKLLBYYcM/4Y3rzNFuTahjZCDzbh3Mm3cl0ysuhPzSSmZ8vJVxf1nF17tymvTeIiLSMihoa2F2aiEEERERERHzUdFh98Gkt8EvxHyU9NWRkL2zyW89vHsUnz44gucm9iM80JedmUX8fP633PX6/9iXU9zk9xcREe+loK2FSddCCCIiIiIidXqmwJ3LILyjuUjCP0bD7rQmv62PzcqtF3di5aNXcNvwztisFlZsz2TMn77kd59uI7+0ssnLICIi3kdBWwvichl1K45qlSMREREREVNsH7j7C0i8GMrz4d8/g29faZZbhwf68cw1fVn68KVckRRNpdPgH1/v48oXV/KvtQc0f5uISBujoK0FOZxXSkmFEz8fK50jAz1dHBERERER7xEUBVM+hoGTwHDCZ7+GRb8CZ1Wz3L57TAgLbx/Ka7dfRPeYYI4VV/DUh1sY95dVfLUzu1nKICIinqegrQWpWQihe3QwPjY1nYiIiIhIPT52mDgXRj8DWOC7f8C/r4fS481WhCuTYvjsoUt5dkLf2vnbJi9Yxx0Lv2NPdlGzlUNERDxDaU0LosdGRUREREROw2KBEY/AjW+AbyDsXWnO27b/62Yrgq/NyuRhnfny0Su545Iu+FgtfL4ji5Q/fcXMT7aSV1LRbGUREZHmpaCtBakZ0dZTCyGIiIiIiJxa75/AHUshtD3k7oaFV8Pbt0DunmYrQligL0+P78PSRy5jVK8YqlwGr32znyteXMnrq/dTqfnbRERaHQVtLcjO6qCtl0a0iYiIiIicXvwA+MUqGHInWKyw41OYkwxLftOsj5N2iw5m/m0X8a87h9IzNpi8kkpmfLyV1Nlf8UV6VrOVQ0REmp6CthaiospVO6dDTwVtIiIiIiJnJigSfvISTF0N3a8CVyWsnQN/uQC+/Ts4K5utKJf2iGbxLy/ldxP70S7Ijz3Zxdz+2ndMWbCOXdXTxIiISMumoK2F2JdTTJXLIMTuQ0KYv6eLIyIiIiLSssT0hp+/Bz//L0T3Nke0ffYY/G0YpC8Bw2iWYvjYrPz84k588egV3H1pF3xtFr7cmU3qn1cx46MtHC/28Pxt2elwYLVnyyAi0oIpaGsh0qv/wtUzLgSLxeLh0oiIiIiItFDdR8O9X8NP/gSBUZC7C966Ef45ARybm60YYQG+/PbqPix75HLG9InF6TJ4fc0BLn/hC+Z/vY+Kqmaev81ZCSv/aAaPr42Fpb8Fl7N5yyAi0gooaGsh0h0FgFYcFRERERE5bzYfGHIH/HIDXPIw2Pxg35cw71L4+EEozGy2onSJCuKVyUN4865kesWFUFBWxXOfbiN19lekbc/EaI6Rdjm7YUEKrJwFRnW4tuav8OaNUJbf9PcXEWlFFLS1EOkOc362JK04KiIiIiLiHv5hcNVMeOA76HstYMCGf8LLF8JXL0JlabMVZXj3KBb98lJmXdefqGA/9uYUc+fr/2PygnWkO5po/jbDgHWvwrwRcHi9+e9x/Xz42ULwCYDdy+EfVzXrSq0iIi2dgrYWIj1TI9pERERERJpERGczXLpjGbQfDBVF8Plz8PIQ2PQuuJrnMU6b1cKkoR354tEruPfybvjZrKzalcPYP3/Fkx9uJreo3H03KzgCb1wHix+FqlLoeiVMXQP9f2qGjnd8BiEJkJMO/xgF+75y371FRFoxBW0tQHF5FQePmX9N66kRbSIiIiIiTaNjMty5Aq77B4R2gIJD8P5dMH80ZKxttmKE+PvyxNherJh2OWP7xeEy4I21GVzx4kr+vGIXmQVl53eDLf8152Lb8zn4+MPY5+Hn70NY+7pjEi6Ae74wg8fS4/Cva+G7+ed3XxGRNkBBWwuws3ohhOgQO+2C/DxcGhERERGRVsxqhQE/gwf/ByOfAr9g87HKBSnw7m1wfH+zFaVjZCBzfz6Yt++5mL4JoRSWVfGnFTsZ/sfPueef/2NlehZO11nM4VZ6HN67E967A8ryIH4Q/GIVJP/CrPePhcTBbYug/w3gqoJF02Dxr8FZ5a4qioi0OgraWoCaoK2XHhsVEREREWkevgFw2aPw4Aa4cDJgga0fwF8vguVPN+siARd3jeTjB0bw55sGcVHnCJwug2XbMrntte+47Pkv+Ovnu8g63Si3PV/A34bDlvfAYoPLH4e7VkB0z1Of5xsA170Co542P697Bf59vRnaiYjISRS0tQA1CyHosVERERERkWYWEgvXvAz3roIul4OzAr75M/zlQvNRymYa3WWzWpgwqD3v3jucZY9cxu2XdCbU34fDeaW8uGwnw/74Ob/41//4cmc2rhNHuVWUwOLH4F8TofAItOsGdy6DK38DNt8zu7nFApf+Cm56E3yDYO9KeHUUZO9siqqKiLRoFqNZ1otuWQoKCggLCyM/P5/Q0FBPF4db/rGWb3bn8vxPB3DDkERPF0dEREQa4G39B2mY2knOi2HAzqWw7EnI3WVui+4NKb+D7qObvThllU4WbTrKW+sy+N+BuhFmHSICmDS0I5M65NBu6YOQUx2IXXQXXPUs+AWd+00dm+GtSZB/EOxh8LMFHqm7iEhzO9M+hEa0tQA1I9qSNKJNRERERMRzLBZISoX71pgLCAREQPZ2eON687VzKVSWNltx/H1tXD+4A+9NHc7Shy/jtuGdCfH34ejxIspXzCLkjXGQs5PygBhcN78HV/+/8wvZAOL6w91fQOLFUJ4P//4ZrJ1rhpAiIqIRbQ3xpr905haVM/h3K7BYYOvMFAL9fDxaHhEREWmYN/UfpHFqJ3Gr0uPw1Yvw7d/BVWlu8w2ErldC0ljomQLBMc1apLKj6RS/cxeReZsA+NSZzJOVdxDSLoabLurIz4Z0ICbE//xvVFUOn06DH94wP184Gcb9P/DR4m0i0jqdaR9CqY2XS69eCKFju0CFbCIiIiIi3iQgAlJ+D0PugLV/g/TPoOAwpC8yX1igw5Dq0G0sxPQ2R8U1BcOA/83Hf+mT+FeVgj2MI5c8x3fHLsT5wxEOHivlhaXp/Gn5Tsb0jWXS0I5c0i0Kq/Ucy+Njhwl/hZhesOwp2PBPyN0DN/wLgiLdWzcRkRZEI9oa4E1/6Xztm33M/GQbY/rE8srkIR4ti4iIiDTOm/oP0ji1kzQpwzDnMEv/DNIXw9Ef6u8P72SGbkljodMlZ74YwekUHIWPH4DdK8zPXS6HiX+DsA4AlFY4+XTTEd5al8GGjLza0zq2C+SmoYn8bHAi0SH2c7//zmXw3h1QUQjhHWHSOxDb5zwqJCLifc60D6GgrQHe1AGb/v4m3lp3kAdHdudXY5I8WhYRERFpnDf1H6RxaidpVgVHYOcSSF9irtTpLK/bZw81FxFIGgc9Rpuj487Flvdh0TTzMVYffxj9DAz9BVgbno57+9EC3lqXwQcbDlNYbq6Y6mO1MKZvLDcP7cTwbpHnNsotawe8dSMc3w9+wXD9fHM+OxGRVkJB23nwpg7YtX/7hu8z8nh50gWMH5jg0bKIiIhI47yp/yCNUzuJx1QUm2Fb+mJz0YTi7Lp9Fht0Gg49U83RbpHdTn+90jxY/GvY/B/zc/xAuO5ViD6zP86XVFTx6aajvPltBj8czKvd3ikykBuGJHLNwAQS2wWecfXMix6D/0yG/asAC1w1E4b/sukelxURaUYK2s6Dt3TADMOg34ylFFc4Wf7IZfTQqqMiIiJey1v6D3JqaifxCi4XHF5fHbotgaxt9fdH9ax+xHQcdLgIrLb6+/euhA/vM+eDs1jh0l/BZY+d80IE246Yo9w+/L5ulBvAhR3DGT8wgav7xxMTeoYLKDgrzQBw/Wvm54GT4CezwdcNCzB4m8pSOPgthCRAdE9Pl0ZEmpiCtvPgLR2wQ8dLGPF/X+Brs7Dt2VR8bQ0P/xYRERHP85b+g5ya2km80vH95uOl6YvhwDfgqgu7CIyEHinmY5idLqle5XSuua9dV7j2FUi8yC3FKKmo4tONR/ng+8Os3ZdLzf8UrRa4uGsk4wcmkNo3joig0wR6hgHrXoUlT4DhhA5D4cY3ICTWLeX0qGN7Yddy87V/FVSVARYY/iBc+dvWGSiKnK/KUijLB//wFv0zoqDtPHhLByxteyZ3vv4/esWFsOThyzxWDhERETk9b+k/yKmpncTrleWbixqkfwa7lpmfGzLkDhjzO/ALapJiZBWUsWjzUT7ZeKTeAgo+VguX9Yxm/MB4ruoTR7Ddp/GL7Pkc3r3NrENoB5j0pvmIa0tSWQYHvoZdK8z2OLan/v7AKCjJMd/H9IFr/w7xA5q/nCKeZBjm4/DH98OxfebX4/vhePX7wqN1x/oEmHNS1r7Cq18Rjb/8w8Ee4vHH0BW0nQdv6YD9beVunl+SzoRBCfz5pgs8Vg4RERE5PW/pP8ipqZ2kRXFWQsba6gUVFpujqYJjYcIc6HFVsxXj4LESPt1khm7bjhbUbrf7WBnVO4bxAxK4slcM/r62k0/O2W0ukpC7G3wD4dp50GdCs5X9nBzfXzdqbd9XUFVat8/qA4kXm//+Pa4yw7X0z+CTX5pBg9UXrngCLnkYbKcIIUVamqoKyMuoH6CdGKxVFp/mAhbgPOInq48ZuDUayFXvi+kNcf3P/T6noKDtPHhLB+yht7/nox+O8FhqEvdd0d1j5RAREZHT85b+g5ya2klaLMMwVzENigIfu8eKsTurkE82mqHb3py6/1gH+dkY0zeOawYmcEn3KPx8Tpj2pvQ4vHeHOcINzEcsL/u1x0en1KoqNx/ZrRm1lrur/v6QeHOF2B5joOvl4B928jWKc+CTh2DHp+bnDheZo9vOZGELEW9gGObPak2IVm9k2n7IP8SpgzILhHWAiM4Q0Qkiupjv23Ux3/uHQ0WheY/S4+aCLrXvG9lWlmcusnLiis2nk3wvjP2/c/s3OA0FbefBWzpgqbO/YoejkPlThjCqdyuYz0BERKQV85b+g5ya2knEPQzDYOuRAj7ZdIRPNx7lcF7dqK/wQF/G9otj/IAEkrtGYrNawFkFy34L384zD+ozAfpMNEfoBcdAULQZYDVX+JaXUX/U2omjcSw26Hhxdbh2FcT2O7NyGQZsfBs+ewzKC8wRfFc9Cxfd5T2hosiJcvfA6pfNxVmOH4DyRh5Vr+EbWBeg1YZonc1t4YlN90eAytIGQrlGwrm+18KQ25ukGArazoM3dMAqnS76PL2ESqfBqseuPPultUVERKRZeUP/QU5P7STifoZhsCEjj082HuHTTUfJKaobfRIdYufq/vGMH5jAhR3DsaxfCIsfrb/gQw2b3QzdgmMgKAaCo80grqH39tCzC6+qKiBjdV24lpNef39wHPQYDd2vgq5XmI+hnau8g/DRfWaAB9BtpPm4b2jCuV9TxJ2y082FVba8B4ar/r7guBMCtM71R6YFRbfp0LhFBW1z5szhhRdewOFwMHDgQF5++WWGDh3a4LELFy7k9tvrp5N2u52ysrLaz4ZhMGPGDF599VXy8vK45JJLmDt3Lj169Dij8nhDB2xXZiFX/ekrgvxsbJmZgqUNfzOLiIi0BN7Qf5DTUzuJNC2ny+Dbvbl8vPEIn21xkF9aWbuvfXgA4wcmcGPsQTrveRNL4VEoyjLnNisvOMVVG+DjXx26xdSNiKsZHVcT1PmHwsF11aPWvoSKorrzLTZIHFr3SGhcf/cGCC4XrHsFVswwVyb1D4OrX4J+17fpoEI8zLEFvnoBtn1E7WOgPVLgwlshsjuEdwI/DfJpzJn2ITw+O+M777zDtGnTmDdvHsnJycyePZuUlBTS09OJiYlp8JzQ0FDS0+v+AvHjEOr555/nL3/5C6+//jpdunThqaeeIiUlhW3btuHv3zKWkt3hKASgZ1yIQjYREREREWkRbFYLw7tHMbx7FM9O6MfXu7P5ZONRlm11cDivlHlf7mEe0DV6CuP6xZPaL46+CaFYqsrqQreizFO8zzbneaoqg/wM83WmgmLMR0G7j4ZuV5oTpzcVqxUuvtcczfbBPXDke/jvneYcble/BIHtmu7eIj925AczYKuZQxCg10/MuRITBnmqVK2Wx0e0JScnc9FFF/HXv/4VAJfLRWJiIg8++CBPPPHESccvXLiQhx9+mLy8vAavZxgGCQkJ/OpXv+LRRx8FID8/n9jYWBYuXMhNN9102jJ5w186/9+ydF7+fDeThiYy6zotDy0iIuLtvKH/IKendhLxjNIKJ1+kZ/HJxiOk7ciioqrucbX24QGk9osjtV8cgztGYLWeZqBBRQkUZ5mhW3FWXQD34/cluRDdqzpcuwriBpgBWHNzVsKql+Cr581HZoNj4ZqXoWdK85dF2pZD/4Mvn4ddS6s3WKDvRDNgi+3ryZK1SC1iRFtFRQXr169n+vTptdusViujR49mzZo1jZ5XVFREp06dcLlcXHjhhfzhD3+gb1/zm2Tfvn04HA5Gjx5de3xYWBjJycmsWbOmwaCtvLyc8vK6eQQKCs5y2HITSK8Z0RYb4uGSiIiIiIiInJ8APxvj+sczrn88hWWVpG3PYulWByvTszmcV8r8r/cx/+t9RIfYGdMnltR+cVzcNRJfWwPBmF8g+HU2541qCWy+cMXjZuD3wb3m/HBv3gCDb4Mxvwd7sKdLKK3NgTVmsFuz0q/FCv1+Cpc9CtFJni1bG+DRoC0nJwen00lsbP0VNWNjY9mxY0eD5yQlJbFgwQIGDBhAfn4+L774IsOHD2fr1q106NABh8NRe40fX7Nm34/NmjWLmTNnuqFG7pOeaQZtSXEK2kREREREpPUI8fdl4gXtmXhBe0ornHy1K5slWxys2J5JdmE5//42g39/m0Govw+j+8SS2jeOy3pG4+9r83TRz0/7C+EXX0Lac7B2DqxfCHtXwsR50GmYp0snLZ1hwP5V5gi2/avMbRYbDJwEl06DyG6eLV8b4vE52s7WsGHDGDas7pfQ8OHD6d27N3//+9957rnnzuma06dPZ9q0abWfCwoKSExMPO+ynquSiioyjpUAkKQRbSIiIiIi0koF+NlI6RtHSt84KqpcrNmby5ItDpZvc5BTVMH7Gw7z/obDBPrZuCIpmtR+8VyZFE2Iv6+ni35ufAMg9Q+QlAof3gfH98NrY2H4gzDySfCxe7qE0tIYBuxJgy9fgINrzW1WX7jgFhjxSMsZ+dmKeDRoi4qKwmazkZmZWW97ZmYmcXFxZ3QNX19fLrjgAnbv3g1Qe15mZibx8fH1rjlo0KAGr2G327HbvecX2q7MIgwDooLtRAZ7T7lERERERESaip+Plct7RnN5z2h+N7Ef6w8cZ8kWB0urF1JYvNnB4s0O/GxWRvSIIrVvHKP7xNIuyM/TRT97XS6DqathyXT44Q1Y/RfYvQKu/TvEa45uOQOGATuXmo+IHl5vbrPZ4cLJMOJhCOvg0eK1ZR4N2vz8/Bg8eDBpaWlMnDgRMBdDSEtL44EHHjijazidTjZv3sy4ceMA6NKlC3FxcaSlpdUGawUFBXz77bdMnTq1KarhdnWPjepZfRERERERaXtsVgtDu7RjaJd2PPWT3mw+nM+SLQ6WbHGwN6eYz3dk8fmOLKzvQ3KXSFL7xTGmbyzxYQGeLvqZ8w+FiXOg1zj4+JeQtQ1eHQlXTofhD4Gtif+7XnoccvfCsT1wbC/kHQQMsPqYL5tv9XubOULK6mOWqWa/1dfcV3ucz6nPrTnfYjO31/tqNb9arD/a9+PPJ2y3nGbRjNbK5YL0ReYjoo5N5jafABhyhzkyMjT+1OdLk/P4o6PTpk1jypQpDBkyhKFDhzJ79myKi4u5/fbbAZg8eTLt27dn1qxZADz77LNcfPHFdO/enby8PF544QUOHDjAXXfdBYDFYuHhhx/md7/7HT169KBLly489dRTJCQk1IZ53k4LIYiIiIiIiJgsFgsDOoQzoEM4v05JYndWkRm6bXWw9UgBa/bmsmZvLjM+3sqgxHBzBdO+cXSOCvJ00c9Mr6uhw1D49GHY8SmkPQvpS+Daeec/r1ZZgRmk5VaHabl76j6XHnNL8T3GYv1R8HZCYBcQDtG9Iabm1Qciu4NPCxz9WMPlhG0fwlcvmqEsgG8QDL0Lhj0IwdEeLZ7U8XjQduONN5Kdnc3TTz+Nw+Fg0KBBLFmypHYxg4yMDKwnLMF8/Phx7r77bhwOBxEREQwePJjVq1fTp0+f2mMee+wxiouLueeee8jLy2PEiBEsWbIEf3//Zq/fudhZPaKtlxZCEBERERERqWWxWOgRG0KP2BAeHNWDg8dKWLrVHOm2PuM4PxzM44eDefzxsx30igthXP94xg9MoIu3h27B0XDjG7DxbfjsMTi0DuaNgDHPwZA7Tz16q7zwRyHa3rowrSTnNPeNM8O8dl0hopMZUrmc4KoCV2X1Vyc4K0/YVr3fecL+2mOrwFl1ivOrPxvOE766fvTZCYYLME5ddsNlvlyVJ+8rPWb+m6Qvqttm9THDtprgLbqX+bVdFzOs81bOKtjyX1j1IuTsNLfZQ2HoPXDxfRAU6dnyyUkshmGc5ru37SkoKCAsLIz8/HxCQ0Ob/f4X/X4F2YXlfHDfcC7oGNHs9xcREZGz5+n+g5wZtZNI65VVUMaybZks2eJgzd5cnK66/+r2bx/G+IHxXD0ggfbhXv54ad5B+Og+2PeV+bnbKBj3AlSWnBymHdsLRZmnvl5QjBmk1QRqkd2gXfV7uxdPV2QYDYRy1SHc6bYXZUH2DnPkV9Z281Ve0PB9fPwhqmf90W8xvSEssXkfTzUMMzQtPQ5ledWP9u6GNXPMdgbwDzfDteRfmKP2pFmdaR9CQVsDPNkBO1ZcwYXPLQdg68wUguweH3QoIiIiZ0ABTsugdhJpG/JKKli2LZNPNx3lm9059UK3IZ0iGD8wgXH944kO8dLF51wuWPcKrJgBVWWnPz4w0gzPakK0yK51YZq/ftdhGFBwpDp0qw7fsrdD1g6oKm34HL8QiE6qH77F9Ibg2FMHcM5KKM2rH5iVHq/bVvNqaJ/hbPiagZEw7H646G61pwcpaDsPnuyArd2by02vrCWxXQCrHhvZrPcWERGRc6cAp2VQO4m0PblF5Xy2xcEnG4+wbv8xav4HbLXAsG6RjB+QQGq/OMIDvXD+ruyd8OFUOPw/CIj4UZjWzXzssV03jW46Vy4n5B2oG/VW88rZ2fAjqWC2Q0wfCO8EFUUnBGZ55qui8PzKZLNDYDtz9FpgO+iZai504M2jD9sIBW3nwZMdsNdX72fGx1sZ3TuWf0wZ0qz3FhERkXOnAKdlUDuJtG2O/DIWbT7KJxuP8MPBvNrtvjYLl/WIZvzABEb3iSXY254sqigGPy+fZ641cVaaj+lmb68/Cu7Y3ur5486Af5gZyvmHm19rXyd8bmifr5c/2tyGnWkfwst+e0h69UIISXFKq0VERERERNwpLsyfO0d04c4RXcjILeHTzUf4ZONRth8tIG1HFmk7srD7WBnVO4bxAxK4slcM/r5eMFG+QrbmZfOFmF7mq++1ddsry8zRblnbIf9gA2Fa9Vf/MO9eYEGalII2L5PuqAna9BdWERERERGRptIxMpD7rujOfVd0Z3dWIR9vPMqnG4+wN6eYxZsdLN7sIMjPxpi+cYwfGM+I7tH4+Vg9XWzxJF9/iB9gvkQaoaDNixiGwc6aoC02xMOlERERERERaRu6x4Qw7aoQHhndg61HCvhk0xE+3XiUw3mlfPD9YT74/jDhgb6M7RfH+AEJJHeNxGZtxhUpRaTFUNDmRY7kl1FYXoWP1UKXKA0NFhERERERaU4Wi4V+7cPo1z6MJ1J7sSEjj082HmHR5qNkF5bz1rqDvLXuIFHBdn4yIJ7xA+O5IDECq0I3Eammca9epGY0W7foYA1JFhERkTZhzpw5dO7cGX9/f5KTk1m3bt0pj8/Ly+P+++8nPj4eu91Oz549Wbx4cTOVVkTaEovFwuBOETxzTV/WTh/Fm3cnM2loR8IDfckpKmfh6v1cP3cNg55dxvVzVzP9/U3M/3ofq3Zl48gvQ+sOirRNGtHmRXZUB2094/TYqIiIiLR+77zzDtOmTWPevHkkJycze/ZsUlJSSE9PJyYm5qTjKyoquOqqq4iJieG9996jffv2HDhwgPDw8OYvvIi0KTarheHdohjeLYpnJ/Tl6105fLLxCMu2ZVJQVsX6A8dZf+B4vXNC/H3oERNMj5gQesQG0yM2hB4xwcSH+WOxaAScSGuloM2L7KxecbSXgjYRERFpA1566SXuvvtubr/9dgDmzZvHokWLWLBgAU888cRJxy9YsIBjx46xevVqfH19AejcuXNzFllEBF+blSt7xXBlrxjKq5zszS5mV1YRuzML2ZlZxK6sQvbnllBYVsWGjDw2ZOTVOz/Y7kP3mGB6xpohXPfYYHrGhpCgAE6kVVDQ5kVqVhztqYUQREREpJWrqKhg/fr1TJ8+vXab1Wpl9OjRrFmzpsFzPv74Y4YNG8b999/PRx99RHR0NDfffDOPP/44NputwXPKy8spLy+v/VxQUODeiohIm2b3sdE7PpTe8aH1tpdXOdmfU8KuLDN82139dX9OMUXlVfxwMI8fDubVOyfIz0b36lFvPWLM8K17TDDtwwM0B5xIC6KgzUtUOV3szi4CNKJNREREWr+cnBycTiexsbH1tsfGxrJjx44Gz9m7dy+ff/45t9xyC4sXL2b37t3cd999VFZWMmPGjAbPmTVrFjNnznR7+UVETsXuYyMpLoSkH/3frqLKxYHc4tqRb7uqv+7LKaa4wsnGg3ls/FEAF+hno1dcCFcmxXBV31iSYkM08k3Eiylo8xL7c0uoqHIR6GejfXiAp4sjIiIi4nVcLhcxMTG88sor2Gw2Bg8ezOHDh3nhhRcaDdqmT5/OtGnTaj8XFBSQmJjYXEUWEanHz8dqztUWGwLE126vdJoB3K7MotoQbndWEXuziympcNY+gvr/lu+kY7tAruoTy1V9YhnSKQIfmxbSE/EmCtq8xImPjWpYsIiIiLR2UVFR2Gw2MjMz623PzMwkLi6uwXPi4+Px9fWt95ho7969cTgcVFRU4Ofnd9I5drsdu93u3sKLiLiZr81K95gQuseEMLZ/3fYqp4sDx0r4bt8xlm/LZNXuHDKOlTD/633M/3ofEYG+jOxlhm6X9Ywi0E//xRfxNP0Ueon06oUQkjQ/m4iIiLQBfn5+DB48mLS0NCZOnAiYI9bS0tJ44IEHGjznkksu4c0338TlcmG1miM4du7cSXx8fIMhm4hIS+djs9ItOphu0cHcNLQjxeVVrNqVzbJtmXy+I4vjJZX8d8Mh/rvhEHYfKyO6RzGmbyyjescSFaw/Moh4goI2L5HuMCfm7an52URERKSNmDZtGlOmTGHIkCEMHTqU2bNnU1xcXLsK6eTJk2nfvj2zZs0CYOrUqfz1r3/loYce4sEHH2TXrl384Q9/4Je//KUnqyEi0myC7D6k9osntV88VU4X/ztwnGVbM1m+3cHBY6Wk7cgibUcWFstmLuwYwVV9YhnTJ5au0cGeLrpIm6GgzUvszNRCCCIiItK23HjjjWRnZ/P000/jcDgYNGgQS5YsqV0gISMjo3bkGkBiYiJLly7lkUceYcCAAbRv356HHnqIxx9/3FNVEBHxGB+blYu7RnJx10ie+klv0jMLWb41k2XbMtl8OJ/1B46z/sBx/vjZDrpFB3FVnziu6hPLBYnhmq5IpAlZDMMwPF0Ib1NQUEBYWBj5+fmEhoae/oTzVFrhpM+MJRgGfPfb0USHaIiviIhIS9Pc/Qc5N2onEWkLjuaXsmKbGbqt3ZtLpbPuv/3RIXZG947hqj6xDO8Whb+v7RRXEpEaZ9qH0Ig2L7A7qwjDgMggP4VsIiIiIiIicl7iwwK4dVhnbh3WmYKySlamZ7N8WyYrd2SRXVjOW+sO8ta6gwT62bi8ZzRX9YllZK8YwgM136XI+VLQ5gVqFkLoqYUQRERERERExI1C/X25ZmAC1wxMoKLKxdq9uSzflsnybZk4Csr4bIuDz7Y4sFggJsROXFgA8aH+xIX5Ex/mT3x4APFh/sSF+hMb6o+fj/X0NxVpwxS0eYGahRCSND+biIiIiIiINBE/HyuX9Yzmsp7RPDuhL1sOF7Bsm4Pl2zLZ4Sgks6CczIJyNp7iGlHBdjN4C/MnIczfDObC6oK52FB/PY4qbZqCNi+QXr0QgoI2ERERERERaQ4Wi4X+HcLo3yGMX41JIqeonCN5pRzNL8ORX8bR/DKO5td9duSXUeF0kVNUTk5ROZsP5zd67cggv9rgzfwaQFyo+bl7bDAxIf7NWFOR5qWgzQtoRJuIiIiIiIh4UlSwnahgOwM6NLzfMAyOFVecEMTVD+UcBWUcySulvMpFbnEFucUVbD1S0OC14kL9GdAhrPoVTv/2YUQEaX44aR0UtHlYXkkFmQXlAPSICfZwaUREREREREROZrFYiAy2Exlsp1/7sAaPMQyD/NLKk0bD1Xw9klfK/txiHAVlOLaVsWxbZu25HdsF1gvf+rUPI9iuyEJaHn3Xeli6w1wIoX14ACH+vh4ujYiIiIiIiMi5sVgshAf6ER7oR+/40AaPKS6vYuuRAjYdymPToXw2Hcpjf24JGcfM16ebjlZfC7pFB5vBW/swBiSG0yc+VPO/iddT0OZhO6tXHO2lx0ZFRERERESklQuy+zC0SzuGdmlXuy2/pJLNh/PZeCiPzdXh25H8MnZnFbE7q4j3NxwGwMdqoWdsCAMTw+jfPpwBHcJIigvB16aVUMV7KGjzsB3VI9p6KmgTERERERGRNigs0JcRPaIY0SOqdlt2YTmbD+ex8WA+mw+b4VtOUQXbjhaw7WgBb3EQMFdS7RMfysAOYfTvEM7ADmF0jQ7GZrV4qjrSxilo8zCNaBMRERERERGpLzrEzshesYzsFQuY878dzS9j06E8Nh7Krx35VlBWxQ8H8/jhYB5wAIAAXxs9Y4NJigshKS6UXnEhJMWFEBVs91yFpM1Q0OZBhmHUztHWM1ZBm4iIiIiIiEhDLBYLCeEBJIQHkNovHjD/T30gt4SN1fO9bT6Uz5Yj+ZRUONl4KJ+Nh/LrXSMq2M8M32LrwreesSEE+GneN3EfBW0e5Cgoo6CsCh+rhW7RWnFURERERERE5ExZLBY6RwXROSqICYPaA+B0GezPLSbdUcgORyHpjgLSHYUcOFZCTlEFObtz+WZ37gnXgE7tAmtHv/WuDuA6RQbp8VM5JwraPKhmNFuXqCD8fDR5o4iIiIiIiMj5sFUPZOkWHcy4/vG120sqqtiVWVQXwGWaAVxOUQX7c0vYn1vC0q2Ztcf7+1rpEWOGbjWj35LiQogOtmOxKICTxilo86CaoC1J87OJiIiIiIiINJlAPx8GJoYzMDG83vbswvLq8M0M3tIzC9mZWUhZpYvNh82FGE7ULsiPpNgQesYGkxAeQFyYP3Gh/sSHBRATasffV4+htnUK2jwovXohhCTNzyYiIiIiIiLS7KJD7ESH2OuteOp0GWQcKyHdUVD9+Kn52p9bzLHiCtbszWXN3twGr9cuyI+4UH8zgKsO4erCOH9iw/wJsftoVFwrpqDNg2oXQtCINhERERERERGvYLNa6BIVRJeooNqFFwDKKp3syixih6OAPdnFOPJLcRSU4cgvw1FQRlmli2PFFRwrrmDb0YJGrx/kZyM2zAze4kIDiAuzExcWUBfGhfoTGeSHVXPEtUgK2jzE6TLYlVUEQC8FbSIiIiIiIiJezd/XRv8OYfTvEHbSPsMwyC+txFFQxtH86vAtvy6Eq/maX1pJcYWTvdnF7M0ubvRevjYLsaH+dIgIoFO7IDpGBtKxXSCdIgPp1C6IsEDfpqyqnAevCNrmzJnDCy+8gMPhYODAgbz88ssMHTr0tOe9/fbbTJo0iQkTJvDhhx/Wbr/tttt4/fXX6x2bkpLCkiVL3F30c7Y/t5iKKhcBvjYSIwI9XRwREREREREROUcWi4XwQD/CA/3oFRfa6HGlFc7qMK6UzB+HctWBXHZROZVOg0PHSzl0vJS1e4+ddJ2wAF86RQaS2C6QTtUBXMd2QXSKDCQu1F+j4TzI40HbO++8w7Rp05g3bx7JycnMnj2blJQU0tPTiYmJafS8/fv38+ijj3LppZc2uD81NZXXXnut9rPdbnd72c/HzprHRmOD9QMgIiIiIiIi0gYE+NlqH0ttTKXTRXZhOUfzS8k4VkJGbikHjhWTkVvCgWMlZBeWk19ayaZD+Ww6lH/S+X42Kx3aBVQHcEG1I+E6tjODOS3Y0LQ8HrS99NJL3H333dx+++0AzJs3j0WLFrFgwQKeeOKJBs9xOp3ccsstzJw5k1WrVpGXl3fSMXa7nbi4uKYs+nmpWQihpxZCEBEREREREZFqvjYrCeEBJIQHMLhTu5P2l1RUkXGshAO5JRys/nrgWAkZucUcOl5KhdN1wqOp2SedHxfqT8dIcyRcx3aB9IgN4cKO4cSE+jdD7Vo/jwZtFRUVrF+/nunTp9dus1qtjB49mjVr1jR63rPPPktMTAx33nknq1atavCYlStXEhMTQ0REBCNHjuR3v/sdkZGRDR5bXl5OeXl57eeCgsYnLXSXmoUQkjQ/m4iIiIiIiIicoUA/H3rFhTb4iGqV08XR/LLaIK52JFxuCRnHSigqrzIfUS0oY92++o+ktg8PYFDHcC5IDOeCjhH0TQjV6Ldz4NGgLScnB6fTSWxsbL3tsbGx7Nixo8Fzvv76a+bPn88PP/zQ6HVTU1O57rrr6NKlC3v27OE3v/kNY8eOZc2aNdhsJ3+TzJo1i5kzZ55XXc5WzYg2BW0iIiIiIiIi4g4+NiuJ1Y+IXtK9/j7DMDheUsmB3OLaIG5/bjHbjhSQnlnI4bxSDueVsmjTUcBckKFPQlh18BbOhR0j6BARgMWi6a9OxeOPjp6NwsJCbr31Vl599VWioqIaPe6mm26qfd+/f38GDBhAt27dWLlyJaNGjTrp+OnTpzNt2rTazwUFBSQmJrq38Ccoq3SyP8dcXSRJj46KiIiIiIiISBOzWCy0C/KjXZAfF3SMqLevqLyKTQfz+P5gHt9nHOf7jDxyiyvYeDCPjQfzWLjaPC4q2I9BiRFc0NEM3wZ0CCfY3qKipSbn0X+NqKgobDYbmZmZ9bZnZmY2OL/anj172L9/P+PHj6/d5nK5APDx8SE9PZ1u3bqddF7Xrl2Jiopi9+7dDQZtdru9WRdL2J1VhMuAiEBfokO8a5EGEREREREREWlbgu0+DO8exfDu5qAmwzA4eKyU7w+aodv3B/PYdiSfnKIKVmzPZMV2M8exWsy55y/oGFE96i2crlFte9FHjwZtfn5+DB48mLS0NCZOnAiYwVlaWhoPPPDAScf36tWLzZs319v25JNPUlhYyJ///OdGR6EdOnSI3Nxc4uPj3V6Hc5HuqFsIQUMuRURERERERMSbWCwWOkYG0jEykAmD2gPm03lbjxSYI94O5vFDRh6H80rZ4Shkh6OQt9ZlABDi78OgxLq53gYlhhMR5OfJ6jQrj4/vmzZtGlOmTGHIkCEMHTqU2bNnU1xcXLsK6eTJk2nfvj2zZs3C39+ffv361Ts/PDwcoHZ7UVERM2fO5PrrrycuLo49e/bw2GOP0b17d1JSUpq1bo3ZWT0/Wy/NzyYiIiIiIiIiLYC/r43BnSIY3KnusdPMgrLqEW/myLdNh/IoLKti1a4cVu3KqT2ufXgAUcF+1Y+u2omsfe9HZO1XO+2C/Qjys7XoQUkeD9puvPFGsrOzefrpp3E4HAwaNIglS5bULpCQkZGB1Wo94+vZbDY2bdrE66+/Tl5eHgkJCYwZM4bnnnuuWR8PPZWahRB6KmgTERERERERkRYqNtSf1H5xpPYzp/+qcrrY4Sisnevth4N57M0url1o4Uz4+ViJDPIjItCvgUDObr4PrtsW6u/rVY+qWgzDMDxdCG9TUFBAWFgY+fn5hIaevFzu+Ro2K42j+WX8d+owBndq5/bri4iISPNr6v6DuIfaSUREpHnllVSwJ7uYY8UVHCsuJ7e4gmNFFRwrrjDfF9e8L6es0nXW17dZLUQE+tIuyI/rL+zALy4/ee5+dzjTPoTHR7S1NfmllRzNLwOgh1YcFREREREREZFWLDzQj8GdzmyOttIKJ7nF5XUhXL1Arm778eqvhWVVOF0GOUUV5BRVcLyksolrc3oK2ppZkJ+Nxb+8lP25xYT6+3q6OCIiIiIiIiIiXiHAz0YHv0A6RASe0fEVVS6Ol1SQWx3IxYX5N3EJT09BWzPzsVnpkxBKnwQ9qiAiIiIiIiIicq78fKzEhvoTG+r5gK3Gma8yICIiIiIiIiIiIo1S0CYiIiIiIiIiIuIGCtpERERERERERETcQEGbiIiIiIiIiIiIGyhoExERERERERERcQMFbSIiIiIiIiIiIm6goE1ERERERERERMQNFLSJiIiIiIiIiIi4gYI2ERERERERERERN1DQJiIiIiIiIiIi4gYK2kRERERERERERNxAQZuIiIiIiIiIiIgbKGgTERERERERERFxAwVtIiIiIiIiIiIibuDj6QJ4I8MwACgoKPBwSURERKSlqOk31PQjxDupnyciIiLn4kz7egraGlBYWAhAYmKih0siIiIiLU1hYSFhYWGeLoY0Qv08EREROR+n6+tZDP3Z9SQul4sjR44QEhKCxWJx+/ULCgpITEzk4MGDhIaGuv363kx1b5t1h7Zdf9VddVfd2wbDMCgsLCQhIQGrVbNzeCv185pOW647tO36q+6qu+retrTV+p9pX08j2hpgtVrp0KFDk98nNDS0TX1Tnkh1b5t1h7Zdf9VddW9r2mLdNZLN+6mf1/Tact2hbddfdVfd25q2XHdom/U/k76e/twqIiIiIiIiIiLiBgraRERERERERERE3EBBmwfY7XZmzJiB3W73dFGanereNusObbv+qrvq3ta05bqLtOXv/7Zcd2jb9VfdVfe2pi3XHVT/09FiCCIiIiIiIiIiIm6gEW0iIiIiIiIiIiJuoKBNRERERERERETEDRS0iYiIiIiIiIiIuIGCNhERERERERERETdQ0NZE5syZQ+fOnfH39yc5OZl169ad8vh3332XXr164e/vT//+/Vm8eHEzldR9Zs2axUUXXURISAgxMTFMnDiR9PT0U56zcOFCLBZLvZe/v38zldi9nnnmmZPq0qtXr1Oe0xraHaBz584n1d1isXD//fc3eHxLbvevvvqK8ePHk5CQgMVi4cMPP6y33zAMnn76aeLj4wkICGD06NHs2rXrtNc9298ZnnCquldWVvL444/Tv39/goKCSEhIYPLkyRw5cuSU1zyXnxtPOF2733bbbSfVIzU19bTXbQntDqevf0M//xaLhRdeeKHRa7aUthdpiPp56uepn6d+nvp5raefB227r6d+nvspaGsC77zzDtOmTWPGjBls2LCBgQMHkpKSQlZWVoPHr169mkmTJnHnnXfy/fffM3HiRCZOnMiWLVuaueTn58svv+T+++9n7dq1LF++nMrKSsaMGUNxcfEpzwsNDeXo0aO1rwMHDjRTid2vb9++9ery9ddfN3psa2l3gO+++65evZcvXw7Az372s0bPaantXlxczMCBA5kzZ06D+59//nn+8pe/MG/ePL799luCgoJISUmhrKys0Wue7e8MTzlV3UtKStiwYQNPPfUUGzZs4P333yc9PZ1rrrnmtNc9m58bTzlduwOkpqbWq8dbb711ymu2lHaH09f/xHofPXqUBQsWYLFYuP7660953ZbQ9iI/pn6e+nnq56mfp35e6+rnQdvu66mf1wQMcbuhQ4ca999/f+1np9NpJCQkGLNmzWrw+BtuuMG4+uqr621LTk42fvGLXzRpOZtaVlaWARhffvllo8e89tprRlhYWPMVqgnNmDHDGDhw4Bkf31rb3TAM46GHHjK6detmuFyuBve3lnYHjA8++KD2s8vlMuLi4owXXnihdlteXp5ht9uNt956q9HrnO3vDG/w47o3ZN26dQZgHDhwoNFjzvbnxhs0VPcpU6YYEyZMOKvrtMR2N4wza/sJEyYYI0eOPOUxLbHtRQxD/bwa6uedWmttd8NQP0/9PFNr7ecZRtvu66mf5x4a0eZmFRUVrF+/ntGjR9dus1qtjB49mjVr1jR4zpo1a+odD5CSktLo8S1Ffn4+AO3atTvlcUVFRXTq1InExEQmTJjA1q1bm6N4TWLXrl0kJCTQtWtXbrnlFjIyMho9trW2e0VFBW+88QZ33HEHFoul0eNaU7vX2LdvHw6Ho167hoWFkZyc3Gi7nsvvjJYiPz8fi8VCeHj4KY87m58bb7Zy5UpiYmJISkpi6tSp5ObmNnpsa273zMxMFi1axJ133nnaY1tL20vboX5eHfXz1M9TP0/9vLbUzwP19UD9vDOloM3NcnJycDqdxMbG1tseGxuLw+Fo8ByHw3FWx7cELpeLhx9+mEsuuYR+/fo1elxSUhILFizgo48+4o033sDlcjF8+HAOHTrUjKV1j+TkZBYuXMiSJUuYO3cu+/bt49JLL6WwsLDB41tjuwN8+OGH5OXlcdtttzV6TGtq9xPVtN3ZtOu5/M5oCcrKynj88ceZNGkSoaGhjR53tj833io1NZV//vOfpKWl8X//9398+eWXjB07FqfT2eDxrbXdAV5//XVCQkK47rrrTnlca2l7aVvUzzOpn6d+nvp5ddTPa/39PFBfr4b6eWfGx9MFkNbp/vvvZ8uWLad9DnvYsGEMGzas9vPw4cPp3bs3f//733nuueeauphuNXbs2Nr3AwYMIDk5mU6dOvGf//znjBL/1mL+/PmMHTuWhISERo9pTe0uJ6usrOSGG27AMAzmzp17ymNby8/NTTfdVPu+f//+DBgwgG7durFy5UpGjRrlwZI1vwULFnDLLbecduLr1tL2Im2R+nlt93eW+nnSFvt5oL5eDfXzzoxGtLlZVFQUNpuNzMzMetszMzOJi4tr8Jy4uLizOt7bPfDAA3z66ad88cUXdOjQ4azO9fX15YILLmD37t1NVLrmEx4eTs+ePRutS2trd4ADBw6wYsUK7rrrrrM6r7W0e03bnU27nsvvDG9W0/k6cOAAy5cvP+VfORtyup+blqJr165ERUU1Wo/W1u41Vq1aRXp6+ln/DoDW0/bSuqmfp35eDfXzzlxraXf189TPO1Fb7Oupn3fmFLS5mZ+fH4MHDyYtLa12m8vlIi0trd5fdk40bNiwescDLF++vNHjvZVhGDzwwAN88MEHfP7553Tp0uWsr+F0Otm8eTPx8fFNUMLmVVRUxJ49exqtS2tp9xO99tprxMTEcPXVV5/Vea2l3bt06UJcXFy9di0oKODbb79ttF3P5XeGt6rpfO3atYsVK1YQGRl51tc43c9NS3Ho0CFyc3MbrUdravcTzZ8/n8GDBzNw4MCzPre1tL20burnqZ9XQ/28M9da2l39PPXzTtQW+3rq550Fz67F0Dq9/fbbht1uNxYuXGhs27bNuOeee4zw8HDD4XAYhmEYt956q/HEE0/UHv/NN98YPj4+xosvvmhs377dmDFjhuHr62ts3rzZU1U4J1OnTjXCwsKMlStXGkePHq19lZSU1B7z47rPnDnTWLp0qbFnzx5j/fr1xk033WT4+/sbW7du9UQVzsuvfvUrY+XKlca+ffuMb775xhg9erQRFRVlZGVlGYbRetu9htPpNDp27Gg8/vjjJ+1rTe1eWFhofP/998b3339vAMZLL71kfP/997UrLv3xj380wsPDjY8++sjYtGmTMWHCBKNLly5GaWlp7TVGjhxpvPzyy7WfT/c7w1ucqu4VFRXGNddcY3To0MH44Ycf6v0OKC8vr73Gj+t+up8bb3GquhcWFhqPPvqosWbNGmPfvn3GihUrjAsvvNDo0aOHUVZWVnuNltruhnH673vDMIz8/HwjMDDQmDt3boPXaKltL/Jj6uepn6d+Xn2tqd3Vz2ub/TzDaNt9PfXz3E9BWxN5+eWXjY4dOxp+fn7G0KFDjbVr19buu/zyy40pU6bUO/4///mP0bNnT8PPz8/o27evsWjRomYu8fkDGny99tprtcf8uO4PP/xw7b9TbGysMW7cOGPDhg3NX3g3uPHGG434+HjDz8/PaN++vXHjjTcau3fvrt3fWtu9xtKlSw3ASE9PP2lfa2r3L774osHv85r6uVwu46mnnjJiY2MNu91ujBo16qR/k06dOhkzZsyot+1UvzO8xanqvm/fvkZ/B3zxxRe11/hx3U/3c+MtTlX3kpISY8yYMUZ0dLTh6+trdOrUybj77rtP6kS11HY3jNN/3xuGYfz97383AgICjLy8vAav0VLbXqQh6uepn6d+Xp3W1O7q57XNfp5htO2+nvp57mcxDMM419FwIiIiIiIiIiIiYtIcbSIiIiIiIiIiIm6goE1ERERERERERMQNFLSJiIiIiIiIiIi4gYI2ERERERERERERN1DQJiIiIiIiIiIi4gYK2kRERERERERERNxAQZuIiIiIiIiIiIgbKGgTERERERERERFxAwVtIiLNwGKx8OGHH3q6GCIiIiLiZurniciJFLSJSKt32223YbFYTnqlpqZ6umgiIiIich7UzxMRb+Pj6QKIiDSH1NRUXnvttXrb7Ha7h0ojIiIiIu6ifp6IeBONaBORNsFutxMXF1fvFRERAZjD/efOncvYsWMJCAiga9euvPfee/XO37x5MyNHjiQgIIDIyEjuueceioqK6h2zYMEC+vbti91uJz4+ngceeKDe/pycHK699loCAwPp0aMHH3/8cdNWWkRERKQNUD9PRLyJgjYREeCpp57i+uuvZ+PGjdxyyy3cdNNNbN++HYDi4mJSUlKIiIjgu+++491332XFihX1Olhz587l/vvv55577mHz5s18/PHHdO/evd49Zs6cyQ033MCmTZsYN24ct9xyC8eOHWvWeoqIiIi0NerniUizMkREWrkpU6YYNpvNCAoKqvf6/e9/bxiGYQDGvffeW++c5ORkY+rUqYZhGMYrr7xiREREGEVFRbX7Fy1aZFitVsPhcBiGYRgJCQnGb3/720bLABhPPvlk7eeioiIDMD777DO31VNERESkrVE/T0S8jeZoE5E24corr2Tu3Ln1trVr1672/bBhw+rtGzZsGD/88AMA27dvZ+DAgQQFBdXuv+SSS3C5XKSnp2OxWDhy5AijRo06ZRkGDBhQ+z4oKIjQ0FCysrLOtUoiIiIigvp5IuJdFLSJSJsQFBR00hB/dwkICDij43x9fet9tlgsuFyupiiSiIiISJuhfp6IeBPN0SYiAqxdu/akz7179wagd+/ebNy4keLi4tr933zzDVarlaSkJEJCQujcuTNpaWnNWmYREREROT3180SkOWlEm4i0CeXl5TgcjnrbfHx8iIqKAuDdd99lyJAhjBgxgn//+9+sW7eO+fPnA3DLLbcwY8YMpkyZwjPPPEN2djYPPvggt956K7GxsQA888wz3HvvvcTExDB27FgKCwv55ptvePDBB5u3oiIiIiJtjPp5IuJNFLSJSJuwZMkS4uPj621LSkpix44dgLlS1Ntvv819991HfHw8b731Fn369AEgMDCQpUuX8tBDD3HRRRcRGBjI9ddfz0svvVR7rSlTplBWVsaf/vQnHn30UaKiovjpT3/afBUUERERaaPUzxMRb2IxDMPwdCFERDzJYrHwwQcfMHHiRE8XRURERETcSP08EWlumqNNRERERERERETEDRS0iYiIiIiIiIiIuIEeHRUREREREREREXEDjWgTERERERERERFxAwVtIiIiIiIiIiIibqCgTURERERERERExA0UtImIiIiIiIiIiLiBgjYRERERERERERE3UNAmIiIiIiIiIiLiBgraRERERERERERE3EBBm4iIiIiIiIiIiBv8f5Qsx+H7SNIIAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","source":["# Score trained model.\n","scores = model.evaluate(x_test, y_test, verbose=1)\n","print('Test loss:', scores[0])\n","print('Test accuracy:', scores[1])\n","\n","# make prediction.\n","pred = model.predict(x_test)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"YyrP_7vaSGCx","executionInfo":{"status":"ok","timestamp":1733275727675,"user_tz":-540,"elapsed":4363,"user":{"displayName":"황지원","userId":"01099698570160424720"}},"outputId":"c7b0450e-d4a3-4cd5-9f09-36b3309a44cf"},"execution_count":9,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.7838 - loss: 0.6489\n","Test loss: 0.6702848076820374\n","Test accuracy: 0.7771000266075134\n","\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step\n"]}]},{"cell_type":"code","source":["labels = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog', 'Frog', 'Horse', 'Ship', 'Truck']\n","\n","# Convert predictions classes to one hot vectors\n","Y_pred_classes = np.argmax(pred, axis=1)\n","# Convert validation observations to one hot vectors\n","Y_true = np.argmax(y_test, axis=1)\n","# Errors are difference between predicted labels and true labels\n","errors = (Y_pred_classes - Y_true != 0)\n","\n","Y_pred_classes_errors = Y_pred_classes[errors]\n","Y_pred_errors = pred[errors]\n","Y_true_errors = Y_true[errors]\n","X_test_errors = x_test[errors]"],"metadata":{"id":"UjMkzOq7THfd","executionInfo":{"status":"ok","timestamp":1733275978560,"user_tz":-540,"elapsed":357,"user":{"displayName":"황지원","userId":"01099698570160424720"}}},"execution_count":11,"outputs":[]},{"cell_type":"code","source":["R = 5\n","C = 5\n","fig, axes = plt.subplots(R, C, figsize=(12,12))\n","axes = axes.ravel()\n","\n","for i in np.arange(0, R*C):\n"," axes[i].imshow(x_test[i])\n"," axes[i].set_title(\"True: %s \\nPredict: %s\" % (labels[Y_true[i]], labels[Y_pred_classes[i]]))\n"," axes[i].axis('off')\n"," plt.subplots_adjust(wspace=1)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":948},"id":"uceYKpweSGFN","executionInfo":{"status":"ok","timestamp":1733275982276,"user_tz":-540,"elapsed":1960,"user":{"displayName":"황지원","userId":"01099698570160424720"}},"outputId":"05c71ec8-0d69-47ec-916d-18c032478c06"},"execution_count":12,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAA9QAAAOjCAYAAABa80z9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhU1bX+/56aq6t6nmmgu2kmAQ0GFTWKRkGQKZdBAmoEVCTXCX0Sr9N9FNRcE4MJJDExxDkgJMK9JD8nRINTUBMVRUHmppmaHuh5qK5p//7g22etfbobmqKlq2F9noeHXafOPmfX6b3O3vucd61lKKUUBEEQBEEQBEEQBEE4IWzd3QBBEARBEARBEARB6InIgloQBEEQBEEQBEEQYkAW1IIgCIIgCIIgCIIQA7KgFgRBEARBEARBEIQYkAW1IAiCIAiCIAiCIMSALKgFQRAEQRAEQRAEIQZkQS0IgiAIgiAIgiAIMSALakEQBEEQBEEQBEGIAVlQC4IgCIIgCIIgCEIMyIJaEIS4YM6cOfD7/Z3a1zAMLFy48NttkCD0EMR2hDOVOXPmoKCgoMccVxCE05NuW1AbhtGpf++++253NfG4BAIB/PrXv8bIkSORnJwMj8eDgQMH4vbbb8eOHTtO+HgbN27EwoULUVNT0/WNFXosPd1WGhoa8PDDD2PYsGHw+XxIT0/H8OHDsWDBAhw6dKi7myecxojtCGciPb3ft1JTUwOPxwPDMPDNN990d3ME4bj0dNvrqL05OTnd3bS4x9FdJ/7zn/+sfX7ppZewfv36NtvPOuusU9msTlNZWYlx48bhs88+w8SJE3HttdfC7/dj+/btWLVqFZYtW4ZgMHhCx9y4cSMWLVqEOXPmICUl5dtpuNDj6Mm2EgqFMGrUKGzbtg2zZ8/GHXfcgYaGBmzZsgUvv/wypkyZgl69ep3wcZubm+FwdNvtS+ghiO20RWzn9Kcn93vOK6+8Yk7mV6xYgccee6zNPn/6058QjUa7oXWC0JbTwfbGjBmDG264Qdvm9Xq7qTU9CBUn3HbbbaozzWlsbDwFrTk+EyZMUDabTa1evbrNd4FAQP3kJz854WP+8pe/VABUcXFxF7RQOF3pSbby17/+VQFQK1asaPNdc3Ozqq2tNT/Pnj1b+Xy+U9k84QxDbEc4E+lJ/Z4zatQoNXXqVHX33XerwsLCmI8TCoVUS0vLCdWZPXu2ys/Pj/mcgqBUz7M9AOq2227r9P7RaFQ1NTV9iy3qOcS1D/Xll1+OYcOG4bPPPsOoUaOQkJCABx54AEDHfmAFBQWYM2eOtq2mpgZ33XUX+vTpA7fbjf79++MXv/hFm6eapaWl2LZtG0Kh0DHb9cknn+C1117DTTfdhGnTprX53u12Y/HixebnzZs3Y86cOejXrx88Hg9ycnJw44034siRI+Y+CxcuxD333AMAKCwsNGUWe/fuPWZbBAGIX1vZvXs3AOB73/tem+88Hg+SkpLabD948CD+4z/+A36/H5mZmfjpT3+KSCSi7WP9TQsXLoRhGNi2bRtmzJiBpKQkpKenY8GCBQgEAsdso3BmI7YjtnMmEq/9vpV9+/bhgw8+wMyZMzFz5kwUFxdj48aNbfaz+jrv3bsXhmFg8eLFWLJkCYqKiuB2u7F161a8++67MAwDf/nLX/DAAw8gJycHPp8PkydPxv79+4/bpsWLF+Piiy9Geno6vF4vRowYgdWrV7fZzzAM3H777Vi7di2GDRsGt9uNoUOH4s0332yz78GDB3HjjTciOzvb3O+5557r1DUSeibxbnvHoqCgABMnTsS6detw3nnnwev14o9//CMAYM+ePbjmmmuQlpaGhIQEXHjhhXjttdfaHKOkpASTJ0+Gz+dDVlYW7r77bqxbty6upfCdIe51X0eOHMHVV1+NmTNn4vrrr0d2dvYJ1W9qasJll12GgwcPYv78+ejbty82btyI+++/H6WlpViyZIm57/33348XX3wRxcXFxwxG8fe//x0A8KMf/ahTbVi/fj327NmDuXPnIicnB1u2bMGyZcuwZcsWfPzxxzAMA1OnTsWOHTuwcuVK/PrXv0ZGRgYAIDMz84R+r3DmEo+2kp+fD+Co7Om///u/YRjGMdsQiUQwduxYjBw5EosXL8bbb7+NJ598EkVFRfjP//zP4/6GGTNmoKCgAI8//jg+/vhj/OY3v0F1dTVeeumlTl0D4cxEbEds50wkHvt9KytXroTP58PEiRPh9XpRVFSEFStW4OKLL+5U255//nkEAgHccsstcLvdSEtLM+PT/OxnP4NhGLj33ntRXl6OJUuWYPTo0fjiiy+OKW1dunQpJk+ejOuuuw7BYBCrVq3CNddcg1dffRUTJkzQ9v3www/xv//7v7j11luRmJiI3/zmN5g2bRr27duH9PR0AEBZWRkuvPBCcwGemZmJN954AzfddBPq6upw1113deq3Cj2PeLa9QCCAyspKbVtiYiLcbjcAYPv27Zg1axbmz5+PefPmYdCgQSgrK8PFF1+MpqYm3HnnnUhPT8eLL76IyZMnY/Xq1ZgyZQoAoLGxEVdccQVKS0uxYMEC5OTk4OWXX8aGDRtO6PfHJd39iryV9mQRl112mQKgnn766Tb7A1APP/xwm+35+flq9uzZ5udHH31U+Xw+tWPHDm2/++67T9ntdrVv3z5z2+zZszsluZ4yZYoCoKqrq4/7u5RS7cohVq5cqQCo999/39wmkm+hM/QkW2lqalKDBg1SAFR+fr6aM2eOevbZZ1VZWVmbfVuP+cgjj2jbzz33XDVixIhj/qaHH35YAVCTJ0/W9rv11lsVAPXll18es53CmYHYjtjOmUhP6vetnH322eq6664zPz/wwAMqIyNDhUIhbT+rNLu4uFgBUElJSaq8vFzbd8OGDQqAysvLU3V1deb2VveKpUuXdnhcpdrO5YLBoBo2bJi64oortO0AlMvlUrt27TK3ffnllwqA+u1vf2tuu+mmm1Rubq6qrKzU6s+cOVMlJyeLlPY0oKfZHoB2/z3//PNmOwCoN998U6t31113KQDqgw8+MLfV19erwsJCVVBQoCKRiFJKqSeffFIBUGvXrjX3a25uVoMHD1YA1IYNG47bxnglriXfwFH59Ny5c2Ou/8orr+DSSy9FamoqKisrzX+jR49GJBLB+++/b+77wgsvQCl13Cc4dXV1AI4+sekM/Iln65OfCy+8EADw+eefn+AvEoT2iUdb8Xq9+OSTT0x3hhdeeAE33XQTcnNzcccdd6ClpaVNnR//+Mfa50svvRR79uzp1G+47bbbtM933HEHAOD111/vVH3hzERsR2znTCQe+z1w1E3uq6++wqxZs8xts2bNQmVlJdatW9eptk2bNq1Dhd8NN9ygzd+mT5+O3Nzc4/Z1Pperrq5GbW0tLr300nbncaNHj0ZRUZH5+ZxzzkFSUpJpj0oprFmzBpMmTYJSSrt+Y8eORW1trcwPT2Pi1fYA4Ac/+AHWr1+v/Rs7dqz5fWFhofYZODpOXHDBBbjkkkvMbX6/H7fccgv27t2LrVu3AgDefPNN5OXlYfLkyeZ+Ho8H8+bNi+UyxBVxL/nOy8uDy+WKuf7OnTuxefPmDm+s5eXlJ3zMVt+1+vr6TkXjrqqqwqJFi7Bq1ao256utrT3h8wtCe8SjrQBAcnIynnjiCTzxxBMoKSnBO++8g8WLF+N3v/sdkpOTtcitHo+nzflTU1NRXV3dqXMNGDBA+1xUVASbzSaxCIRjIrYjtnMmEq/9fvny5fD5fOjXrx927doF4Gj/LigowIoVK9rIq9ujsLCww++sfd0wDPTv3/+4ff3VV1/FY489hi+++EJ7oNWeO0bfvn3bbOP2WFFRgZqaGixbtgzLli1r93yxXj8h/olX2wOA3r17Y/To0R1+355tlZSUYOTIkW22t0YzLykpwbBhw1BSUoKioqI2NtO/f/+Y2xsvxP2C+kRDtVsDsESjUYwZMwb/9V//1e7+AwcOPOE2DR48GADw1Vdf4dJLLz3u/jNmzMDGjRtxzz33YPjw4fD7/YhGoxg3bpykexC6jHi0FSv5+fm48cYbMWXKFPTr169NKhS73X7S5+Acz+9UEACxnfYQ2zn9icd+r5TCypUr0djYiCFDhrT5vry8HA0NDfD7/cc8Tlen+fnggw8wefJkjBo1Cr///e+Rm5sLp9OJ559/Hi+//HKb/TuyR6UUAJhzv+uvvx6zZ89ud99zzjmni1ovxBvxaHudRVJotU/cL6g7IjU11Qww0UowGERpaam2raioCA0NDcd82nKiTJo0CY8//jiWL19+3AV1dXU13nnnHSxatAgPPfSQuX3nzp1t9pUJjPBt0J22cqw2FRUV4euvv+7S4+7cuVN7erpr1y5Eo9FOS50EgSO2I7ZzJtKd/f69997DgQMH8Mgjj7TJ1VtdXY1bbrkFa9euxfXXXx/zOazzL6UUdu3adcwF7Jo1a+DxeLBu3TozOBNwNPhZLGRmZiIxMRGRSOSU3DeEnkE8jjmdIT8/H9u3b2+zfdu2beb3rf9v3boVSiltzdOqROnJxL0PdUcUFRVpPgIAsGzZsjZPcWbMmIGPPvqoXb+bmpoahMNh83NnQ8tfdNFFGDduHJ555hmsXbu2zffBYBA//elPAdBTytankq3wCHyt+Hw+s12C0FV0p618+eWXbaJFAkflP1u3bsWgQYNO5Kccl6eeekr7/Nvf/hYAcPXVV3fpeYQzA7EdsZ0zke7s961y73vuuQfTp0/X/s2bNw8DBgzAihUrTuLXHY2cX19fb35evXo1SktLj9nX7XY7DMPQrsHevXvbnQN2BrvdjmnTpmHNmjXtPhyrqKiI6bhCz6Y7be9kGD9+PP71r3/ho48+Mrc1NjZi2bJlKCgoMNUmY8eOxcGDB81sScDR2FJ/+tOfvrW2nSp67Bvqm2++GT/+8Y8xbdo0jBkzBl9++SXWrVtnpptq5Z577sHf//53TJw4EXPmzMGIESPQ2NiIr776CqtXr8bevXvNOicSWv6ll17CVVddhalTp2LSpEm48sor4fP5sHPnTqxatQqlpaVYvHgxkpKSMGrUKDzxxBMIhULIy8vDW2+9heLi4jbHHDFiBADgwQcfxMyZM+F0OjFp0iRzoS0IsdCdtrJ+/Xo8/PDDmDx5Mi688EL4/X7s2bMHzz33HFpaWtrNt3gyFBcXY/LkyRg3bhw++ugjLF++HNdeey2+853vdOl5hDMDsR2xnTOR7ur3LS0tWLNmDcaMGQOPx9PuPpMnT8bSpUtRXl6OrKysmH5fWloaLrnkEsydOxdlZWVYsmQJ+vfvf8zASBMmTMCvfvUrjBs3Dtdeey3Ky8vx1FNPoX///ti8eXNM7fj5z3+ODRs2YOTIkZg3bx6GDBmCqqoqfP7553j77bdRVVUV03GFnkt3r21i5b777sPKlStx9dVX484770RaWpp5zjVr1sBmO/r+dv78+fjd736HWbNmYcGCBcjNzcWKFStMe+/JSt0eu6CeN28eiouL8eyzz+LNN9/EpZdeivXr1+PKK6/U9ktISMB7772H//mf/8Err7yCl156CUlJSRg4cCAWLVqE5OTkmM6fmZmJjRs34ve//z3+8pe/4MEHH0QwGER+fj4mT56MBQsWmPu+/PLLuOOOO/DUU09BKYWrrroKb7zxBnr16qUd8/zzz8ejjz6Kp59+Gm+++Sai0SiKi4tlQS2cFN1pK9OmTUN9fT3eeust/OMf/0BVVRVSU1NxwQUX4Cc/+Qm+//3vd9XPBAD85S9/wUMPPYT77rsPDocDt99+O375y1926TmEMwexHbGdM5Hu6vevvfYaampqMGnSpA73mTRpEp588kmsWrUKd955Z0y/74EHHsDmzZvx+OOPo76+HldeeSV+//vfIyEhocM6V1xxBZ599ln8/Oc/x1133YXCwkL84he/wN69e2NeUGdnZ+Nf//oXHnnkEfzv//4vfv/73yM9PR1Dhw7FL37xi5iOKfRsunttEyvZ2dnYuHEj7r33Xvz2t79FIBDAOeecg//v//v/tCCCfr8f//jHP3DHHXdg6dKl8Pv9uOGGG3DxxRdj2rRpHT5I6wkYyqpFFgRB6GEsXLgQixYtQkVFRZsnuYIgdIzYjnCm8O677+L73/8+XnnlFUyfPr27myMIwv9jyZIluPvuu3HgwAHk5eV1d3Niosf6UAuCIAiCIAiCIAg9g+bmZu1zIBDAH//4RwwYMKDHLqaBHiz5FgRBEARBEARBEHoGU6dORd++fTF8+HDU1tZi+fLl2LZt20kHG+xuZEEtCIIgCIIgCIIgfKuMHTsWzzzzDFasWIFIJIIhQ4Zg1apV+OEPf9jdTTspxIdaEARBEARBEARBEGJAfKgFQRAEQRAEQRAEIQZkQS0IgiAIgiAIgiAIMXDaL6gLCgowZ84c8/O7774LwzDw7rvvdlubBCEe6am2MmfOHPj9/k7taxgGFi5c+O02SDijELsRzlR6at8Hjvb/goKCHnNcQeD0ZNs7XflWF9QvvPACDMMw/3k8HgwcOBC33347ysrKvs1Tdzmvv/56l00oAoEAfv3rX2PkyJFITk7WrsuOHTtO+HgbN27EwoULUVNT0yXtE049YittaWhowMMPP4xhw4bB5/MhPT0dw4cPx4IFC3Do0KGTb6jQ4xG7aYvYzZmB9P2OqampgcfjgWEY+Oabb7rsuIIAiO21B78e/F9OTs7JN7KHcEqifD/yyCMoLCxEIBDAhx9+iD/84Q94/fXX8fXXXyMhIeFUNMFk1KhRaG5uhsvlOqF6r7/+Op566qmT7niVlZUYN24cPvvsM0ycOBHXXnst/H4/tm/fjlWrVmHZsmUIBoMndMyNGzdi0aJFmDNnDlJSUk6qfUL3IrZylFAohFGjRmHbtm2YPXs27rjjDjQ0NGDLli14+eWXMWXKFPTq1euEj9vc3AyHQ5IbnG6I3RxF7ObMQ/p+W1555RVzMr9ixQo89thjbfb505/+hGg02iXnE85MxPZ0xowZgxtuuEHb5vV6T/q4PYVTMkJeffXVOO+88wAAN998M9LT0/GrX/0Kf/vb3zBr1qx26zQ2NsLn83V5W2w2GzweT5cft7PMmTMHmzZtwurVqzFt2jTtu0cffRQPPvhgN7VMiAfEVo6ydu1abNq0CStWrMC1116rfRcIBE74oVMr3Wn7wreH2M1RxG7OPKTvt2X58uUYP3488vPz8fLLL7e7oHY6ncc9TjgcRjQaPeFFinBmILanM3DgQFx//fWd2lcphUAgcFotuLvFh/qKK64AABQXFwMgX67du3dj/PjxSExMxHXXXQcAiEajWLJkCYYOHQqPx4Ps7GzMnz8f1dXV2jGVUnjsscfQu3dvJCQk4Pvf/z62bNnS5twd+Rl88sknGD9+PFJTU+Hz+XDOOedg6dKlZvueeuopALqsoZXS0lJs27YNoVDomL/7k08+wWuvvYabbrqpzWIaANxuNxYvXmx+3rx5M+bMmYN+/frB4/EgJycHN954I44cOWLus3DhQtxzzz0AgMLCQrNte/fuPWZbhJ7BmWoru3fvBgB873vfa/Odx+NBUlJSm+0HDx7Ef/zHf8Dv9yMzMxM//elPEYlEtH2svqALFy6EYRjYtm0bZsyYgaSkJKSnp2PBggUIBALHbKMQv4jdiN2cqZypfb+Vffv24YMPPsDMmTMxc+ZMFBcXY+PGjW32s/o67927F4ZhYPHixViyZAmKiorgdruxdetW83f95S9/wQMPPICcnBz4fD5MnjwZ+/fvP26bFi9ejIsvvhjp6enwer0YMWIEVq9e3WY/wzBw++23Y+3atRg2bBjcbjeGDh2KN998s82+Bw8exI033ojs7Gxzv+eee65T10j4djjTbe9YFBQUYOLEiVi3bh3OO+88eL1e/PGPfwQA7NmzB9dccw3S0tKQkJCACy+8EK+99lqbY5SUlGDy5Mnw+XzIysrC3XffjXXr1sWN73i3aLhaB/309HRzWzgcxtixY3HJJZdg8eLFplxi/vz5eOGFFzB37lzceeedKC4uxu9+9zts2rQJ//znP82njA899BAee+wxjB8/HuPHj8fnn3+Oq666qlNP5NevX4+JEyciNzcXCxYsQE5ODr755hu8+uqrWLBgAebPn49Dhw5h/fr1+POf/9ym/v33348XX3wRxcXFxwxG8fe//x0A8KMf/ahT12n9+vXYs2cP5s6di5ycHGzZsgXLli3Dli1b8PHHH8MwDEydOhU7duzAypUr8etf/xoZGRkAgMzMzE6dQ4hvzlRbyc/PBwC89NJL+O///m/tJt8ekUgEY8eOxciRI7F48WK8/fbbePLJJ1FUVIT//M//PO7vmjFjBgoKCvD444/j448/xm9+8xtUV1fjpZdeOm5dIf4QuxG7OVM5U/t+KytXroTP58PEiRPh9XpRVFSEFStW4OKLL+7M5cPzzz+PQCCAW265BW63G2lpaWZ8mp/97GcwDAP33nsvysvLsWTJEowePRpffPHFMd+0LV26FJMnT8Z1112HYDCIVatW4ZprrsGrr76KCRMmaPt++OGH+N///V/ceuutSExMxG9+8xtMmzYN+/btM/+mZWVluPDCC80FeGZmJt544w3cdNNNqKurw1133dWp3yp0LWe67QUCAVRWVmrbEhMT4Xa7AQDbt2/HrFmzMH/+fMybNw+DBg1CWVkZLr74YjQ1NeHOO+9Eeno6XnzxRUyePBmrV6/GlClTABx9s3/FFVegtLTU/C0vv/wyNmzYcNx2nTLUt8jzzz+vAKi3335bVVRUqP3796tVq1ap9PR05fV61YEDB5RSSs2ePVsBUPfdd59W/4MPPlAA1IoVK7Ttb775pra9vLxcuVwuNWHCBBWNRs39HnjgAQVAzZ4929y2YcMGBUBt2LBBKaVUOBxWhYWFKj8/X1VXV2vn4ce67bbbVEeXq7X9xcXFx7weU6ZMUQDanKcjmpqa2mxbuXKlAqDef/99c9svf/nLTp1fiF/EVnSamprUoEGDFACVn5+v5syZo5599llVVlbW4TEfeeQRbfu5556rRowYoW0DoB5++GHz88MPP6wAqMmTJ2v73XrrrQqA+vLLL4/ZTqF7EbvREbs5c5C+3z5nn322uu6667R2ZmRkqFAo1Oa4+fn55ufi4mIFQCUlJany8nJt39bflZeXp+rq6sztf/3rXxUAtXTp0g6Pq1TbuVwwGFTDhg1TV1xxhbYdgHK5XGrXrl3mti+//FIBUL/97W/NbTfddJPKzc1VlZWVWv2ZM2eq5OTkdueOQtchttcWAO3+e/7555VSSuXn5ysA6s0339Tq3XXXXQqA+uCDD8xt9fX1qrCwUBUUFKhIJKKUUurJJ59UANTatWvN/Zqbm9XgwYO1392dnBLJ9+jRo5GZmYk+ffpg5syZ8Pv9+L//+z/k5eVp+1mfiL/yyitITk7GmDFjUFlZaf4bMWIE/H6/+WTi7bffRjAYxB133KE9ke/MU7pNmzahuLgYd911V5uAXsd7ut/KCy+8AKXUcZ/g1NXVATj6xKYz8CeerU9+LrzwQgDA559/3qljCD0LsZWjeL1efPLJJ6Y7wwsvvICbbroJubm5uOOOO9DS0tKmzo9//GPt86WXXoo9e/Z0ql233Xab9vmOO+4AcDRghxD/iN0cRezmzEP6PrF582Z89dVXmv/qrFmzUFlZiXXr1nXqfNOmTetQ4XfDDTdo87fp06cjNzf3uP2dz+Wqq6tRW1uLSy+9tN153OjRo1FUVGR+Puecc5CUlGTapFIKa9aswaRJk6CU0v52Y8eORW1trcwPTxFiezo/+MEPsH79eu3f2LFjze8LCwu1z8DRseKCCy7AJZdcYm7z+/245ZZbsHfvXmzduhUA8OabbyIvLw+TJ0829/N4PJg3b16n2nYqOCWS76eeegoDBw6Ew+FAdnY2Bg0aBJtNX8s7HA707t1b27Zz507U1tYiKyur3eOWl5cDOKqrB4ABAwZo32dmZiI1NfWYbWuVaAwbNqzzPyhGWv3X6uvrOxWNu6qqCosWLcKqVavM39pKbW3tt9FEoZsRWyGSk5PxxBNP4IknnkBJSQneeecdLF68GL/73e+QnJysBZrxeDxtJkGpqalt/JE6wno9ioqKYLPZJBZBD0HshhC7ObOQvk8sX74cPp8P/fr1w65duwAc7eMFBQVYsWJFG3l1exQWFnb4nfUaGIaB/v37H7e/v/rqq3jsscfwxRdfaA+12lvY9O3bt802bpMVFRWoqanBsmXLsGzZsnbPZ50vCt8OYns6vXv3xujRozv8vj3bKikpwciRI9tsP+uss8zvhw0bhpKSEhQVFbWxmf79+59kq7uOU7KgvuCCC8xIeB3hdrvbdMRoNIqsrCysWLGi3To9zU948ODBAICvvvoKl1566XH3nzFjBjZu3Ih77rkHw4cPh9/vRzQaxbhx4yTdw2mK2Er75Ofn48Ybb8SUKVPQr1+/NqlQ7HZ7l56vs09whfhA7KZ9xG5Of6TvH0UphZUrV6KxsRFDhgxp8315eTkaGhrg9/uPeZyujjr8wQcfYPLkyRg1ahR+//vfIzc3F06nE88//zxefvnlNvt3ZJNKKQAw537XX389Zs+e3e6+55xzThe1XjgWYnsnxukU0bs94jqxZFFREd5++21873vfO+YfojUQy86dO9GvXz9ze0VFxXGftLdKa77++utjPlnpionCpEmT8Pjjj2P58uXHXVBXV1fjnXfewaJFi/DQQw+Z23fu3PmttE3o2ZxuttIRqampKCoqwtdff92lx925c6f29HTXrl2IRqOdljoJPROxm5ND7Kbncrr1/ffeew8HDhzAI488Yr7daqW6uhq33HIL1q5d2+m0Pu1hnX8ppbBr165jLmDXrFkDj8eDdevWmcGZgKPBz2IhMzMTiYmJiEQix7ymQvxyutneyZCfn4/t27e32b5t2zbz+9b/t27dCqWU1uZWJUo80C1pszrLjBkzEIlE8Oijj7b5LhwOm5EXR48eDafTid/+9rfmUzwAWLJkyXHP8d3vfheFhYVYsmSJebxW+LFa88ZZ9wE6H1r+oosuwrhx4/DMM89g7dq1bb4PBoP46U9/CoCeUvI2AO3/pmO1TTgzON1s5csvv2wTLRI4Kv/ZunUrBg0adNz2ngitqSNa+e1vfwvgaJ5J4fRF7ObkELvpuZxufb9V7n3PPfdg+vTp2r958+ZhwIABHb4R7CwvvfQS6uvrzc+rV69GaWnpMfu73W6HYRhaKrq9e/e2OwfsDHa7HdOmTcOaNWvafUBWUVER03GFU8fpZnsnw/jx4/Gvf/0LH330kbmtsbERy5YtQ0FBgak2GTt2LA4ePGhmSwKOxpb605/+9K217USJ6zfUl112GebPn4/HH38cX3zxBa666io4nU7s3LkTr7zyCpYuXYrp06ebuTMff/xxTJw4EePHj8emTZvwxhtvmGmkOsJms+EPf/gDJk2ahOHDh2Pu3LnIzc3Ftm3bsGXLFjOQxYgRIwAAd955J8aOHQu73Y6ZM2cCOLHQ8i+99BKuuuoqTJ06FZMmTcKVV14Jn8+HnTt3YtWqVSgtLcXixYuRlJSEUaNG4YknnkAoFEJeXh7eeustM78dp7VtDz74IGbOnAmn04lJkyZ9K8njhfjkdLOV9evX4+GHH8bkyZNx4YUXwu/3Y8+ePXjuuefQ0tKi5cTtCoqLizF58mSMGzcOH330EZYvX45rr70W3/nOd7r0PEJ8IXZzcojd9FxOp77f0tKCNWvWYMyYMfB4PO3uM3nyZCxduhTl5eUd+q4ej7S0NFxyySWYO3cuysrKsGTJEvTv3/+YgZEmTJiAX/3qVxg3bhyuvfZalJeX46mnnkL//v2xefPmmNrx85//HBs2bMDIkSMxb948DBkyBFVVVfj888/x9ttvo6qqKqbjCqeG08n2Tpb77rsPK1euxNVXX40777wTaWlp5jnXrFljyuXnz5+P3/3ud5g1axYWLFiA3NxcrFixwrT37n7TDuDUpM3697//fcz9Zs+erXw+X4ffL1u2TI0YMUJ5vV6VmJiozj77bPVf//Vf6tChQ+Y+kUhELVq0SOXm5iqv16suv/xy9fXXX6v8/PxjhpZv5cMPP1RjxoxRiYmJyufzqXPOOUdLUxAOh9Udd9yhMjMzlWEYWpj5E03r0NTUpBYvXqzOP/985ff7lcvlUgMGDFB33HGHli7hwIEDasqUKSolJUUlJyera665Rh06dKhNChOllHr00UdVXl6estlskkKrByK2orNnzx710EMPqQsvvFBlZWUph8OhMjMz1YQJE9Q//vGPTl2T1tQ+HKvttO6zdetWNX36dJWYmKhSU1PV7bffrpqbm4/ZRqH7EbvREbs5c5C+T6xZs0YBUM8++2yH+7z77rtaiquO0mb98pe/bFO39XetXLlS3X///SorK0t5vV41YcIEVVJSou3bXtqsZ599Vg0YMEC53W41ePBg9fzzz3doZ7fddlub81uvs1JKlZWVqdtuu0316dNHOZ1OlZOTo6688kq1bNmyDq+B0DWI7bWlo77bSn5+vpowYUK73+3evVtNnz5dpaSkKI/Hoy644AL16quvttlvz549asKECcrr9arMzEz1k5/8xLT9jz/++Lht/LYxlLJoigVBEM4QFi5ciEWLFqGiouK4T3wFQTiK2I1wJvHuu+/i+9//Pl555RVMnz69u5sjCML/Y8mSJbj77rtx4MCBNunKTjVx7UMtCIIgCIIgCIIgnLk0NzdrnwOBAP74xz9iwIAB3b6YBuLch1oQBEEQBEEQBEE4c5k6dSr69u2L4cOHo7a2FsuXL8e2bdtOOthgVyELakEQBEEQBEEQBCEuGTt2LJ555hmsWLECkUgEQ4YMwapVq/DDH/6wu5sGABAfakEQBEEQBEEQBEGIAfGhFgRBEARBEARBEIQYkAW1IAiCIAiCIAiCIMSALKgFQRAEQRAEQRAEIQa6NCjZ83d/1ywbKmqWXU79NIaN1vHBYItZDkdCVMfl0upEonQ8FSW3b8MWMcs2u94eFfLRfqD9nK6AWbbD2jY6diQaNsuhMJ0/GjX0Exl0jHCEvmth+1lqIMquj2HQt8EgXYNIxNI2VsfGfk+QXZvGsFYFTUHa75d/3QMh/qisrDTL4TD9AXm/+DbpkvOo9svaZsvjO8W+tfEveSUjCo7BPitw+6L6nQ0LcazfzY+RnZ3dqeMJp57nNxTThwjZzpGKw9p+LQG65/cr6m+WU5KTzLLTrndQl5MGFBf7zsXGL4eh97VImNJ6+H1Odmzqaw673u/sbOCqrq4yy4mJiVTf6dTqOAyqY9joeOFo0CzbjvG43GbQl02NTXRchz7meDwesxwM0rHDbNz2erxaHYP9ntQk/Tshfnjm2d+bZX/GQLPstetzr6REv1mub6H5RGPdEbNss+n36Si7iTtYR/Q63GbZY7dMP9ncS5swsc2RaAQa7Lso+047v6VP21j/7GgMMCx2bdj4/C9i3b3dY7nd9FtdNipDUdlw6ZPWpiPfmOXLxkm+63jkijEjzLIzkcaPcnbvBoCqqhqz3FJP409qDtVxpKVrdQwnu2mzMSdUT+uCfZ9v1eo4k8he+wzINcteB/XHaEgfPyJh+i41k+7xuYXUHrvFbqJsfHU46Zx1VdS2isPlWp0QWwNddMFgs6xa6FhvvfW+VievgNJfeZ1kK4f205hu9/q1Ook+GivfXvUOugt5Qy0IgiAIgiAIgiAIMdClb6iD2lsiloA7qj+9dIPeHNtAT+gcDva22brU5w8v2VOcFv7UPKo/7XOwt1529pWDHduIhqARpifv/C1wlB07aHi0KhE7PUUJ8v0idCLD8lTTYG+/PU7+xoPKNofl7UeItdWg+oq1U1nehdvt8swk3rHb7cff6Vukq9+E876u9WCbfp4o76uKXQPF3jzbLG8KwO8l/Ltv7w21EL/4E+jea1M0nLU0urX9okF6C+tx0d/d56U6Dkt34Pd/Nxs0vC52j4Y+trVEeB0aJ1zsHm8xAzgc7E04eytuY2/JDMt53EzBxW/xjU00Rljv/Fz1pdi4a2MNclreSvA346EWGhv5OOV169cap0hZI5wcUUX9M2xPNcshp0/bL2Knt0E2J3tD3dxgllWkUavDBRUtiuqE2JvegEPvoezlNYIheqNnY+Njc1Mzr6KNnbyvcqWfzabP8RRXcXDlCbOPcDhiqUNlw+BzVrKX1NRUXgVuL701s7FxLMrKhtvy5rBBf/MmxB8OP9mNN5P+5n52fwSAqupqs5yWTX0hp4jeItcE9Pu6Js1gfaspQLYWsaxZkpOSzXJmFp3Hodhb5Fq9P0ftdDx/RoJZDrHxq6VZrxMJkd24ffweT/YQatHb5nCRQimdqcGaGmqpXNek1ak4RMoXLx/n2BzRl5Si1Qk2t68aOdXIaksQBEEQBEEQBEEQYkAW1IIgCIIgCIIgCIIQA10q+VZMxgxF8gcV0SNlGRF6dR9lMgK7l0mkLRI3rorlQSFcTOYTVrp8Jhqyt1uHy3kMi7STB0cyWHAOZSeZR3NEl7gdPkIyh8YgHa+hgbbblS5JSPQwmR8LtJSUQBIJr1u/blEbkyoxaYgme4JOKCrS1XiHy4u7Q2ocyznbyKX5MTR9HN/FKm1nrhshHvCC9eKI5T5gdNRWq3Tq5BDJd8/AwVxfuETbZdf7g5MFr3TbmLsN289pCRbW0kxSNDtz6/E46B4daglodWxgrjhh+k6xwJUR3RECLicdj8u8wcYMw/Lsm8v+mpqonUcqKsxydoYuQeXBy+wuao+dtcdqXzxGjoPVb+EBaizXLRTi41aXTjGELsSm6O8UYX0tYgkEGTGoH3sS6e+Znk/BGm211VodfxNJSoMBmgtGmFw2mpyi1Ulkrhi8bTYexLYlqNXhwWo9Hhbsi5uR5V7Oxy5e5ucJhyxzL35JWHd3OWis8notwfnAXTbIXqPcldD6TkvcJeIeBw9k6aY1gj8pUdvPV0XfZfdOM8veRHKpqA02aHUcrD/BxsaMZnJ1sHhKwMdsKsSC2toU9cdAY51WJxCkz9FwBm2vJVuvOlyj1bG7qG2ZfenYDma3LY26fXq89Fs9zL0hEqC5YKBJl4kHm1hA2HS6bp4kcocIWeymtOQQ4gF5Qy0IgiAIgiAIgiAIMSALakEQBEEQBEEQBEGIAVlQC4IgCIIgCIIgCEIMdKmDkyPCwsbbSQdvs4R5d9uZfwrPVcJ8WGzWdE/MDSbM/YJ5yg+X7sOSUzDQLNfVVJrlyiPkc+Z0uLQ6NrAUWGG6PM3MH+GbkkqtjnKTzj9kJ5+BIPNtaKjVk74fLK8xy34385Vgfgt9s/W2pSdyPz6qYzB/I5fFBSei4iOcvNAxHfl0dTXfql8wa3aE+4RH6YuwJX1eiMUy2Llnj1nOzskyy9Gg7pOTmUZ+odwnJ9rFv+3b/DsIXYeL+UZHwyweB/Qxx8nS9TjZd7YIjQUupx4bw7DTsZ0sfoWT+bZFDb1/2qI0BoYDzG+bjQsBS59OYHEz7DynFrcXS/9uDJCv22effW6WQ8zvOzXpfK2O283SSLLTGDzmgSW9o437gbKxJMripaioNcWQ7n8qxCdhsLROoLlG1BJ/oIXFvtBS17A8V0kJlvg1n//bLAcryU80d9ggs2xU6OlHWwyyET/roPXNlJLLY4k/4GZxc2zpLL0XS5tlnUq2JNB5HSEWPyDEzunTbdRdS2l+HH2GmOWmFEpZFA3r8RQizJY9Ubq+PG6PLaLP8ewReccV7yRn0vykvobm9R5/grZfYir1x5RcWiM0sGWS06bbjYetYULs/h9m93uXS69jhKk/VR8mW/OwrtTSUK//CIPu2QksPlSij9ocDel9McTmRHa2/oiG2XhqiafBU9nZbXTv8LrpnDl9eml1evfJN8u5eXStW9ji5sDeA1qdpmY9hkN3IdYrCIIgCIIgCIIgCDEgC2pBEARBEARBEARBiIEuzmnBpKuOFCpb5JNhJjGzsRQmQSbZc9l1+V0kQhIFTWLGju1y6s8HRo4eY5Y/2/iRWT5Uc8QsN4b1SxCOkOyo5AClICk+eNAsu1NytTq9swupbW6SUQWZJMrpz9TPEyBpxpFyCvmekELSkAMNZVqdAJOAZCeSlCLBSVKKSKhJq2OT7D9xT0dps06V7PhY5+m8TJzJgZwkY4so2t7MtU4AampJyldWSdIpnlYiPVFPRWEzeGo9VjY6mTaLy+s7V0OIY1zMZUixv63TeuNj7kh2ltrKYNud0NO6hZiEM8JcF+xJXL6pS8sRpTEsGmZ9kqVabKir0ar4mQTVxuwtHKS2OZz6OFXDUmVV1VHZy3KqBC3K62CI2uNw8XsObY9E9N8TZmNykLXHxSR/yuLKEY2Im1HPgN0LeZoqS5+OhNlcjOmnDSa3Dhj6fdoZpXu4kUGyzaZ66k+h4h1anbBBctcoU4M3Oll/svQ1V4i56O1n9sv6ujUFa4C54tkDzCaYyrslR5fVNh+m8SnRoLmckUwphyJWlyZ2D3Iy+XeU2ZvdptuKQyZscY/bQf3MYOWsHF26XNdCrqEGu3+31LL7qE1f5zijZF987hVkbkLWmU5tJcmdvT7mWuShvpWSnqLV8SeSDdQzV54mPuYlWFyg2IDSXMtcpVzsnuDU+28Ck8G7bWTfSVm0ffDwwVodsGuqvMw9gt17Ery6fX734nMQD8gbakEQBEEQBEEQBEGIAVlQC4IgCIIgCIIgCEIMdKnku8VGsp/aJnqlHwnrUs9UP0kHklgkVQeTOPCIrQBgMCUBjyLKZQBNTXqkt3+8+jezXFZDbShroDolB/U6JaX7zbLdQxHvIvYks+xLytDqOBNoP4eHZA1uJk/12Hxancpgs1nO7d3XLAdYRMviYl3yXVVLcgy7QecsyKSyM6ILQoyIRFyNd2xMDsajYseCslbvQEHGZd62Y0i+I0wWGGWSNrsldGqQRVWtOFJnlusaqc82t+jytsYmskmbm+4Xjc1k+/4E/QewgJbg8VFjUcdLJO+ej5tFK40YdK/jUb0BINRC/dAGHqGabTf04dDB3JEcLHqp3aC+riL62MYNLsyyW0RYZPGG+jqtxj7eNgeX/NFv6JOkR5A9UkHuSF9u3myWzxk61CxHLRFXWyJkVx4m140ymXpzkz7uuhws0ixzJ7I7qD2hsD7GtLTQfolIhhCfcDe6KJs3KOt7FpZVJcik4RHWN5LrdZm4ysw2y94sitobVhQtGy7d3lRGjlluZtJRx2Fy0YNdd8toZPMtlZ1ulrl0NmCJQu9jLkXBeuqrLcxeHF5L9G02jjnSScJuOJm7hNIlsonM/OxMqBs2yPYMS5RnWNxOhPijnkV8N9icaP++Em0/H8sa0cTmRJEQya1dlr9/Y02NWbYlsMj7PJK2Zd7iYtlO0vum0PlZBPqERD80WEalCIt0H2JueYZlMtlQTm4PtRVkk0POp8j96TmpWh0+/3Q76XenJJEN+tKSeA00M7ejELObVH8Klfvotlbf0IB4QN5QC4IgCIIgCIIgCEIMyIJaEARBEARBEARBEGKgSyXfFc0kV6kKpZjl9ze+p+131gB63f/9oSSfTrUzybclUqiNSX1sTCYRYREpDcvjgeKSYmpPM0kEVALJEux+XQphS6UE6F4mmQiyxOpBS0ThpFT6PUl+KpcfPmyW66qrtDqJTO7k8ZJsaV81RQZ0JmZpdSoO7zPL/jJqZ04S1fdaZItcdijEJ41NJP/n8jqHRd6m2Hd2FgmRlw1Dl0hz1Y4t2v7zM5s13jWTFDUwOSqPOul16P0sECIpYCmTN5VXUzlqOU+I6beb6kmyU84ifh84WKrVGTKgn1kuKuhtlu0sUmWbyOSK/W7eBFa2XLa210SIS+wsKmmUSZJtFpeh5loms2aSZGWj+6Pdq/dpF7t3uriNhcgtJ9KiZ1VAhEeA5RHIqT2NjbValbIyOoYvicYjxWR5ymJvwQaq42HSwgomGfz86828Cnxualv/fmRHDqbLa2mq1+p4HWxMbqH7VIRFMI9YVasBLmnPhRCnsFtchMmio9E2N0Paj83LnMzdwr1rp1Yl8NkHZjl8PnOLYFGNldLdGFxMNh4A9W9/aY1Ztrt1qWfUR20wFMsuEaJjJVoiHDsPMgk5k4o6s1mk8v1sHwAOZpeBCrIrO3P3iw4cotUJuKg9NjZndIWZtDxsGa87maxC6D7qG6lvhphr0d4vvtL2y8unqN+JLPp2io/6vbJ4DNWyzCdgMu8oi7Dt9+nuo4XfIZfRjP7k9sDd8gzL4qishMag/d8cMMtpibQ2GjrsbK3Op1tI0l5TSXbjS6R1ks2u9+cW5uaXkEL25XGT3fh8Hq2OV9F3RoSOl5FC0fW/2vK5Vmf7Vj1jQHchb6gFQRAEQRAEQRAEIQZkQS0IgiAIgiAIgiAIMSALakEQBEEQBEEQBEGIgS71oXYkF5rlpiO0Vg+5MrX9qprIl6spSPr5JBf5mUWVJd0T9x+1kw9CIEj+wxUWf4TKeq7fTzPLqZnkc9AY1VOYZICOZ2cpGYJOalugUfczCzTQMfJZ6oYm5iddztJkAYDB/N5qq5gfHvNlam5s5FVgd9HvLq+jdF+lLJ1Wfobud2sTn5y4p6aZOq4/gfxjbA7dOTHC0sVp7tA8PYfF9dfGnKgNWwfPzyw+xzyd1OHSg2Y5LY1syOvR04q0BKgPJ7jpu5xMipGgLH7JjU3Ub33M3ywYIFuxWzpwQwtdqzBrp8FiB7TxoQbfr72t1g9tLokQp3iY87vB/mhWH2o387H3s9R0ySxNja1Wv9+62b3Yw/qDjcU8sAV0H2oX8xFFhM4TrKP2JPp0P9BUZlfFByjuxp79VN6x6x2tTnVljVluCLC0V6EtZtkO/RqEmO/2sEEDzfLkCePMch4bvwCgxUPXIMDGo2AjtS1J6eO70czHx0EQ4hOnncYXG7ODqCX1ZtTG4nqwdzD+auoP4QOHtDpJbH5Tf4j6StBD/pYKuu+kcbjcLPt6sdRWSYrVCWh1vCzNj6uG+l2ApakLV+pxOFzMXsJ1ZBPuKkrfE2rWBwTlpZgDNcWUWtXlJX/PxNx8rY6d/TxlIztq4an1LDFvglGZsMU7TWx+EmRzshbLmsXXi+6l3ijZQyTI0oUa+nzd76FOU1FFc/wAmyMWDSvQ6hScm8faQH2bu03XH9LjduzY+LVZbqhl/tCDWHwq6AuqpCyK6eRmx3bbaO4W0oc2JObRGqq8hWLjJPrJn9rn1WMpOKJsbsljdYTopHt27OdVULa7HPGAvKEWBEEQBEEQBEEQhBiQBbUgCIIgCIIgCIIgxECXSr4HnXOBWT7w8Xaz7E/WJWEXXET7JdgpFHuQSamtclfDSdKBiEoxy4lZfczyF5t3aXX8KSS5yMsfapYVk+U5nbosLtpC6RKCQZIb8PbYLTKdLV9SGoUkN+2XwMLb+xL09FyHDpeZ5TCXszOpVGqiV6tTGyEZU3UVlYsPk5yjV3aOVsfh0n+fEH84kqifRpgsO2TT5UBgaUp4mac8sVnl24rL5drXMSurTJx9DjN5ksFks4jq8qaUROrroRA7D5MVJjCZD6BLvg27m5WpAW6v5T7AGhdmmiYt3cgxfg/YNeBHbpMkSzTfPYL9e/ea5VCI7nX1dbpbTiRE/fjgQXJjqGb368YG3f0nK52k2H6W2sPuIDsIhnQ7cLjonm1zkHStkUnDAzarfwGNJ/sOUdrE4gMkkWsM6i4WnmSS3xk+6vx8lPG59OflpSWUWuTQIRp/Pvjgn2b5LJaWDgAyU0gG29xQQ+2po3EydJYu626oJaniJUNHQYhP3C7q04rdpxG1+M4xFwkbKzc4qX81nPcdrUqSY4RZbqonWwyxtDqG2zL9DLKUXF5qW2OE7Npm6LYTilAbnGy8bGZ93zKKopml/mpqoLb52DkDFttxs/SqPLVQhM0LGyxjFZwszSSTq3JXpajlVhCScSfu8fpJotxQSffrnLze2n4FRXQvTfVSn9m3m9L5HtpTotVJy6Q5kpNJroM55CrRe7A+x7cxO7QFWNpGlp5tz2cHtDqNVeSuMegcaufgkWeZ5dJ9uqw6iem8B59PLkO2JOr33hTdZciZQHUCwRqzXFZF19CAPrbZ2fgYYTZdX09S+4pyPa1dm1R/3YS8oRYEQRAEQRAEQRCEGJAFtSAIgiAIgiAIgiDEQJdKvhOS6XV/fj+SBDSH9P36FvY3yxlMHlpTTPKHkCViXiRMEoELRv0HHavfeWa58Oy9Wp3PNn1pllP9JJM4VE4yDYfS5QZuJ5PtMBVBA4twWltdBU6qj+pw4UGEyRAyMnXZewuTClZWk2TbsNMzjkS/T6vjsNOfK8gkhHv2k5wjM0WXiQ/orctshfjjuZeWm2WD9Rmnxe3Bn0iStP6FFKn+/HOGmGWH5RGZYsfj0a8Vl51aZHRhJufmEYhdbiYRtIikXS6SbKen2tl+VHa4dFtzOdjtx8nkdmE6fw2LZg8ANbVkK/W1NWY5xCIvw9DlP+npKWZ5QH+SNzldPDK4VkWTlgvxywcbPzbLBouYGmVuEADQ3Ez3772HKSIx/zNbbSc1meTOPhbV3s3qOB26oNThJjuwOahPN7HIwg52XABQzN3hcBVFXA2xUP4JiSl640A2EmygscDG7DIQ0KOWJyXSeS8ccbZZbqytYnX0KMr79pH97d692yw3h8lgSo7oGSyam+i8l/wHhDjF56O5Qpj171BE/3ty96Iwi0JtMPcGb3ayVqWukfpkBYsibNjJXoJN+sTQxVzpgjVUP8z8edwufUysY+Obx8nGExuVrfeCliYmaY9Se2qbmU1ZVO8JDmpDYm9yM7RzVyObxd2Kv6+y8e1sP8vAE1US5Tve8abRnNrF5u42WCN20/3Wm0Trl37MRebwvsNancNlJGXO8dP4MfwckmL3yeml1VFsnAjbyKZ2biEX2Ip9FVqd7EJajwweSe6wienUzuZmfSxISqRxyp1N80Kbk907oK/bynbRefsMzKZjh+ke47DYDXjUcOYTUVlB43b1kUqtitemRwrvLuQNtSAIgiAIgiAIgiDEgCyoBUEQBEEQBEEQBCEGulTybXdTJMRDZd+Y5eEjztf28yXT63l7PUVcjTAZmcOlN23PforGeElqIX2RQJH1En1NvAo8DmqP10Xn9DB5KixyoLxeuWZ5K5O4uVhEzLp6PYJsQe8BZnngYJLfVrHE7P6kFK3OocOUiNxgkexSUklKUWuRu9qZHNybQMdrrqffvWu/3javS56ZxDvNLNp1kMlsnA7dBupJXYQE9l3krMFmOaD0qO42JolzM4keV5pFLLIzxSTgyWkkDdIirNr0fhVkUkA7l3azSNxWMVuUSd/2luwxywfLyTaqjujRHJubSSoUaWESvWb63S0t+n2gdx+SGvXtQ/cLn3aPsVyDtnG/hTjki53UbxK8JMVTFpehljD1ieRUck3ikY6DFol0RQPZop31/UQPueKEI7ps1WARV+12OrbhoDruRl22GgxRdPGqKu5OxCIiW7pjMEKa1PpGsolgM23vk5mm1UlPJbenxka6mVRVkywvPcWj1TnvOyQHPFBKY3VtM41Z2w7oNmqzZicQ4hIH66veRBa5uKlB34/5QkSYPNNhsCwolnEnCvps2MkWHaxvWHtJKEg26mWudw4m37a6WPDI3hHmKhQMkB2ELSOP08uibEeo7GLXwxnVxzdnmEnVWVoMgx3bE7FIVyPsHsTsN8o+WGdnhow7cY+HueI5mSQ5HNLXEtEIc49gvkVeljGiaKieIeGz9z8xy9tYNoqzL6H7cItT72fOWjpPuqJj1yPFLA8dOIBXQcYAmhM5fbQeamTuOpn5KbwKXMl0bO7Gm+Yl29j9hS5hP7CP5nKXDCY3o6iNxlZrgG5lo3VbKELjVDRE94doxHKtDf1zdyGrLUEQBEEQBEEQBEGIAVlQC4IgCIIgCIIgCEIMyIJaEARBEARBEARBEGKgS32onSxMfCDAfRp1PzMn82dO8PHUJOTj6bbrPnB+B/nEvLDsWbM86Ye303Ebdf2+y03PC2w2Ol5hvzyzXF51SKsTaCAfgpysDLNcVUf6/Zag7i/Urz+lASvqT+nCajd9bpYb63W/JJ5WIsx8LXio+pQUPRVFRJF/dFIK+XGEg/Tb7DY938OB0nII8c2MqdPMcgtL/+Tz6inQeLoNL/P/Za5sqKur41UQDZPtOVkaH4eXpcCy+KU1h6h/qyidx8b8pq0pvRzsGE4n8zFjPnfK4ggaYr7bgSi105dEPjSpKSlanUiQ9vPY6frUHCFfmwMH92p1+rM0fXbmj8d9x+2WtlnTaAnxST2Lu8HThyQk+LX9vMyfuXefIrMcYv2p4rA+flQy//3s7Cyz7M4gP/zGGt1/OGojY0xOJT81tzvVLAcsaSSbwmSzHjYeRkI0ZtgtPmIulmrL6SLbC3mofMF3h2p1BuZTupVAkMa54t10bXZv36rVueh88nvr04fq79vMUlxafEejEX3sFuITF+s3Lg9LM6Xc2n5eltIwbNDftr6OxomIXR9DPMnkv5/tY6k7WVooA9Y0U3QPtrN3PXYWh8Pl6NyUVbE5ldWHOmLnqSS5HziVXVYPb9aGFjaXZJvhiFrOA7JZg40vBhtT7RaXaR4nR4hPsu20ftnL4t9ELPe9UAuzjzD1BZub+lbvgQVandK9dF89XMnSxfWiuc6RsD7Hy6qlYydGaM2Q6qUxsP/3r9TqpPVisZqaae7UYFAMjxZL+jzXITpPtJHa1uCltYzT0O2m/7nkI+7JoPvAkSMUH6opZEk3xu5LfB3IhjY9ng+AhgY9dlR3IdYrCIIgCIIgCIIgCDEgC2pBEARBEARBEARBiIEulXwbdpKBNjHpdKBJlw44nSQpqj/CpGxMwulELa+C3BR637/zm11m+dABKqNJl2+XHNhrls/NucAs5+VT+pBe5dm8Chp3keQizZ1ilhNTSP69Z89ecHJ7kYS8hkluQ0x2VFZhkQby1At2+jM0Mcm3YdNlflzk4PNTGhZESb7hMvRrHTyiyxiF+CMaYimnuNTNsp/fRX9zr4dsqDlAfa7JkrphL+urLpY2q29hvlku3q/bzatvvmOWQzayaY+b0mEleHRZoI9JyJOTSLaakkwyn3PPPUerk5lBMtii3mRDNiYb4nI/QE+HwtOpNGeRDfTKTdHq9MqjVHgRlm6hqYnJzK3yennU2CNwslSNmVkkSfZY0gVWVh4wy42NTB7G0p4EQrpkLzmTxok85jaQmEz9NikjS6tzhKVKjDBpJzfL5mY9PVcTS1MUDPH7N/VPlyWNpMdN9wInS1mUxWwvMzVJr8PSAmUyOXqSi2z8yL59Wp2S3XvNck4ajYG1ZR/T+VlqPQAI2rt0WiF8SzjY/MJuUB/y2HV3nppykoFWNZSa5YpSsqnUxHStzrAh5CrgZK58LUzmHbJIZHmKRz4O2ljKIZslXSOXUivmpxPRUnpZdNVanh5+bPa727gA0fEcrD4fq7T6AJzcLYMfjp3eZpHKR2ySNiveaaim8aORrXMsamfUVtO8TLF5R1YfGldsXj1N4bCLvmOWzw6Qa5LdTmNBc6W+NspmaYATWBo4VNO4cnjPLl4FdjvNt5JsLI1xhNrTEtJdGFzVNPdyOahO5SEa8/r7E7U6LaC2BeppbeNgLoN1jfraqEXRb81JofPwebI1rXKvbH0M6i5k2igIgiAIgiAIgiAIMSALakEQBEEQBEEQBEGIga7VZnHJDpPI5GbociAuF/3H5t1mOTVMdQak6fIZj5skEy4HSQcqyvfS6VuqeRX0LSqk9rBzJiSRZC8ju7dW50gVySRqWWRvpthAZqYuL3AwCXuARdwOMglhc0CPvh1mB+TlAIsMGA7rzzvSmbzQMOj6uAy6Hm5Dl1FFVAKE+Gbt//eWWY6GSO5igx5N3s+i4ycyaWfBAOrDmel6dOP03L5mOY31H4+PpD0135Rodb7+Zr9ZbmYyOh4M3GGJ0JrIjte/L8nJL7rgu9QWny4H8jFpKFflBZkNhSO63TTV1pjlUISulTeBzp+S4uNVUHa4zCxXVpJ80esjKWJ2ji7dTUggm85I0tstxA8pzBXHzvpTS0tA289gz46rjtSY5bo6Fknbqbsx2KPU4UsOUh9KqiNZdnJyil6HRRNvYZkuDHZfdjstw66P7NrLIizbHMwolC6/83mpjpNJ5HqnU99PcOkaxMa6GrMcZjJzg5lyIZO2A8A32/aY5YEDKWIrmFy39NBBrY47NQ1C/MPl0g4mPY5aZNX19SRxraggF7Kaavq779j8L63Oti8/Msv9+w8xywX9zzLLqRm6ux2Y3DkSZfMYRe2xCqLtNt7H2e9hg5VhkW9HWTTuKJ/Y8SjjlswXfLTj0nJ1jHQQWqRxXoef0TJf4/NHIT4x2Nwgpzf1YeuYE2Hzf+6qVn24wixnFfTR6qSm073TV8XGM+aWl+fSXXlCNhqPggaNBb160X4hi3w7tJ+y/1SEqEdG2X0g0afPJX1eiiDucJH7n81G5SS3xdWKZV8J7qWySqNxMoEdCwDsXnYMJ61zWtj6smBQP61OYd88xAPyhloQBEEQBEEQBEEQYkAW1IIgCIIgCIIgCIIQA10q+XYymUyyn+SUKYmWCLpMzlOnSKJWWU2Sm4xEvWk+Fok0YiNZw95De81ydmoyr4J8JjUKUBX867NvzPLBUl0mnugnObjTSbKELbt49FP9OUSUfW5hkp2GRpJipKTpMrgw07iWlpH8wpfIZBV2XU6UkEAyPxeL7IcQRcmLNNZodbKzRK4a73y66Wuz7HGS/CXYUqft52SRi0deeL5ZLjlIEu0jpVoVDBs61Cy7WETJJuZa4LRE7D73uxSNO9DMIjsyqeqAfoVanaFnkRy0V0aKWU5KINuPBnQJ+34mfSqvJjssraTtPIomANTU1JjlYIja5mRRH11uPXJmJMwiyzIZVkIK2cYwDNXqJLPo5P1y4iOCpNAWLtNuaqb+ZTf0e6fdQX0iEiE7cjhI1hZV+n3d5aY+kJFBkeL9bGzzWKK0JrO+52C2rHg04ojetnCYBqfkJGqPzcakeBHddhwssne0heTbyW52nrDuLhFh7hPBMI3VzcwuExL1MbTkMI0tW3eTa0pLC41toRZdpqrs1vwEQrzDJc4ej96nBw8abJb7n0XSyqZ6kn9v+fxzrc6mTykK/Afvk0vRN1tprBt41nCtzoBBJAdPSU0xyzzCvb1N3+Jy7mgH23V7C0VJ5h1ltseJRnSZeITN16LseJ2NyW1wybcWGVyf54ajHUvIhfjAw1zKXJV0j/cm6XbjctDf1sHckaoPkd1k5eZodSJ26lHhOrpfh6rJ/bTcMhbw+VuSn9rgYV6zCYm6TDzQRPfsliaSqvNo5A0N9VqdBuZqa2dRumFn65L0VF4FfZJp3RONUrt3bWcZArJ1d7sWJ9lHAx/T2XLV69btJqj0a9JdyBtqQRAEQRAEQRAEQYgBWVALgiAIgiAIgiAIQgzIgloQBEEQBEEQBEEQYqBLfajtzE8sJ4t8AxxWn2MWQj63N/lifsr8oWsMPfWNspMvZXIG6fyTk0jL7/To/sIFzIfan0ypu55/7s9mucmSzqqumdLqNDXTOXmmk5xUPaVXoIp8hBrdvG30G7Zt36nVKSsjP9G6evKBS0mhEyVZwtbbWXoUZ5DaZm+ikPqZPt0nKNnTWS8fobuoOED9Jy2VfFDyeuu+JUPOGWCWncxXcssXlLIk2+L/5jeoP5ZXkoO1L4l8JdMtvj+Tx40yyzaDbDc5mepkpOup8KqqyNeyuIT6em0N+YHX1eo+OfUsLV1NI/XnqjpKrxAO6f3ZydIouNxUttlZO5P0Pp+SkmKWU1lMATePSeDV08s1NOspMIT4JD2TxpkoSw3i9+r36GiEfH6dNurvWVm9zLLh0Ou4POQrzf3yPR7m0+nQxzbuK20wfziw7XZDr9PUSPd/G0uPxdNrKZvuW9lUS/Z2cC/ZW5WTzpPi1Yf37PQU9huov/NUPcqhx1NwJJDvXcUBGmf65FJcgcSgnpKlrkVS//QEePooG0s/pWz639PG0lnZ7WQjKemU8ueSy/Wxqn9/mtd9+N67Zrm4mFJtNW6yzL1YWrezz/mOWe7Th87DfVEBIBKm8S3C02GxOD3K4kMN5s9sGLxMuxiW1GE87R53c7ax/awptHh7oKXN4sfq2FdbiE8aG2neEg7S/CRsce8Psz4YYXEzHCyuTFOdPifyJNOc38HSdV58+WVm+RNLvIJ/frrJLJ89kOaI2alUv/5Ig1YnOYXmcr2zKT5IMxuLjtRUaXUCzJ8ZLL5T2RHyCU9I1FNg5fen2DpGgK5HIbONvVXlWh1HEo3JjSy+x96dlGK5eMc2rU5uwfcQD8gbakEQBEEQBEEQBEGIAVlQC4IgCIIgCIIgCEIMdKnkm6dySkolKV44op/GzWRlAwv7muVPPyOJQp2zv1YnapA0IjuPZEdbv6H0DBdfNker89FG+q6xkaSnoWClWS4/vB869IyhIcTSq4CkHak2PdVWnpeOXVtB8ruwneS72Vl6OPlIhOQPzUxeGmgmOUmjU5ffhaMkxwgFSDqV5SQ5Yy+/Ll1tCTdDiG8O7thqlutY2pyJV/1Y22/cuCvN8tv/oBQ2WSz9U1aC7irhdZCEzGOQzCY7maScicl6SgVPAslbw0wux2Wv4YguCzy8nfrjvvIysxwMMamTR29bYiKlVMhiEtRQsP1UJgDgZOnz7EzmzcuJibrrRxKTTtmZDLeBSbfKyiq1OoEAfYfzvgMhPklgkuQQk4d5fbobQ0oSSVKjLI2aw8XSnvj1fqOlt2FS06hi263PpNlHnoVLsZQ+Ycs9ORyhvlZ3hPohHzWdFsl3Qy25DJUeIil2dhpdjxRfhlaniUmzo0yqHmZnsqb0yutNcttBA/qZ5eFDqLxjjz6GbvrqGwjxj8Fk3jaD+oDNoUuxnUzeGWE2YbA+bXPqUs8BAyn1YjRMfa20dI1Zrq48pNXZ2UKuPmUHt5vlogGUtuusoedodbKYXNXB5pXhELUnFNZdECKKZOLcxg3bMeTWzBXD6CBZlrJu164vPxSzMUOvY7PpbidC/BFspvu3L4HmayHo85aoh/qMl83rEnzkLsPXAQAQZWmrDjK3ngEJNDZdcPZ3tTqffU7zxybmbuP1kqzb49L16NyN49Ahmq+5mRtdfkGBVkdFqY6Tpbbqw1KblrJjAcCub6htA4eea5aL0ihNadUnFVqdKpYiLAQ6zxHmCpicqo9t/YqKEA/IG2pBEARBEARBEARBiAFZUAuCIAiCIAiCIAhCDHSp5NvnJ0lnaga9kg8b+mkCNpLjePxMosYiz+3bf1irc8n5JBEINJCUIiGRSd8OHtDq7Nqxg9oQITkgU+KgkckIACAxnSREtbUkPUj2k4Rw0MBhWp1/f0kR5z7ftpfafPnVZtnp0qXYe3btovPU03mi7BlHoFmPzJefTbIPr48iBaal0Xbl0CUk4aAlwqUQdwSaSDJz9neob11x5RXafukpFFn7eyNZJG4mB020uAkkMZu0u6gPO1zUf6wRhKMgW6mtJtlREpPURaFLiPoNonZn9R5olquqyR0ikUXbBoAQk5caTB/rZAbKI9ECQCBA7hENLCKlipJUqqFJt5v9pRTdnLtUhJroWBEmtQKABJ9+HYX4pJG5yyR6ubRfH3PKK6gf19XWmOVolPpd/4GDeBWkpNEYZndyqSuVra4PwSDJZZtYJoZAC48MW6fVMSIkFVQtVN/H3BtSUtK0Ol4XyQYdLFJxCnP5SU7Ux5wgO3YT+93BFjq/zdDHj1TmDpLgpjoH9lNmArtliBk6aACE+MemRZ7nZf0P6mKq5CifPEXbj1wNAEHmttO7T4FZLmAy0n+XlYITZq4YFeU1VGbS8G++2azVKSwk18CiIhbhODvPLCcmJmt1YJBdBYIsSjibKzlduoSdR/COMjcoHthbGfq9QIePdSwTgGUvewdyciF+sLO/ZYKfpNxJ6XpWnpYo3W9dLrKPygMs20qGfl+vO0Tfedj9/+OttMb43nfO1+pMmTrFLB8o2WuWI8wGPRY3ON7NEv00VkaiVOfQAX0N5mJzxmiY9nOwjBrZvTO1OrVHaAysPEzrs121NAbm5hRodQ4cpt+g/GSHfQeRe/DercVancMHdJe97kLeUAuCIAiCIAiCIAhCDMiCWhAEQRAEQRAEQRBioEsl39Ewk0inkfyhsVmXUzYxqSePztu3T2+zvGPLTq1ObRPJafw+evXfhwV3K9lRwqvgIJNPXHQRySSamCQ0sVeeVietV6FZ3ldFMovmFjq/y6fLNJIyKRLquYn0GyqYzHBvyZdanUaWJL2mltqTmUmSiWSlS6Ly/VQnK4mkV06D5BPBkB5B1meIhCje6TeYokj/8Ec3m+WmiB7xc/suiqAYZbI1D4sgGVL637uqhtlelOwzEqF+YvHIQBQkVaqvo+j69jImByov1+q0MNloNECyUR+LOr5np+6SUbxvH2sD/Z60DJK2c5kqANTWkovGkUqS+Sgm2bbZdOmdwT77vCRbSmFRxz0eXeLd3CDR8XsCbif1myOV1Cd3V+sSsEiE+lFKKmVcyM3NNsvBsB6lNRQkOXmURQauYy4azcyFAAAiYTqPnblSuJw0znEpNwB4mPuO10nGGGDjVBR6n/YxqSGX67rsNC7wsRXQI+QHWORjw95+5GYACIVozDlwhLJbNDWSHfLoygCQk9sbQvxjZxJlXoYlKjYMZheKy7x5X7HMM9h+Hg+5GiUmkgtBm6jarB9zibWhqD311fq4s6mSZKlbvvy3WU5LJxvPyemj1cnJLWBtIzl4OnP3y8zO4VVgsOwQ/F4QZq5GYaXbToS7K7GfajB3C2VxGVHRY8nGhXgggc0hwhH6w6am6ZGnbWxOFGBjSTlzTU21uMuEQzTf8uZSZooqJ/WzjV9u0upMuOIqs6wCNG/Zt5vcSt1eixw9SPf1XjnUbrebxp+aet11zsOyOHE3pTI21kbc+pjDs20080xLzAXqvU36Wm9vE10DfwqNWcnpdN17D9LHmIzsbMQD8oZaEARBEARBEARBEGJAFtSCIAiCIAiCIAiCEAOyoBYEQRAEQRAEQRCEGOhSH+r6I+Tz62Xpe1oCQW0/I0qnNViKhow08p3cYduj1SmvIr+1I3byM0n2k6/L4GF6eoQ9JfvNcoi5ktbUkX5/wAA9xceAQnLKLiklP7EtW76i81fq6UhcbvJPSPVTePoDW8gH+/ARS6oUljrM7qE6ub3Jhzvf4mLUN5H8ETw28itqCdD1iEZ1/7yQ1R9KiDumXXutWU7NId+QL7/WfY55KpIg87WKsDQ+Kqo/I+NpOAyW7iHCfLcUdEcem3YI+i4UpjqVR8r4TgiHyXeHuzCnJKWw9uv+0FUspQKYH2dlJfkbtVhiAoRZmqQI8wOyu+iekuDRU564mS+pPUznCQa4z6we54H7/gjxSw1L61Z6kNLrJPj0e/TgIWeb5bQM8k1LSCC/rEBzo1anurrKLIdCLOWUon6XkKD3k+QkGvd8bip7mf+ywxLXIsL80cJhOnaIDVoBm34fN5hd21gqowiLTxKy+Oc57GQXKkp2FGih8pEK3fe88gh9rq8n37bqmhqzzOMkAIA7MR1C/GMo7kNN263pnwzmM2zwPFG8H1v6NE871dxA/ebwYZojlpbqaXnqaqmOk40HicyWfR7d3hIcVIenPjxYSmPnzr36XDIQ+IdZDkdobEjP6GWWzz57iFZnQH/yw87MpPtHUjLzP/UmaXUUWFvZeB3mQ41hSTcmabPiHi9LJRhR1E9tNn3ufaiEUjsFfcwH30Hlsn36HK93AYvpweY6aXnU57Z+9IVWx/f+B2b53GG0nuFpd10Jug91Rg6tOYJNtM7hczS+HgOAKLPxQ4fIdiNB1oeDev8NszoRFm/A6ya73W+Jx2NLJ5uqqqS4HWE25nx31Pe0OjkZ4kMtCIIgCIIgCIIgCD0WWVALgiAIgiAIgiAIQgx0qeR7zy6S1vQdcJZZ9th0yXc0SDJOB5Pw6OkVdImCP4lkFoMHDzLLb7/1ulluqtUlRAlpJJPYdYBkBX16U9qtwkHf1eq4mXS0X1/ar6aKpAdbv9HDvPM0Cgdr6LfWsXRhgYieWqSuhmTnWUzmu+8IbU/ro0vYjzAJIaIs7RbTECmHLolqierXXog/Nn3xqVne/NUXZtmAV9vPbmeyUeZSYdf+5rrsyM6kcw4XPT/jtuZ06nVcrJ/ZXNQGu6L9klypWh0bc3sI2Xm/J6lq2CJBdSWQlC/UxCS1LL1CMKzLxI0Qk2kzbXqQSV0jjXoqo8Z6OkYCs+/MZGqzwyLdtWQ2EuKUtEySeqUyKbeD9XtAH2fqG0gK19BAfc3ttrjLsJRRUZZSq1c2pTZ0W9wLeKosFaW+38jSmQRYKjoAqGHS8iNVFWa5mUnQzzprkFbHmZJilrnIzs5SEQUs7j4tjXTeA4fJHaqiks4ZDOrjRVMjtaG2hqSBLjvZEb+eAPDOP0hS++A9CyDEKQb1j2iU9duwPlfh6aC4R5GhuRDoMnE7S6n15eefmeWGaupraYm6W8aBUvouiclqnWx8i4Z1F6AkP/V3u5Ns3uWgYzvdukuC3UZ9uor16ZK9W81ybY0uxf38U+rvLhe1p0+ffma5V25frU5uL5KJ98qm73x+GjsNr/5Oy7Dp116IP7x+6lv1AZrrFG/fpe3XyNJJ+RJozAixoanR4mZkd1Lf2rOX0orWVdG9O+/s/lqd19/5kNrTQuPZBWeTm1NLQE8JyV2VXCxVYy2TVXPJOQB4mWzc5qR5odtLtu6160vKIJN5t7C5WwubF/bpV6TVaWApVGvZeJrKxl24dTspCxxBPCBvqAVBEARBEARBEAQhBmRBLQiCIAiCIAiCIAgx0KWS7y92kay677ALzHIUuqzB4FI0JjWqY1FEa2r0aKPpacPN8vhx3zfLw78z2Cz/9X//Tz+PQdqK5GSS2eT1Iom1n0UhBgB7mNqalkOXJ7eQ5Aq1Xl0euunLL81yaQNJkJSTZEvJOXrEvIwiknNzyW5EUf3tSpcq7TpM8gkXC8vZHCBpRpMlqHc4qksfhfjjw/ffNstNdTVm2eXUJXHehET2ifqmXVFZWZ6R2Zxc8k19xuPmrha6fMblofM6EqjfelzUZ12WiJYOLgX0sMjiLIp/qEWXk7YwSZEmr+VRZg1dJ+7gEclZdGMwuW6yT29bso+uj9/rYlXoPE5Dl0QZEV1qLsQnIRZ1mPdjh0PvAxEtojHVcbAI8DZLgF0Pk3M3N1L/bK6lcapZV29rbhU2J5UVk7ht/2arVmff3r1mORyh8yjmStQrN4dXQVoy2WJzU1O75ZrqGq3OERYRvZm5XUVY25qadHeJ2jqSENqY7SU4yKYOl5ZqdQ4f1l2vhPgkxNxpeAYJI6xPC21cGs62K9B2u8V2Glhk70AznWfQQHIF/O7w87Q6n23+2ix/8um/zXJtA/XJSFgfQ7JyKTL3JZdcYpYd7F6wt6REq/Pxxx+Z5aFnUTTvJGZTZZY+XFZGWS34WJWTnWuWCwsLtDo8k0ZjPUnLeVYNp0Of4wWC+jgkxB9uB/Wt0gpynSnZtl3b7+zzh5plu4PmKvWsX/iTdbfOQDP1rfS0NLO8bz/14dyB+VqdwhHUh3ftJVeFfgXkZlCUr9cJNNA6J8zc5bJy8szyoQO63VQzVyUXuxOEo9Rnq6v0AdGdQNeKu0Ap5qbq8ug3j8ZaGqd6F9JvyB9C0vCD1fu0Og2B+HBtlTfUgiAIgiAIgiAIghADsqAWBEEQBEEQBEEQhBjoUsn3jlqK/FYZIXmqcurR4mxBJn+J8sToVO6Vm6XVufRiisbtcZJcoDCfJAoTps/U6qz+v9eoPYfpnKW1JFcIBPTIfC4mY6pqpvKuEiYBsshyVAZFYE3NIrlslEl7DEOXIEaZrDZqkLQwxOQXtRG9jsdJ+3lYcvhGgyRRIUvEZhUVCVG8k51JrgGlzRTpNBKp0fZLYhIgB+tPdZUUgb6+TnevCEV4pGKS3lmjsmowObfLS3bIXRjChkUWyDTfCSwyuM9L/TwSsvgjMHcPuKm+waXpLv08XiblS/OTXK63n+43vXMztDo8gHdLgCRJNkX3JYdFs5iSpEdYF+KTnTu+MctDhpL0zWuJvs27u43FxY6yKKRl5eW8ChrraMxoaWYSaeayxOXSANCvf4FZzsyifhhhDXBa5OjJLKIxjxrOA5UHWvQxdNt2khc2NDa0u1/IEuU7yuTxjcy9qpn9tqYm/f7Bo367mcy7rpxcsmpYZFgAiEQt4fyFuESx/sBlyLD8+QzmC8E8JBBlUnBYJN9elsHh0suvZLvRARyWiMADh5Ob4LAR55tlG/fysZwoI51ckvqxaMEOZkcFA87R6vTqS/M1r5fu88lMfsuvDQBUVZEMlUu5szLJFSMxUZfv2pm92Fh49EiUxuGQxc8kaojtxDu1NeQG01BbY5b9Cfp93WASZ7eb/q5pqTQhKa3Uo9Y3BqlvFBSR3Dk5k1xWd+/crdUZnE/93sai2wcV3bubAvp9PYm1tT5MY0YwROUEiztsZQ2Nj83VNOdMYv0+wWlxOTRofE31ka3VR2jM8lmysqSwCN7J2TT/rGihuXFD2OJrpfTxvruQN9SCIAiCIAiCIAiCEAOyoBYEQRAEQRAEQRCEGJAFtSAIgiAIgiAIgiDEQNf6UNfQ+vxvH35llofn6z6NOS7yfUxwstRUOeSPkpuRpNUp6keprsB8A0oryLfluVWv8Sr4/AtKT9LCwqprrmVKf6agmM9pxE1tiDC/Ugd0/8owS88VttF3Hn51le4rEwiylCrMj8bBUmjZLX6uKkAND7Ow9U7mn2M39N8TDFmcm4S4Q4XIhyTZR74g9QHdbzLE/E4GDaaUDCqXfKsrKo9odcqPkK9jQw35s/D0OFY/0CjzqfE5yD9m8Dnkq3OoTvdhqWDpvpqD5K/THCAfIbvF/83NYgL4mO9/CvO1yUxJ0erk9KJ7RP+8bLOc5SYbbGis0+pUVZHvjZ2lNUrwkV+SP1G36fT0VAjxT4j5xAcaasyyLaKn0eA+ojbmuxkJU4yJnTt3aHW4f5yLjVNOlnLOYdfTEkZZOhBbmN2/WWwMng4F0NN1NTWTjTez8v79B3gVrQ6/5SsbfWgK6vePWubr3HiE/MOdzNczHNZjboQj9Hsame9guJlsPML2+X+tgBD/cN95O7ufO5Tep7kvZhj0tw6z/m3tA1E2d+HuyGE21hg2y1yFxTPo1beQHYylYYzqY4iNzd+K91WZ5eYgnd96nsRkOjZvZ3Uttc3h0KfGvqQC+sDmclW1dA0PlVWBE2WxBNw2GutczN3T8OvnCVTrNivEH01sfpHA0nVePPr72n6Dz+pnlvcfIb/nA3VkX807dR/qZhbDop7FnMn0U6yAI1E9pfA3W7aZ5VFDv2OWM/y0fqk/os8LeTweg8XWqW1i46Y1Tg4bznw+ilmT4KG5U7Nl7uV2U2ePGiy9r5tdwyZ9ndMvl+JiHXFQnepa+t1Or57qNdxsHYO6B3lDLQiCIAiCIAiCIAgxIAtqQRAEQRAEQRAEQYiBLpV8NzBZyzufk3xu5+492n7jRlB6k6JeJCkt3rPTLI86f5hWx8MkofVBkkz89c1/m+VNWw9pdZrCTBbApNQ2Fto9aknxYWOpILgUO8LkSC1R/TlEiMmdDIMkcy2gNlvTMDhYmiE7y0WRkMCkQdBlDBGuIGRyDJ7GIWxJTeRKTIEQ3xw5RHLOCEtb0GyRTjbt32eW0+zUtzI85ELhbNFTEHiZTqfZztKkKN5PLHIZlrqjqZlkNpeeTzLzoWedrVXZt6/ELB+poZQKLS1MQmSxNQdLk+dluVEyWGqsFJ9PqxNhbT1cSddje2UpNd+SMikpi+RS3iQmVUqkY6dlpGt1/Ml6ChQhPvGw+2iQSaR5WkEAMFhfs7H7rY1JuZOS/PqxnVTH76N0JHbWPxM8Hq1OOMQk5NtIildbRXLQ2kbdXSKiqE87XXROB2un26X3aYPZSxNzq6hg6X2aLKm27OwapLKUKEHmWsIl5wAQDlHbopqsl2vOLdfakOf0PYH3399glmvDm82yj6XeAYAIG1NCTCLNUzJGIpZUomy+E2JuBHweZbfIqgMt9F2EuUgYTILudOhSz7QUcif0+1NY29gcz5oGjPVXXrYxabi1D9vY3NbhoLLN6LgOn/IZbO5msFRCRoLlPIEKCPFNWg7JpXMHDDTLwwfma/ulZtAcIimNpSJlim2HX793HimjeVk0SuPEvhKa36Qk6HMTJ0vdVt5MdfqwuZM9rBtBJEAy7zBL1RUBjWcuS1o7F+vfzcxvNjeLnV/PPIkGNtbVsLYFmNtEc42+ZqlopvmwyiC3PoOlK3b79LHa5o6P9MAy8gmCIAiCIAiCIAhCDMiCWhAEQRAEQRAEQRBioEsl3+kZmWa5qpokBqXVNdp+G78kKVwkxGUSJKXJzGFRvQEYdpL6/OvTr83ya//4yCy3RHWpEpg8yGZr/9lBpMUSDZbpg6JMnsQlTBFLxG4eJdXgUV/tTCZkiQZrZ3KKxESSL9hZO21KlzFEWETLKJOTcy14To4uB0lMEulqvJPDonQf2Edyl3CLLoUBc0co3rHdLNe6qN9be3ljlPpQI5PeRbXI3rocyM5kcC0sivLn/3zLLF9ukdwMY/22OZlk1TzqsRHWf0+ARSGujZDsiEcmL9lWptWpbKbokAEntdObRdcwNSdFq+NOYnJdL9lkQjJFwXQn6NJyw96lt0bhW8LGZMwRFnXYMDqOvt3SUs/qkE14LRJUG3Mzam6k6KstVeRatL9Jl0hHWR832JjhZMeyO3SZuNPD5OisCcEgHauhWo8GGwg0sDJJcvnI5LGMeSGW6SIEFmmWScZ55GdAj4JsMBeoMLvuKqKfx+WUzBI9AY+T7oshO7tHRnU7cLNsJ1Huasb6hs2m/815VP1olNkEk40qZYkMzuY7BuvJSnGJtsWu2SFsoP7tsNM5W1paeBU96jdrdpjJYkMW1znulsfvOR1Jxq0EG+ieo9ixA/rPgduuR2MW4o/mJpq3HGg4aJaDIX2ukl9I0eR7Z5NrwqBeg8yy3abbmtdFrkEtzAWipZ7OWVerrwvOGUiyc08CjTM15dSXMi1jzoEKmmMdZBHAlZPmQf1ysrU6iQkUzZuvc5qDzO5sumtSA+v33B0q259llrc27tTqbCkuNsuF+cxFz0W/LdSsuzPtL9mHeEDeUAuCIAiCIAiCIAhCDMiCWhAEQRAEQRAEQRBioEt1jVzW7HSS3Doc0GUAe8tIttnS+I1ZHvVdki54U3K1OrUBkhe998mnZjnAohXzaJIA4HaTzIFL15qa9EjIHDuTNGnBS5kq1m2RgxpctsHKhptkVF6vl1eBg8kLubyonkkLI5bwlC1M0picShKS7FwW6dKjt625Xo8oK8QffQb0Mct1jWQbjQcqLXtShwwwyXYV6xcuQ//7B5l98GjCUFF0hKFJ7Gj7rs0UUX9/vW5rmTbq35p7BJPBNdj0cx5WJNvZxSLJHgiTRK8pQf89iX3ovpBdSO4inhSSJcIiowKT6/n9JFVPYBG/bU49eqySSMU9gvoaspHm+hqzXH5IH3NaWFTTCOtfoRCTQVtknrwfc0mr00l2xLM1AICdjYEOJ5eG0j5hS0TkQCO1oaWF7v/1dSS/VhbvD18ijW3cTUixe0FLoz7Ohdn4WMtcnbjMm0dhBnTpbbSDe4bD4dQ+G9Fwu/sJ8UWU2UFDI2VmSLBb74VUjrB3MCHm3hAMWfsak2TaWOYUJuvmtne0PXTfDrMo3xHuNmS5L0c1G2VtVvTbWgK6G0OERavn9bm7n4K1rzP3PzYZ1CKGW2rwY9uZ3JVnYmlKSdTq5PTRXamE+OPIYRpzwqxvbt2my44Ly0gOfvFF55vljBT6G+dn6K6tPBPD/hoKmd3nLJJIlx+o1urs2kXzspRUiridxPpfvW4C2MdcC7eX7DfLWel0nowEfQzNTKFMKKlsvrW/lH53UoK+zklJSzHLjY20HqqoI2l7VaPuNlVbx9YszL6a2bU+vGeXVsdrDeXfTcisURAEQRAEQRAEQRBiQBbUgiAIgiAIgiAIghADsqAWBEEQBEEQBEEQhBjoUh9qnpoEPMWTXQ/ZHmQpO8obyNfl8+2UjmR8k66Jr1ekqz9YTWU384kMN+k5CAIsXUIC0/Y7nI529wEAg/kw2FiKBp4aS1l8NBV7LuFkftsNIboewXCjVof7VHNfPe4n3RjQfYz8KeQrnZJJvhLBMO23fds2rY7T4hMnxB9JqZTyKTObfFhKLT7U3EeLu4y0MP+ukMWVhPtNR9r4hbUP9xHjJw0xX8vGygqtjs2dYpbtLeQ/d4i17QvotrbLwfq6n/wwfb1TzXJmr15anfRMSuXg9pFPTpC1WVl8Pd0OsmM7L9v5dkvKJEuaOyE+OVxCKTcUi5PB/SQBPeWTw019zbDzeAG6F6TLyVKsJSS0ux+PzQEAYeZX2tBAfpM8BVbUknbRZjCfTuZf7WIxOLIsdtDYUGuW62rIpy4cpPrKkqaO+0M3BcnnlbeZj0X/r1K79Z3setot95WmJonb0RPYv3+LWd51mOYQCU7dd9LB43BooxDZUcTiNx9l6RqdLlu728MRvY4WWoDZGE9ZZRh6/9TSdWl16H5utdEgS/MTjbSfFs5miUViGPRbo9H2x5pjmA5CYNcwley619lnaXWS9eyNQhzS1Ez9J8lDf8ude/U50b5iSqPVUEfz//MvHmKW01JTtTo5GX3Nss9LKW/3Ve81y9Heeidp8NCx6xrJHzrsobVIfVQfc5ozyXff4aAYPtUN5M8ctk6BWAevY6mQ07NpTtbMxiUAqK6lzzYH3VcOstSon+8q1upkDO9nll0sZsKBHeT37bf4d7ssKYa7C3lDLQiCIAiCIAiCIAgxIAtqQRAEQRAEQRAEQYiBLpV8azpUJoWx252W3UhLELHRd3vLSSr23F9f1+pccfl5Zrn4EEkrmiJMTmR5PuD0kCzA7mLyPSYhcnl1OXpzPckneBoVno7EaUlNxWWkvA6XlEYtYd2bmxra/Y7XSWFSYABIz6aUQZVHKOx8TeVhKu/bqdXpX1gIIb7xekjC4/ZQyhIulQOASIjJy3gaHk0GZ5F18694Jas+jR+BSecUKzcw6dy2oJ4mJdlFLgzbAiR12sJcHaqSErQ6aX2ob+YWkKQ1JZf6vdunpxGxMelSiN9jmJzIbkmB5WC2z2V9XBZslfvaJG1Wj8AeJTcELt+MWuXO/O/OXHZsqoM0iQBaIuSiEGZpgbhk2yot5/DUiE7WB+2WNFMOnmaOjTMeF9V3e/U+XX2E2tZYT2OJk7ks2S19OMjcm8JcqtpBGiAAsLFcRAZrp4eNeQ11NVqdpkZd9ifEJzbFxhru5RO1uLQp3j9Yn2JpEA1LXjeeQpWnIuXeONz2AEAxFztujIq7rVluy1zOzedhEdbOkKVtUTYfVTYu32ZtsVluBsx1ykD710NZUuiF2efEXiSL7X02pYd1GLpd1+z4CkJ8401gawbmbmmL6H2m7PARs/zO3z40y0nJ1E8HnN1fq5PgoHRUvRMzzbKb2dr26AGtjsEyDLtaWH9mqRFDHl0SnZ1BroVZYTpAYxWlba1vsbicMrfbpiC59Tm8NLb53JZxihlV8YE9ZnnbXpb2ypJqKyuPUoltfu8Ts3zZebQGPP/Si7Q6H/zjLcQDMmsUBEEQBEEQBEEQhBiQBbUgCIIgCIIgCIIgxECXSr7TUlLMciBA8oDGZl064LLTK/4wk7jZmFTz/X9t1uoUH6II4LWNJF+oaiDJX1g/DXxMLhpm0iA3kyVwOSgAeLwk7bEz+ZyDRb6MWJ5DhJlk29AiQLIIyyFdchEMUWO9LBpfRnq6WU7NyNXrsMjpLUwO2OymtkUtcsLGQDOE+CbEop02NpPdJKbo7giBRpJsRnhEYyY7i1iV3GyDoalTLZI2hmKSVsWipTbaqJ0fBnVZZ0kTfVeVQO1xZFMEyZy8TK1OYSZFrU9Ppn5vY3bbCP0HBZi83cEkfh4mlfck6FEwHS66jh4vyc7dzO6cTt1uhJ4Bj4rNpanKIvNUzFVAsVD4muzfcmyDyZ0jXMLKxgK3ReJmZ3V4pHjN88KSeSESYnbNIukH2XjY3KxniWhk0Vi5vN1w0TkDTbpbhnZ92BDG22aVfPPvHOy3qSC1ufpIGTihoIw5PYEwmzBF2N8sZHN3uB+YHJwnO4kqvU/bWF8Lsf4eZXbJXTQAIBplrnis73OVeVR17MrB99PmW5bzcNcFLk3nMnPDZnWdYlHL2Yn43C9kiTycOoiiFecV0DgYKCN72bPtM62OJ9QAIb5x+tjfn3VHZ6ru0pafQpl4DnxDbpkfrv/SLCck6XLnBB/NSXxeOk9WMvUlZ0K6VqekkuTTdU3UTwNsLVNdq0cgrw/S50A5zeUSmuj8oajuclrjIZtwuSlKeDBI26sbqrQ6B1nU7yrmVxJJpPPkpOvXoKK4xCw72LH79qd5od1xRKuT4k9GPCBvqAVBEARBEARBEAQhBmRBLQiCIAiCIAiCIAgx0KWS7xYmL3azpXpLRJc7O+0kjeHJwxWXy3n16L4lLLK3jUk9w0y+x+XjABAIUCS6xkaSzPHIpVbJns9F0k8viwBuYxIgl0ev402gtgaDpAGprCL5QxSWKJhOakNqEklUs9NSzHJOjkVywSS/9TXVZrmhtsYsp6TpdSorKiHENyEWTdjuov6cmqlLl0N+Zjcs4jcrIhTVbUAxyTdXsRlM4NpG5sk/MxcCh4NF2Pbq8raWZOp3/ZIpgmRqGkWt9Cfptxt/Atmxm0XOD4RJqhSELiVUTJptd7Lj8TZbfo8eYZnO6WT1eXR9QI98LMQvgSDJUXlUbWXpA3YHl6pSH7IxlwY+LgC6yw+Xb4NliTAsdRSzvzDTA0aY7DUU1vu0nY2boQZy+Yiw8/taAlodLvO2sd/a0sz2i3bch6MdRPkPh63jFLM3dg2qysqpzS26HN0aLV2IU3iXdtIfzebU+4aTR6+Ocl8BKtuh3z95F1DM18hg7kRup14nNSmV2gAeSZ/bkd4/7XZ2POb6Fg4zVyeLMwePDM7tsp5Fy1cWxTePDF5n0JeODGpz34EDtTqpqeTSdHAbyXKP7Cqm+pbf43GK8cQ7KkquNDVH6N5XelCXVZ81ssAsBxupP9YcoXv8hnWfanXCNjb3GUh9oxfLHpSepEu+B+UMNcvV9SSxLm+iub/dMo9KsJE8vcWVYpZ3bNpqlkvLy3kV5PYuMstVe3ZTO9n4ZbU1bxYdu++QQWY5tW9fs9wY0N0cbOx+k55Lc0nlpWtQU6+POTV18eFmJG+oBUEQBEEQBEEQBCEGZEEtCIIgCIIgCIIgCDEgC2pBEARBEARBEARBiIGu9aFm/ltu5tuSYDlLNMQ098yNJgryTYlanFiizEcnHGTpPyIsHYrFL4x/5n4z3Feuurpaq1PF2pbkJx/W5FTyEU2y688hPCBf60iU/GEdzHfI7tb9hVoCtJ+b+abyOuEmPTVRuInqNNRQ2PgoS8HlcevpfwIW31Ah/uD+aylp5I/vT9D7WYT1e+5DHWZpQZTFh8XGcpsY7PkZ97u02fQ+wn1YHMyfzsv8jxMTdf/ubJa2wO+mNAg+F5Vdlr4ZZB8bXHTOZu4zZ1hsjfm/upj/K/eTtln6PPdz5feEYJBiO7hcepwHl1PspifgdPM4F8w/3uLbzO/5ivUpbi2G1a042kEaLpZqK2KJWRBl/tFhlronyHy9my2pDCPN5JMXZmmzfOxY3mTdby7M+m4oQMe2HcOBWYuVwP1I2e+2xg7wsbGusY7Gyrq6Gl5Jg99zhPjFHmY2wtLTRNGi7adAfc0OZ7tlaxyOKPMNNphh8XI0rN9zm5rIt1SPTcDGN+u8MEQ2EgiR/fOxzrCMIbqDNxUj7HdabwZRNqYkZpHfdObAQrNsg9627f/+xCy3lNN8zR7hqVn1tnUU20CIH2rK6D647bMdZpmnNQUAO0vLmd4nxSwHm2m/gzv1GEcfg1JqOb3Mbz+T4jElVaXwKuiVRSm1UhLJb9/F4jQlGHrMm8wE2i+zgPyp85MpHdZ7H+v+3cWNlPqrsvGgWU5n6cHy+uZrdXr3ptS/fXpR6rjKIywGFPT4INwoExPJ1lqizG86oqcoy8qz5EzuJuQNtSAIgiAIgiAIgiDEgCyoBUEQBEEQBEEQBCEGDGXVSQuCIAiCIAiCIAiCcFzkDbUgCIIgCIIgCIIgxIAsqAVBEARBEARBEAQhBmRBLQiCIAiCIAiCIAgxIAtqQRAEQRAEQRAEQYgBWVALgiAIgiAIgiAIQgzIgloQBEEQBEEQBEEQYkAW1IIgCIIgCIIgCIIQA7KgFgRBEARBEARBEIQYkAW1IAiCIAiCIAiCIMSALKgFQRAEQRAEQRAEIQZkQS0IgiAIgiAIgiAIMSALakEQBEEQBEEQBEGIAVlQC4IgCIIgCIIgCEIMyIJaEARBEARBEARBEGJAFtSCIAiCIAiCIAiCEAOyoBYEQRAEQRAEQRCEGJAFtSAIgiAIgiAIgiDEgCyoBUEQBEEQBEEQBCEGZEEtCIIgCIIgCIIgCDEgC2pBEARBEARBEARBiAFZUAuCIAiCIAiCIAhCDMiCWhAEQRAEQRAEQRBiQBbUgiAIgiAIgiAIghADsqAWBEEQBEEQBEEQhBiQBbUgCIIgCIIgCIIgxIAsqAVBEARBEARBEAQhBmRBLQiCIAiCIAiCIAgxIAtqQRAEQRAEQRAEQYgBWVALgiAIgiAIgiAIQgzIgloQBEEQBEEQBEEQYkAW1IIgCIIgCIIgCIIQA7KgFgRBEARBEARBEIQYkAW1IAiCIAiCIAiCIMSALKgFQRAEQRAEQRAEIQZkQS0IgiAIgiAIgiAIMSALakEQBEEQBEEQBEGIAVlQC4IgCIIgCIIgCEIMyIJaEARBEARBEARBEGJAFtSCIAiCIAiCIAiCEAOyoBYEQRAEQRAEQRCEGJAFtSAIgiAIgiAIgiDEgCyoBUEQBEEQBEEQBCEGZEEtCIIgCIIgCIIgCDEgC2pBEARBEARBEARBiAFZUAuCcMbw7rvvwjAMrF69+rj7zpkzBwUFBdo2wzCwcOHCb6dxgiAIgiAIQo+br53SBbVhGJ369+67757KZnWajtqbk5PT3U0TThE9vQ+3UlNTA4/HA8Mw8M0335zUsQ4dOoSFCxfiiy++6JrGCUIX0dPtVcYcIR7o6XYEAIFAAL/+9a8xcuRIJCcnw+PxYODAgbj99tuxY8eOEz7exo0bsXDhQtTU1HR9Y4Uu4XTot4DM13oKjlN5sj//+c/a55deegnr169vs/2ss846lc06IcaMGYMbbrhB2+b1erupNcKp5nTowwDwyiuvmBPzFStW4LHHHov5WIcOHcKiRYtQUFCA4cOHd10ju5k//elPiEaj3d0M4SQ4HexVxhyhu+npdlRZWYlx48bhs88+w8SJE3HttdfC7/dj+/btWLVqFZYtW4ZgMHhCx9y4cSMWLVqEOXPmICUl5dtpuHBS9PR+24rM145PPMzXTumC+vrrr9c+f/zxx1i/fn2b7VaampqQkJDwbTat0wwcOPC47W1FKYVAICCTn9OI06EPA8Dy5csxfvx45Ofn4+WXXz6pG/TpitPp7O4mCCfJ6WCvMuYI3U1Pt6M5c+Zg06ZNWL16NaZNm6Z99+ijj+LBBx/sppYJ3yY9vd+2IvO14xMP87W486G+/PLLMWzYMHz22WcYNWoUEhIS8MADDwDoWA9fUFCAOXPmaNtqampw1113oU+fPnC73ejfvz9+8YtftHmCUVpaim3btiEUCp102wsKCjBx4kSsW7cO5513HrxeL/74xz8CAPbs2YNrrrkGaWlpSEhIwIUXXojXXnutzTFKSkowefJk+Hw+ZGVl4e6778a6det6hCxFOEq89+F9+/bhgw8+wMyZMzFz5kwUFxdj48aNnWpT6++7/PLLARz1cTn//PMBAHPnzjUlVC+88IK5/yuvvIIRI0bA6/UiIyMD119/PQ4ePKgdc86cOfD7/di3bx8mTpwIv9+PvLw8PPXUUwCAr776CldccQV8Pp85qFjprI0BQCQSwQMPPICcnBz4fD5MnjwZ+/fvb9Mmq09Oexw8eBA33ngjsrOz4Xa7MXToUDz33HPHrSfEB/Fur8dCxhwhXohXO/rkk0/w2muv4aabbmqzmAYAt9uNxYsXm583b96MOXPmoF+/fvB4PMjJycGNN96II0eOmPssXLgQ99xzDwCgsLDQHPf27t17zLYI8Ue89ttWZL7Wc+Zrp/QNdWc5cuQIrr76asycORPXX389srOzT6h+U1MTLrvsMhw8eBDz589H3759sXHjRtx///0oLS3FkiVLzH3vv/9+vPjiiyguLu7UHyMQCKCyslLblpiYCLfbDQDYvn07Zs2ahfnz52PevHkYNGgQysrKcPHFF6OpqQl33nkn0tPT8eKLL2Ly5MlYvXo1pkyZAgBobGzEFVdcgdLSUixYsAA5OTl4+eWXsWHDhhP6/UL3E899eOXKlfD5fJg4cSK8Xi+KioqwYsUKXHzxxSf4K49KpR555BE89NBDuOWWW3DppZcCgHmsF154AXPnzsX555+Pxx9/HGVlZVi6dCn++c9/YtOmTZpULhKJ4Oqrr8aoUaPwxBNPYMWKFbj99tvh8/nw4IMP4rrrrsPUqVPx9NNP44YbbsBFF12EwsJCAOi0jbXys5/9DIZh4N5770V5eTmWLFmC0aNH44svvjiht3tlZWW48MILYRgGbr/9dmRmZuKNN97ATTfdhLq6Otx1110nfE2FU08826uMOUJPIR7t6O9//zsA4Ec/+lGn2rB+/Xrs2bMHc+fORU5ODrZs2YJly5Zhy5Yt+Pjjj2EYBqZOnYodO3Zg5cqV+PWvf42MjAwAQGZm5gn9XiE+iMd+24rM13rQfE11I7fddpuyNuGyyy5TANTTTz/dZn8A6uGHH26zPT8/X82ePdv8/Oijjyqfz6d27Nih7Xffffcpu92u9u3bZ26bPXu2AqCKi4uP214A7f57/vnnzXYAUG+++aZW76677lIA1AcffGBuq6+vV4WFhaqgoEBFIhGllFJPPvmkAqDWrl1r7tfc3KwGDx6sAKgNGzYct43CqaWn9WGllDr77LPVddddZ35+4IEHVEZGhgqFQsdsE/99l112mfn53//+t2YHrQSDQZWVlaWGDRummpubze2vvvqqAqAeeuihNr/hf/7nf8xt1dXVyuv1KsMw1KpVq8zt27Zta3MdO2tjGzZsUABUXl6eqqurM/f961//qgCopUuXam3Kz8/XfpP1vDfddJPKzc1VlZWV2n4zZ85UycnJqqmpqc31E7qPnmavMuYI8UhPsqMpU6YoAKq6uvq4v0sp1e49e+XKlQqAev/9981tv/zlL09o3BW6n57Ub1uR+VrPma/FneQbOCrBmTt3bsz1X3nlFVx66aVITU1FZWWl+W/06NGIRCJ4//33zX1feOEFKKU69aQIAH7wgx9g/fr12r+xY8ea3xcWFmqfAeD111/HBRdcgEsuucTc5vf7ccstt2Dv3r3YunUrAODNN99EXl4eJk+ebO7n8Xgwb968WC6D0I3Eax/evHkzvvrqK8yaNcvcNmvWLFRWVmLdunUxt7c9Pv30U5SXl+PWW2+Fx+Mxt0+YMAGDBw9uV95z8803m+WUlBQMGjQIPp8PM2bMMLcPGjQIKSkp2LNnj7mtszbWyg033IDExETz8/Tp05Gbm4vXX3+9079PKYU1a9Zg0qRJUEppf6exY8eitrYWn3/+eaePJ3Qf8WqvgIw5Qs8hHu2orq4OALT7/bHgb7xa1SEXXnghAMj9/DQlHvstIPO1VnrKfC0uJd95eXlwuVwx19+5cyc2b97cofymvLw85mP37t0bo0eP7vD7VkkDp6SkBCNHjmyzvTWyYElJCYYNG4aSkhIUFRXBMAxtv/79+8fcXqF7iNc+vHz5cvh8PvTr1w+7du0CcHQCXVBQgBUrVmDChAkxt9lKSUkJgKM3VCuDBw/Ghx9+qG3zeDxtfm9ycjJ69+7dxiaSk5NRXV2tnaszNtbKgAEDtP0Mw0D//v1PyAeuoqICNTU1WLZsGZYtW9buPidzrxFOHfFqr4CMOULPIR7tKCkpCQBQX1/fqWjcVVVVWLRoEVatWtXmfLW1tSd8fiH+icd+C8h8rZWeMl+LywX1iUYojUQi2udoNIoxY8bgv/7rv9rdf+DAgTG37XhIdFUBiM8+rJTCypUr0djYiCFDhrT5vry8HA0NDfD7/QDQ5qbI22q320/4/Mejo2N2tP2ooqf7aA02cv3112P27Nnt7nPOOeecyiYJMRKP9tpZZMwR4oV4tKPBgwcDOBooqdVn9FjMmDEDGzduxD333IPhw4fD7/cjGo1i3Lhx3Z6WR/h2iMd+K/O1ruVUzNfickHdEampqaipqdG2BYNBlJaWatuKiorQ0NBwzKf6p5L8/Hxs3769zfZt27aZ37f+v3XrViilNONofTIl9Hy6sw+/9957OHDgAB555JE2eRerq6txyy23YO3atWZKifbaChx9etivXz/zc0c38tZ+vX37dlxxxRXad9u3bze/7wo6a2Ot7Ny5U/uslMKuXbtO6IaamZmJxMRERCKRuLnXCF2LjDmCcPJ0px1NmjQJjz/+OJYvX37cBXV1dTXeeecdLFq0CA899JC53TpeAB2Pe8Lpg8zXYG6T+drxiUsf6o4oKirSfBEAYNmyZW2eFs2YMQMfffRRuz4GNTU1CIfD5ueuTGHSEePHj8e//vUvfPTRR+a2xsZGLFu2DAUFBebTp7Fjx+LgwYNmVErgqA/Pn/70p2+tbcKppTv7cKt86J577sH06dO1f/PmzcOAAQOwYsUKra0ff/wxgsGgue3VV19tk67A5/OZ7eKcd955yMrKwtNPP42WlhZz+xtvvIFvvvmmS+VKnbWxVl566SXU19ebn1evXo3S0lJcffXVnT6n3W7HtGnTsGbNGnz99ddtvq+oqIjhlwjxhIw5gnDydKcdXXTRRRg3bhyeeeYZrF27ts33wWAQP/3pTwHQ2zXr2zQepbmVjsY94fRB5msyXzsRetQb6ptvvhk//vGPMW3aNIwZMwZffvkl1q1bZ6YsaOWee+7B3//+d0ycOBFz5szBiBEj0NjYiK+++gqrV6/G3r17zTonGsI+Fu677z6sXLkSV199Ne68806kpaWZ51yzZg1stqPPNebPn4/f/e53mDVrFhYsWIDc3FysWLHCDBAgT0R7Pt3Vh1taWrBmzRqMGTNGCzjBmTx5MpYuXYry8nJkZWXh5ptvxurVqzFu3DjMmDEDu3fvxvLly1FUVKTVKyoqQkpKCp5++mkkJibC5/Nh5MiRKCwsxC9+8QvMnTsXl112GWbNmmWmYSgoKMDdd9998hf0/9FZG2slLS0Nl1xyCebOnYuysjIsWbIE/fv3P+FgTD//+c+xYcMGjBw5EvPmzcOQIUNQVVWFzz//HG+//Taqqqq67DcKpx4Zc2TMEU6e7rajl156CVdddRWmTp2KSZMm4corr4TP58POnTuxatUqlJaWYvHixUhKSjLTAIVCIeTl5eGtt95CcXFxm2OOGDECAPDggw9i5syZcDqdmDRpkrlgEXo+Ml+T+doJcVIxwk+SjkLYDx06tN39I5GIuvfee1VGRoZKSEhQY8eOVbt27Wo3XHx9fb26//77Vf/+/ZXL5VIZGRnq4osvVosXL1bBYNDc70RTmNx2220dfp+fn68mTJjQ7ne7d+9W06dPVykpKcrj8agLLrhAvfrqq23227Nnj5owYYLyer0qMzNT/eQnP1Fr1qxRANTHH3983DYKp5ae0odb+9Czzz7b4T7vvvtum1QETz75pMrLy1Nut1t973vfU59++mmbNAxKKfW3v/1NDRkyRDkcjjYpGf7yl7+oc889V7ndbpWWlqauu+46deDAAa3+7Nmzlc/na9Omjq5le7bWGRtrTcOwcuVKdf/996usrCzl9XrVhAkTVElJSZs2HS8Ng1JKlZWVqdtuu0316dNHOZ1OlZOTo6688kq1bNmyNu0WupeeYq+tyJgjxCM9zY6UOpoOa/Hixer8889Xfr9fuVwuNWDAAHXHHXeoXbt2mfsdOHBATZkyRaWkpKjk5GR1zTXXqEOHDrV773/00UdVXl6estlskkKrB9BT+q3M147S0+Zrxv87qRDHLFmyBHfffTcOHDiAvLy87m6OIAiCcBojY44gCIIgdB5ZUMcZzc3NbfIgnnvuuYhEItixY0c3tkwQBEE43ZAxRxAEQRBOjh7lQ30mMHXqVPTt2xfDhw9HbW0tli9fjm3btmnBBwRBEAShK5AxRxAEQRBODllQxxljx47FM888gxUrViASiWDIkCFYtWoVfvjDH3Z30wRBEITTDBlzBEEQBOHkEMm3IAiCIAiCIAiCIMRAj8pDLQiCIAiCIAiCIAjxgiyoBUEQBEEQBEEQBCEGTrsFdUFBAebMmWN+fvfdd2EYBt59991ua5MgnAjSh+OL1uu/evXq4+47Z84cFBQUaNsMw8DChQu/ncYJcYHYrCCcPGJHgtA+YhvtU1BQgIkTJ3Z3MwB08YL6hRdegGEY5j+Px4OBAwfi9ttvR1lZWVee6lvn9ddf75JJML8e/F9OTs7JN1LocqQPd0xNTQ08Hg8Mw8A333xzUsc6dOgQFi5ciC+++KJrGiecsYjNtkXGHeFEETtqn0AggF//+tcYOXIkkpOTtesSS1q5jRs3YuHChaipqemS9gnfPmIbxJw5czocX/g/vvg/U/hWonw/8sgjKCwsRCAQwIcffog//OEPeP311/H1118jISHh2zhlh4waNQrNzc1wuVwnVO/111/HU0891SU35TFjxuCGG27QtvG8n0L8IX24La+88oo5KV+xYgUee+yxmI916NAhLFq0CAUFBRg+fHiXtC8e+NOf/oRoNNrdzTgjEZvVkXFHiAWxI6KyshLjxo3DZ599hokTJ+Laa6+F3+/H9u3bsWrVKixbtgzBYPCEjrlx40YsWrQIc+bMQUpKykm1Tzi1iG0A8+fPx+jRo83PxcXFeOihh3DLLbfg0ksvNbcXFRXFdPyezLeyoL766qtx3nnnAQBuvvlmpKen41e/+hX+9re/YdasWe3WaWxshM/n6/K22Gw2eDyeLj/uiTBw4EBcf/31ndpXKYVAICATn25G+nBbli9fjvHjxyM/Px8vv/zySS2oT1ecTmd3N+GMRWxWR8YdIRbEjog5c+Zg06ZNWL16NaZNm6Z99+ijj+LBBx/sppYJ3YHYBnDRRRfhoosuMj9/+umneOihh3DRRRcdc7z5tq5DPHFKfKivuOIKAEefZABHb1J+vx+7d+/G+PHjkZiYiOuuuw4AEI1GsWTJEgwdOhQejwfZ2dmYP38+qqurtWMqpfDYY4+hd+/eSEhIwPe//31s2bKlzbk78jP45JNPMH78eKSmpsLn8+Gcc87B0qVLzfY99dRTAHTpXCulpaXYtm0bQqHQSV+bVv3/unXrcN5558Hr9eKPf/wjAGDPnj245pprkJaWhoSEBFx44YV47bXX2hyjpKQEkydPhs/nQ1ZWFu6++26sW7dO/Cu6kDO9D+/btw8ffPABZs6ciZkzZ6K4uBgbN25ss5/Vz6eVyy+/HJdffrn5e84//3wAwNy5c822vfDCC+b+r7zyCkaMGAGv14uMjAxcf/31OHjwoHbM1r/Bvn37MHHiRPj9fuTl5Zm/+6uvvsIVV1wBn89nPgSw0lkbA4BIJIIHHngAOTk58Pl8mDx5Mvbv39+mTVYf6vY4ePAgbrzxRmRnZ8PtdmPo0KF47rnnjltP6Dxnus0eCxl3hM5yptrRJ598gtdeew033XRTm8U0ALjdbixevNj8vHnzZsyZMwf9+vWDx+NBTk4ObrzxRhw5csTcZ+HChbjnnnsAAIWFhWbb9u7de8y2CPHJmWobx6NVIv/ee+/h1ltvRVZWFnr37m22ob050sKFC7W2tLJ8+XJccMEFSEhIQGpqKkaNGoW33nrrmOd/8cUX4XA4TFs7VXwrb6it7N69GwCQnp5ubguHwxg7diwuueQSLF682JRLzJ8/Hy+88ALmzp2LO++8E8XFxfjd736HTZs24Z///Kf5Buihhx7CY489hvHjx2P8+PH4/PPPcdVVV3VKfrN+/XpMnDgRubm5WLBgAXJycvDNN9/g1VdfxYIFCzB//nwcOnQI69evx5///Oc29e+//368+OKLKC4u7tTkORAIoLKyUtuWmJgIt9sNANi+fTtmzZqF+fPnY968eRg0aBDKyspw8cUXo6mpCXfeeSfS09Px4osvYvLkyVi9ejWmTJkC4OhTnyuuuAKlpaXmb3n55ZexYcOG47ZL6Dxneh9euXIlfD4fJk6cCK/Xi6KiIqxYsQIXX3xxZy6fxllnnYVHHnmkjUyo9Vit1+7888/H448/jrKyMixduhT//Oc/sWnTJk0mF4lEcPXVV2PUqFF44oknsGLFCtx+++3w+Xx48MEHcd1112Hq1Kl4+umnccMNN+Ciiy5CYWEhAHTaxlr52c9+BsMwcO+996K8vBxLlizB6NGj8cUXX5zQm72ysjJceOGFMAwDt99+OzIzM/HGG2/gpptuQl1dHe66664TvqZCW850m5VxR+gKzlQ7+vvf/w4A+NGPftSp67R+/Xrs2bMHc+fORU5ODrZs2YJly5Zhy5Yt+Pjjj2EYBqZOnYodO3Zg5cqV+PWvf42MjAwAQGZmZqfOIcQXZ6ptdJZbb70VmZmZeOihh9DY2HjC9RctWoSFCxfi4osvxiOPPAKXy4VPPvkE//jHP3DVVVe1W2fZsmX48Y9/jAceeODUqyhVF/L8888rAOrtt99WFRUVav/+/WrVqlUqPT1deb1edeDAAaWUUrNnz1YA1H333afV/+CDDxQAtWLFCm37m2++qW0vLy9XLpdLTZgwQUWjUXO/Bx54QAFQs2fPNrdt2LBBAVAbNmxQSikVDodVYWGhys/PV9XV1dp5+LFuu+021dHlaW1/cXHxca8JgHb/Pf/880oppfLz8xUA9eabb2r17rrrLgVAffDBB+a2+vp6VVhYqAoKClQkElFKKfXkk08qAGrt2rXmfs3NzWrw4MHa7xY6h/Th9jn77LPVddddp7UzIyNDhUIhbb/8/Hyt7a1cdtll6rLLLjM///vf/9bsoJVgMKiysrLUsGHDVHNzs7n91VdfVQDUQw891OY3/M///I+5rbq6Wnm9XmUYhlq1apW5fdu2bQqAevjhh81tnbWx1uufl5en6urqzH3/+te/KgBq6dKlWpvy8/O132Q970033aRyc3NVZWWltt/MmTNVcnKyampqanP9hI4Rm22LjDvCiSJ2pDNlyhQFoM15OqK9+/bKlSsVAPX++++b2375y1+e0NgrdD9iGx3T3lyu9XpdcsklKhwOtzmHdY6klFIPP/yw1q6dO3cqm82mpkyZYo477f2e/Px8NWHCBKWUUkuXLlWGYahHH3200+3vSr4Vyffo0aORmZmJPn36YObMmfD7/fi///s/5OXlafv953/+p/b5lVdeQXJyMsaMGYPKykrz34gRI+D3+82n32+//TaCwSDuuOMOTSLQmTc7mzZtQnFxMe666642ASHakxu0xwsvvAClVKef4PzgBz/A+vXrtX9jx441vy8sLNQ+A0cDB1xwwQW45JJLzG1+vx+33HIL9u7di61btwIA3nzzTeTl5WHy5Mnmfh6PB/PmzetU24T2kT5MbN68GV999ZXmIzRr1ixUVlZi3bp1nTpfZ/n0009RXl6OW2+9VfMPmjBhAgYPHtyu9PTmm282yykpKRg0aBB8Ph9mzJhhbh80aBBSUlKwZ88ec1tnbayVG264AYmJiebn6dOnIzc3F6+//nqnf59SCmvWrMGkSZOglNL6yNixY1FbW4vPP/+808cTCLFZHRl3hFgQOzpKXV0dAGj3/GPBVUqt6pALL7wQAOSefpogtnFizJs3D3a7Paa6a9euRTQaxUMPPQSbTV+qtvd7nnjiCSxYsAC/+MUv8N///d8xnfNk+VYk30899RQGDhwIh8OB7OxsDBo0qM0FcTgcpqa+lZ07d6K2thZZWVntHre8vBzAUd8tABgwYID2fWZmJlJTU4/ZtlaJxrBhwzr/g06S3r17a1HxrLRKUDklJSUYOXJkm+1nnXWW+f2wYcNQUlKCoqKiNh2sf//+J9nqMxvpw8Ty5cvh8/nQr18/7Nq1C8DRyXNBQQFWrFiBCRMmdNm5Wq/LoEGD2nw3ePBgfPjhh9o2j8fTRi6XnJyM3r17t7GJ5ORkzV+pszbWivVvZRgG+vfvf0L+bxUVFaipqcGyZcuwbNmydvdp7SPCiSE2qyPjjhALYkdHSUpKAgDU19d3Khp3VVUVFi1ahFWrVrW5h9fW1n4bTRROMWIbJ0Z7Y0xn2b17N2w2G4YMGXLcfd977z289tpruPfee0+53zTnW1lQX3DBBWYkvI5wu91tOmI0GkVWVhZWrFjRbp3T1c9EIqvGH9KHj6KUwsqVK9HY2Njuja28vBwNDQ3w+/0AOn4SGolEYn5SeSw6OmZH25VSXd6GE6E1pdb111+P2bNnt7vPOeeccyqbdNogNntiyLgjtIfY0VEGDx4M4GhwS54OqCNmzJiBjRs34p577sHw4cPh9/sRjUYxbtw4SaV4miC2cWK0N8Yca44YK0OHDkVNTQ3+/Oc/Y/78+Se1kD8ZTklQss5SVFSEt99+G9/73veOOdjn5+cDOPrUp1+/fub2ioqKNhHz2jsHAHz99dfHfHrfWYnEt0V+fj62b9/eZvu2bdvM71v/37p1K5RSWptb3yQKp5bTrQ+/9957OHDgAB555BHzLVUr1dXVuOWWW7B27VozXUJqaipqamraHKekpET7nR21rfW6bN++3Yyg2cr27dvN77uCztpYKzt37tQ+K6Wwa9euE1oAZ2ZmIjExEZFI5Jh/O+HUcbrZ7Mkg444QK6ebHU2aNAmPP/44li9fftwFdXV1Nd555x0sWrQIDz30kLndOmZ0VduEnsXpZhsnw7HmiJyioiJEo1Fs3boVw4cPP+YxMzIysHr1alxyySW48sor8eGHH6JXr15d2OrOcUrSZnWWGTNmIBKJ4NFHH23zXTgcNv8Io0ePhtPpxG9/+1vtjdOSJUuOe47vfve7KCwsxJIlS9r8UfmxWvOltfeH78r0JR0xfvx4/Otf/8JHH31kbmtsbMSyZctQUFBgvi0cO3YsDh48aEakBI767/zpT3/61tomdMzp1odb5d733HMPpk+frv2bN28eBgwYoD11LSoqwscff6xFpHz11VfbpJfqqG3nnXcesrKy8PTTT6OlpcXc/sYbb+Cbb77pUnl5Z22slZdeegn19fXm59WrV6O0tBRXX311p89pt9sxbdo0rFmzBl9//XWb7ysqKmL4JcLJcLrZ7Mkg444QK6ebHV100UUYN24cnnnmGaxdu7bN98FgED/96U8BkCLKqoBq7zcdq23C6cnpZhsnQ1FREWpra7F582btvP/3f/+n7fcf//EfsNlseOSRR9ooPNpTGvbu3Rtvv/02mpubMWbMGC1d3akirt5QX3bZZZg/fz4ef/xxfPHFF7jqqqvgdDqxc+dOvPLKK1i6dCmmT5+OzMxM/PSnP8Xjjz+OiRMnYvz48di0aRPeeOMNMw1BR9hsNvzhD3/ApEmTMHz4cMydOxe5ubnYtm0btmzZYgZZGjFiBADgzjvvxNixY2G32zFz5kwAXR9avj3uu+8+rFy5EldffTXuvPNOpKWlmedcs2aNKSmZP38+fve732HWrFlYsGABcnNzsWLFCjOgU3c/jTrTOJ36cEtLC9asWYMxY8ZoAcI4kydPxtKlS1FeXo6srCzcfPPNWL16NcaNG4cZM2Zg9+7dWL58ufn0tJWioiKkpKTg6aefRmJiInw+H0aOHInCwkL84he/wNy5c3HZZZdh1qxZZtqsgoIC3H333Sfy5zgmnbWxVtLS0nDJJZdg7ty5KCsrw5IlS9C/f/8TDsT085//HBs2bMDIkSMxb948DBkyBFVVVfj888/x9ttvo6qqqst+o3B8TiebPVlk3BFi5XS0o5deeglXXXUVpk6dikmTJuHKK6+Ez+fDzp07sWrVKpSWlmLx4sVISkoyUzeGQiHk5eXhrbfeMvMTc1rb9uCDD2LmzJlwOp2YNGmSudARTj9OR9uIlZkzZ+Lee+/FlClTcOedd6KpqQl/+MMfMHDgQC14X//+/fHggw/i0UcfxaWXXoqpU6fC7Xbj3//+N3r16oXHH3+8zbH79++Pt956C5dffjnGjh2Lf/zjH2YshFNCV4YMbw2V/u9///uY+82ePVv5fL4Ov1+2bJkaMWKE8nq9KjExUZ199tnqv/7rv9ShQ4fMfSKRiFq0aJHKzc1VXq9XXX755errr79uk7bHGlq+lQ8//FCNGTNGJSYmKp/Pp8455xz129/+1vw+HA6rO+64Q2VmZirDMLRw7ieavuS2227r8Hse8t3K7t271fTp01VKSoryeDzqggsuUK+++mqb/fbs2aMmTJigvF6vyszMVD/5yU/UmjVrFAD18ccfH7eNAiF9mGjtQ88++2yH+7z77rttUkc9+eSTKi8vT7ndbvW9731Pffrpp23SZiml1N/+9jc1ZMgQ5XA42qRd+Mtf/qLOPfdc5Xa7VVpamrruuuvM1BT8N7T3N7jsssvU0KFD22xvz9Y6Y2Ot13/lypXq/vvvV1lZWcrr9aoJEyaokpKSNm06XtospZQqKytTt912m+rTp49yOp0qJydHXXnllWrZsmVt2i0cG7HZtsi4I5woYkft09TUpBYvXqzOP/985ff7lcvlUgMGDFB33HGH2rVrl7nfgQMH1JQpU1RKSopKTk5W11xzjTp06FC79/9HH31U5eXlKZvNJim0egBiGx1zrLRZHV2vt956Sw0bNky5XC41aNAgtXz58jZps1p57rnnzLlgamqquuyyy9T69evN79sbyz755BOVmJioRo0adUrTkBpKdXOUHuFbYcmSJbj77rtx4MCBNiH9BUEQBKGrkXFHEARBOBORBfVpQHNzc5sciOeeey4ikQh27NjRjS0TBEEQTkdk3BEEQRCEo8SVD7UQG1OnTkXfvn0xfPhw1NbWYvny5di2bVuHIfoFQRAE4WSQcUcQBEEQjiIL6tOAsWPH4plnnsGKFSsQiUQwZMgQrFq1Cj/84Q+7u2mCIAjCaYiMO4IgCIJwFJF8C4IgCIIgCIIgCEIMxFUeakEQBEEQBEEQBEHoKciCWhAEQRAEQRAEQRBiQBbUgiAIgiAIgiAIghADXRqU7NV7p5vlbeXlZvn9L3dr+/kSEszy+QP6mOUURet71dis1QmpsFl2+ilVh81Gderq6rU6brebPtjsZrG2iY5d29Ki1Yk4XGbZ4083y1WNQbN8uKJcq4NmaluS00PbDSqGEdWqNIbovG6WeiQcpv2ioYhWx++mY2emUdv2lZXRcYMhrQ5rAv7+xVYI8ceLA5PMcq6f/v45Hru2n8egfpboodAHKX76K9tt+t8/YlAfsjlpvxAdCvXNet9sbqH9Iswm7czWQtBDL1Q30nkbg1Rfsf0iSUVanfCIEWa57r13zXK5g+qXBV28CtIaK8xycbWTjuWnawi/X6tT1tRklpNbqOxubDTLTXb9Gtij1O4XK4MQ4pPps2eYZd7XrKFBwmHq8A6D+peDPVN2uXxaHYM/bzaof9udVHZ59L7R3Ez39VAL2W8oSOVoRO/T4QgdLxCmPhmJ0LGjUb1/KkW/IRqh3xoO87I+foRCoeOWo/zGAECx89rYdWsJUtvCIf2ew691+SHLWCnEDTkZOWY5bKN7qS2kz72G5Wea5ZumX031U/h4oNtBKERzr0ALG4NsdP9NcuvjG9g9lxXBTdka8MewUxsizA5q6sgOd+4r0+rsLqsyy8lZvcyyPUrHGjqgt1bnrH7ZdM5mmme6mE2ELfccw8bGZYPNbSNRVtZtNKrou4t//DiE+GPHts1muYWtH0Jo1PYLBsmO0hPzzHKYmUpLi16nqpr6apSteeprqFKgJqDVsbN54pEIHc+RQDZdV6+vjezMbnJyyL5zsuie0JvZBgA4wOZbkSZWpmvgS0jW6ihF/TvYQr9h/+ESs1xbX6PV8bP5W6Kf1or7Dh8yy80B/RoY7DL+6Npb0V3IG2pBEARBEARBEARBiIEufUPtZG+Jgvv2meURgwu0/dJS2BMI/pCygZ5mKG8COCk+eosbjdCTnwh7wud16z/HMOhpXzhAT1GSnPSkBZYnhI3sKYrdTo89DPZExGV5DBFgz035s3on38ny9NLJnmU0VNea5Sh7epmcmKjVSXDTmw2DPcn0eehpsMOpnRVK6W82hPjj+32pnMTeItud+tuihmbqmzZFhqPCVCdoeZMVCLI3TDayjxamhKjTRRpoDLG3XPwNFTOvCJc+AKhvpg3sZTXC7Al+U+MRrc6e198xy8mqwSwrdn5Df/mFsJ2O5/dnmOVdfrKVr2r0NxLJ7M1FCmu3i917woblDbWSZ409Af4WiL++Mgyj7c6tu7F7otK262MBEzUhotgb2SB7HO7Q6zhd7I0VUyGBtScKi8Gh/TdZfARRUd0Q2AsGhBR7w8zfSkf1MUexN+FgxzOiYVbWfw/4/YT9Br6fw6Zfa5dLfwMvxCncRpRqfzuAIzV1ZrmRKTCS+tLbrMZgg1YnpKgPBLXxiamfLMqGpARS4NntTNHB+mAkrI+JUSfNfWwemld6E9j8qNmt1QmW0VyueB8pKAqySfWX10t/O+f30XzUYAoqF7PXkM3yttnGxjF2ebmNKuvvkaQ7cY/TR33TwdYpyvBo+4UC/L7M+iN7AxuxqEGa6siODC/1rbTMVDpWgj434aqGvul0bLeX+r3drq+NElKo3Ql+arfLQfsZ1imQwW2XvmxpZnNRpStVHOy8Lvb2OiuVFCBpyWlanUiU7NPnJ9VYdRW9ZU9xp2h1kjL1tVJ3IbNGQRAEQRAEQRAEQYgBWVALgiAIgiAIgiAIQgx0qeQ7zDRy6Sn0Gj8nN1PbL8gc8YMskFgDCxhktwSIiTBZWTRIMhkPDzxmCfzF5UFclRZqIZlFAnR5k8PBgtTYmZTbQceuYO0EgMYASXjsBsn0nG4qe51erU4ikzQlekka4nGx4CBW2SKTA7UE2LViu9miuoTI1ka3IcQbeU6SyUSYHCxgCcHSFIyw/Wg7iw+ESMgaYIzKXE0WjDCXA4tXQCNTrvHD2ZltRAy9bQ1MAhRgEr8Wtl/YEvDIFqXG1bnppP4o2YbLcp4Kg747mES2v7WO7inF1bp99mPHcLBAOB4mlYpa5LFtot8IcQmXgyr2N1SWPyD/+0aZ9NnhcrN99P5ZV0fBi1weOo/DzYKIteiSPb+Pxq3EFLqX19fRfqEGvQ5sJI+1sYBlEd4nI5bfw+TpkRBJ5Ay+X9gSyIxJ0A3uysGOZbfIt+0ONp6xsvKQTNCw1HHImNPjMJi92Ox6sLD/n70/j7OrrPL98bX3mcc6NVdlqgqVidFAlHmSwcjk3HzBVgnXBlRUvE3btngbcW7aofHStt32rxu5YLctoGgrynAJyKDIGMhEBpJUhpqrTp152MPvD272WmunEsIhkBP4vF+vvLLOqf3s/exTz3qeZ9f5rLWmSzy+do2zT7xtSa9n13xjrVQTe6eASFSUyPB580OqTbUkQnNaxH5JhOMYpm+xEvs/I8JtWoWs9qiE3n/mK3ydPz39jGdHYzymWzvbVZtAWKwhQvIdUDEjWsLuiCSichlzRaJQ29CftWPrOQg0H8kYP9vI5JeO7/nDiEvJvwgTEM8ClapOrlWr83HlutzY8ZpRLetw2LiQhpcL3KaY53HW051RbUIu96GYFUk2M7z+lMu+8RzifVVQhUPxmC0X9f0kIrwexmL8eXS0s385dlq1yZU5DKNa5+dD+UwZDujnqcA+QrzeSLDyAQAAAAAAAAAADYAHagAAAAAAAAAAoAHwQA0AAAAAAAAAADTAAY2hrov4j65uLqkQjejn9lCAY1UcEZ8jY2ViMX/5J44NCIqg4ZgoGWVbWvMfFkL/sIiPKeQ5Nb3ti00LhVmbn89lPTslSyDYuuxJXsQNGOIjDYmYCsNXDiEY4liFTJxjIhIiJsj2xfRZIuYzm+NSFladYyUySZ0+3jTxN5NmZyLLY7viiDjliPaBsivKMgR5nOTEWJDlDIiIRLU4qos4HkvkDij7SkSVROymJdqERHxP3dAlQqoi7rkiamrJclSurWOMROgPiXAfmrb4XKahS/CURczrjhrH9NhZ9sEuR09rraK0UUqE2oREdyK2/gxsxIEeEsjyWK4KVNTHBUSdKctyZ3zfHw+9a3i7Zw8s4PUskeDxVaroMiEVkd8jJebidEZ2Rs/rlSI7qV3jsW/VuG+uq+cCEmWrDBEDLWOjQ74hHI6xL8myRKbIfRIKaH8LGNIXRR4TGZO+R6ktJCA41JAx1IZv7quI4bpjhEsfyhJapaLOW1ER8dAxUfKHUrzXcaJ6TE+N7vLsqFjrMimOwwwFfPH6am/J1wyJNc0h7aOZGPvvnB6O5exfMJ+72a5L+QRdXl9c5aPiw/HVkpSlLYMyxlPk43FI+47rK70Fmo+EKP/k7qPMmcxzIedOmd8jkcqoNtN5HuuFKvtXtchjadfQqGozZy6XeMtN816wXGN71ph+ZrEdzl8QT/K5D5vP5awqRf08lZnFfuSYU55dK4o9Iun47mRE7AXFc1MgwL7v+Ept2Q7PJaVS1rM7RKmtkMzLQESFnC7bd7DArhEAAAAAAAAAAGgAPFADAAAAAAAAAAANcEAl3+RKKRt/pT81nVeHhcIsMRCVgCgmZNnJuC4nIGUSAZtl2a6QRScTOpW6VNlYorRIWEh+KiUtN5D30NXCpRdCouRI3+xe1WS8OubZNSG/VhW5fNKQfJblGE6Ezx1Js0xQlikiIpLq7UiY70Ge2teEAviTSdOzyxAynwBLmpMhLZ+pVXlsFUtslwpCGmpp2VlFyLQrsoSVcI6aq9tUhRTaFYM4LGzLVyqnZs58PqnCrRta8h0UAzdo8Xiudsz27Ej7bNVmeoilSu7UiGf3iGPyvtIqfXH+TEOmkD7FeL4wfbXD/OEWoDmxbDHf7kN+Z+ylrIZl1Wa0iYhCISFxFrK0fIElaeVq1nfGujiO14VEktc2M6j7GYnLsossua5W2K8Nn+RbSuZaRPk4qRgNBvTyHvCVQ9qNK2TiAfJJy4UvS3mjJUpS1utaGlir+tZU0JSospzid+v6Sok6Jo+JnSNcNmsiO+3ZdV8p0XKRx1TLLG4fTbOU2jSSqk1RSEyHx1hSKkvOJWM6JKG9nfdLsSiPd0vUkiyVi6oNifC9rtldnj3rsHmebcT1dUJBPrfp8rpsVcTYr/nGvfARW5SMdOT7pNcZ2+dLoLmRzyWGz29MES4j1x85FsZGtXx73bo1nj2Z43k9luBxOjE5otoMj8k1g59zyuVxz960QY+rSoWfP+JJ7tsLnRzSQa5+buudx/vU+UvYp+Wq0hrRe9ZIhn28UuL5wjLZV4yQXpcqoiRw3WLfr9ncn0gsotrEU/q6Bws8bgEAAAAAAAAAAA2AB2oAAAAAAAAAAKABDqjkOywklNUaywhGRrR0YFY3y34iQuZtK/mePrfM7K3ke0KORK7OkKiycYs24TBfs1zWMp2ckBu0dnE/2x2WVbhpLTewhExvfIylFHPbOYNkOKQ/6omxrGeHRHtLZCp3fH/vcIV+Oxbhe4iGZ86+SkQUDvokfKDpGDJZFlN0xTibqKjjKjkpNRUyUXFMwJexuyKy2FeF5FomtXYNPTYdV0pNZWZwPpftV9BKnxR2UJzb8SlOA6IqQCLAn0H06KWevdmIyiY0VmX/aHWFvDbH8qb2pB7z89IsVUqKe3NNEfpR1bJAow7J96GArOwg5z6/wltmspbS5VJJZIq39e+8RYT85AssQXVNHitmQGdPNaXmWvSnWJLjS8vvAiIuIhbljMjdPSzziwS7VBvTCAlbhE4IH5XS0pf7xmO/Lsa3JWzTJ/m26zxnVEXWWavGdq2qP4Oq7zVoTgw1T8ts+T7nEdLVkcmsZ+8c5Tm3s8WfHZ7HTU2M/fYI7xHDcZ2pN5FkuenQDg7tGSvxnirg6jHd3dvh2em0kJCLBWrKlwHYTKY9e5aoRhPPcH9GslOqTUqECSaivCaFonw/VkD7jtzzyaWvLkIiAr7KF1Yd4RKHEn6Zt0SuM4aYe2VVnphPIh1L8M92ruOs921dvC6YvrWgLqqiGKbY64h9TzCon1lcsefM53kNzE+zxNo09bPEtm0cwjQyxGP9zHP6PDud0WG3pgg7Chv8s4rFPlmtZFWbcp7Xj/FJfnaUrhEM631he7KPmgF8Qw0AAAAAAAAAADQAHqgBAAAAAAAAAIAGOKCS70QLS5yHtmzz7Jqjn9ujUZY52OJ7fDch5A+OllJIKUxMZGC0TLbDvizCToFlBeGwOHdQyP+0SpxqQl40LWRtESFdbYvq+1nWx7KjqRRLEdy6yJzpy+xaCvOFdWZwvu9iUctQTZGlNRaPz/h+IKh1tVIqD5qTdUM8Tus1mRZbjxlHhESYIqu2Y/B4DPszdrvsE6aQJ5lCCm76xkjAkBlNRXZ9Q0qY9D2ojPQqdENIvn1tQkJi67axpGmLyFT+xEtbVJvcJMsCF4uQipTIwjzfJy1PGHydQEX0Tfi36+ostaYJvzkUcMQYcsRYd32hL1LuLDPPFyZ5jp2Y0NlTo5xAmFrniDUnyLK4oOELDRAnl1JsS8igI2E9QFMRmaWbjzPDPC8kk2XVJhjg+b8gMv5bTk0co8dwSPz9vF4VfRORJTVHy9HrQlJv1fhAW1S9kDYRkeFfVEFTIqdsKfs3TD0+TbGmFCo8viZFDM/CvvmqTSQvQjECMos9X9SnKKVUkmWocn8zNc6ZkGMRLasem2Af2bqDj0sn2XmLZR061dbZ6dlHDCzh99t5H1co6ezLJEL+Ai6vVYbYp5oh35oRFn01+PMIhPgz9C8zsb1k4gfNibuflSWsGv/+J0UGe8PQoRL985d59vOrn/XsnlkcmtDWllFt2ltZ2l0s8VxcqfNYSmTSqk1dPE9VKqKNyKhfqep5PBzie81O7/DszRtZlt03RzVRvh9MsuTbmBafx+h21cYSe+DqNK/pkxY/m7W05FSbtnhzZMfHN9QAAAAAAAAAAEAD4IEaAAAAAAAAAABoADxQAwAAAAAAAAAADXBAY6irIhZ42+CgZ/f19evjREyL6YgYT1m6wdXx0LE46++DEREDLfT2EV+5ByPA8Ql1ET9qWdzPRFink686HLvjiHIRboCPC/n+DhEQ5UkCIr57y85hzw4ndTp5UfWEKhWOWwg4/IN8Scd1RkSsXVjYjojjCIV8ZU98ZRlA8zEyxb//iCiwEfCF5xgi4Coi4txsWSrHX2ptL3HPATFmgr6AaBl6GRA+FRUl6izS48oVsfvVkIiZE+PRDOuxadicb2BclDxZN8R+89LG9apNsMo+EbU55m1hgPuTKGu/qRkixrTKvhoSceQB3/04hFi2QwHb5tgpVU7RV3fRlT4iSkFZNRHH7yszVRI5LMJVntdtUTYr6JtfQyLe1BRrWFiUPDR8eS5MEYsaE6V2ilXOFzA1reNA4wmOezOCHB8XDskYVd23wsS0Z1tl8VkJP3T99SplSS4xMQTFPOP65g/5+YLm5cwzRbzmqtWePTWVVceFQjw+zjjrFM8+7rTTPTuV1HuvQp3jIusif0C9Lvw1oMdJRsR5DixY6Nlh4S+2rctKlYqi5M/YpGebYr9mGNrfXEvsGcWaFhb5eJy6jslMpjlfx+wejhev10SZIV98d1X0dXhkq2eHRJnTWEzvC0Nh/Ro0Hzpueu8x1LJk1NQkx/yOj/G8nmnTpePqNd4HyVwG/fPZNw5foAOVW5KijJuY/59dz9fZOazzMZGI1XfFXqe9i3MPlHwlhQ3hK4sPZx/YuZPnjt///mnV5sRlx3l2Op7x7HKZcx+kRS4cIiLb5bUulOL72TXEpfR2bRxWbVqjnBeho30hHSzwDTUAAAAAAAAAANAAeKAGAAAAAAAAAAAa4IBKvge381fyPV29nu0XTxYLLNNJComC4wg5pq/khyV+FhDdDhC/X81rqWdIyMmdMLcpCZmOXdPSnpqQ8NXEdfJ1liG0RLW0Jy5uMCUkPG0dXF4h0a6lHSWT5RiTpSz3R8gOM6KUEJGWfEvZSVBIQ/aVxh80J7YYZ1KeFjT079IQ8iIpB5dHhXzySynhNMXPQiTHj0/yLaTlVpz7ZrXzeIz5ZJ2RKMvlCsIngy7bdVtfpyz8Jm/xz0aFJMpwtX+mROmG3gr7e5eQCdm+sj2OmEuq4jOVFcZMR0+FNtzokMBfemc3AV/pHxUuI8Z0/5xZnp2d0NKzdZtYvuYKabm8ZiKm5/VUlCV7rihBFRZj0F/JsFzlsiOmyX4VEuUZ67aWfBdKHFIVjma4jcn3GQzoMR2KccdFdS6KihJcYZ+EvS7Co5RfyXJ8PqlrMKpLwYDm5OJL3+3ZZ76T5d+rV69Vx8kypyeczJLvlAjTsWu6jE2lzANs506Wf8eTLFftmd2t2oTCPG46OjicJxHjMT05octZjY2McR+6Z54MgkHtB7LM6HSO+x1rFaVVDb2GRMSc4QZESTCTZbF1q6DaTGTH2Z4Sn4EIX0ym5qk2IV9YFGhGjBltX8QpueL5Q9bnjYjxHAjpuXJkZFK84hNmJ3n+f+yP20giIxpOOI79K59jmff0lJZ8xxIizEdshCzhG4mYXkOnREmtms3S8JY2vua0KAlGRDQ1muXrtIjQ1Bhfv62lS7XJC78ZGt3p2dUszymOrwbr+DDPA4cN0EED31ADAAAAAAAAAAANgAdqAAAAAAAAAACgAQ6o5NsVqasDJks9C9PT6riuFpGVNChTCrOUJuST3OQLLKexhKw5GWJZQjydUG3qIptj3ua+VcNSZq4z2cXSbZ5tiwywuXGWodZ9GVe70yx/CNh8PzI7ZkjIpoiIomk+d3kHyyRiQe5nKOKTzgkpruOI7M0ig2y9qu8nEEC24mYnILInSjlpcI8MkuwTppQaibHgU29rObfMQCz0SaGgHmeJVvbPSor7Zqd5DLsTZdXGrrK8ybZ5bBeFVNYJJlWbapT9NVvncZqMZTy7v09nPY1ZLNEL2vx5TNeEb/iy4wcdIWkScnRbaKUMd+9SedC8pBI8pmTG3HQ6rY5Lp/h1SqwTrS08dz/75B9Vm9A2EX4hHFNmRQ2aUdWmRWQDDoq1LRLhpbZW9cm3s+wjtsmyNin/9k/jrsUyccsRmYZdvreA6VtzxL0aNp/QLIms/L5s93JCMSJ8rwbJ6hg+X0FliUOC1lb2nWSCfaejq00dF43wzyIxbmOKfYdp6DVEVhep13lMl8o8bgtFvV9TGerF+hSP8TiuxnWbbITPN51neWhLJuPZDmktblWEMVRFyF9VVFtp78jIJpRu5evWXb6fUEyc29VVAgoVlq5aLq9JBSGHn5rWPhpP6PsDzYfryGcTMff5wu1ssT8xxDyazfM42fDSdtVmfIrHiSn2hUFRjWi6oMdZOcdjeN2GCXEcPwv49zN1Me5DIot+TTw+xMK+5w8xrVuifTSc4WsGekniGDxftHfN9uxIXK6bvvWjhdfKTIafHTMpPndLOiNbUCjRHNnx8Q01AAAAAAAAAADQAHigBgAAAAAAAAAAGuCASr7HJ7KePbpji2e/7YhF6rhomL/ut0TG7bjMFmprWUNGyNXIEBlbhUSu6pPcTAuJwgQJKVyczxVL6L8ptPVw5slQnuUTpRrL9PLjk6pNqMLSjrLISmyZ/PFmc1rmN1Xgfo9Ncwa+ORmRLbmkM/PZImtgSGQHlMmgwyGdJdL0px4ETUdE/IqCIpzBnw3YEZJt9SOpOvNleZcvXSFbtYVs1QpK+SZRQUjAR/M8bqNB9qFSyCcnbWWfSs9jaU7f/D7P7p17hGoTaGN5bOnRxzy7Os7XHNmuJVE71z7j2cPdGc/OhVjSGxwZl00ok+dwEZmp2BW+YTr6w7YNSL4PBQ5ftNizk0mWlyV80kmZ5TsQFnJnsQJOTetMxa4IA4iI+bZY5XVmPKcz+7YkMp6dauE+SMmeG/D9HbvEc7Yrx6eQCTq2P5RHyg7FmlMXIQ0kUnkTkRUUEvIQf1bRqMg6HNVzgSGy39sitMQSkl7b0eFZFunXoDkJhfj3LjPSx6K+48T6EBGy/5BYuCo5HQJUE5LQzk6e55MpcU1XhwbI9c0U4W2VCq8HJV84j8zSLTMmy9nbPxodIcWVe6q8WCcSGS0hDYu9aSAgpLAG+6U/83AoJsIlijOHQUwXdVbkVJHXVZHoHDQRVonHoylCeQI+yXdAzN+VMo+TPzz6gmfbrh5n01k+d93iNpOTWXGUvo5T43n+pZfYP8R0TWZAy7erosRKJMb3UBehd8WCr+KDWA/zOb5OOi18I6oH7fYR9qlkisMzOjr5mNb2jGoTCPF8c9RxJ3q22qH5ltBmKW6Eb6gBAAAAAAAAAIAGwAM1AAAAAAAAAADQAHigBgAAAAAAAAAAGuCAxlDf/+Ajnj2rjePHWlIpddz46Khnlwqsq583t8uz03EdyCM18o6I65rM8bksHT5MwY5Znj131lK+5jTHHOzavEU2IavIsT8pUaIhItKy5/K6b06M768i4gzsOp9rclSXDlu9ka9bsTg6oC7LYZm+IFoR82mJuDXL4ri5gKvbIIa6+YmKEnFBESkSMLR7yjCRPeIw/x+OL1TLMWS5H9E+yO1zdV8MZJ2PTCw82rOXnPUuz26fPUe1MZPCV0RZPJnVwLJ13PVEneOFDjueY2VOm7fAs9f88QnV5p9FaaPHt27z7FSqxbPPmH+4auMOsq/ZE1xaRcZJm74gHLtZgnLAPunt6fHskMgfYQb88WwcGybD5W3xaw4E9bxeq/IPQwaP3ZSIOSvaOnbUETHQpiibNTrJcf2RuI5TNkV5RKvCHhMWuUIM31zg2BzDFhKx0a6Y/4tVHW9qibwJIXHjUZfPHfaV0CNZWk5eX8wmtqtrelkiphs0LzLGU5ac84+1ek2UVROJPQLiMFkiiIgoJsqERmNchisjcm2YAd8+SsbiC7+czvLeaVTsHYmIpqY4BjkiyjCmWzKeXS5rHzVVbUkeu/Ua+1Euq3Mj1MQaGZNlV4VX+NfeWFyUiRR7OVvEq1dq+jpDo4OefVgfgSZkaueIZye6OD9ArEX7jdxTWFV+5ljQz885lqN9YN16zs80NbHDs599ctize3oXqjaxKPtU3RKDUKwFgbBecxwx5xeKYo8o4rbrdT2PR6Lc11Ke/S4jSlhF4zomfGpojK8zxc96p53Oe7SOTl9MuJxLxPOL2pE16fYM31ADAAAAAAAAAAANgAdqAAAAAAAAAACgAQ6o5Hv1IMvaZs+b59mtLVryHXBY/pAYmO/Z6TRLZPI5XU6gWuE2stTBeIUlO7FoUrXJZFgOmEyyDLU0sdWzgwFdzurZZ57z7IkJliv0z2ZpR9XWf4cICu1TOiHuYYLvYaqsNQoOsTTCEaW2hvNcKisT1b+emLyskGxQSMjMbX8pCsjvmp2IkAa5Qhrml/wbIpzAFH8Lk6PECvjKZolSDo4oU1ISZRQSh+mydh3HHMN96z/Ms0eDLKt+YcMO1WZ0hKV45SmW6OULWc+enNIS1KwogfL2E9/u2Sdfe6ZnJ0/Tvvb0iSwN//nDv/Ps8dyQZ3el2lSb44WEvCTKHJl1toOkS+5ZkHwfEgQCUpIsfMcX+lIXZXzqxH4gom2op0eHMax9gedoS6wzHaLmR2+XT+qaZGldMsmy16qQhpdruhxiSMjTXYNl66Ewr1l2VZfNsiwZAyVCfgy5Fmh/c+p8jlScfdnJct9qdR2WERHltaTMTq4zZV/ISKGMslmHAobJPiHlyoGg3kNYFh9XE+FAlggbsOt6/uxoZx+p1HhMFgpc5ioY1uOkVOTxaoj5V4ZvhMM6JCGZYh+JpzKe3TOLSzcODw/LJpQUJfVMsXeToU5EOn5Q+pssH2cEeV4IhLTcNZXkdSidZilvTpRjdfwl53zlYkHzkRP7G0OUGQwYOvSlLMq9DW3jULN0jP3LCehxlkiwrLpWZ4l0XfqapdcCudJlMryGFYo85vLTQySRsmoZvmOKtTEW1eM5kxTroc3PRiO71np2ulU/g7Vm+PNp7+Z9ZjzOn5Vt62cU4xAOU8U31AAAAAAAAAAAQAPggRoAAAAAAAAAAGiAAyr57u7o8OyIyPI4Mq4zXIfEN/rJDEvPqkKW5wZ0VrpQjKU+U3mWl1aF9LlHZPUmIgoHWaIwvZOzJ9YmWf6QiWmZxpIFA569SvSnvZelFK5PDlqtsRw9JGR+5TGWwOfKVdWmJiRE1ZqQ+YgMlHFLy38iImusabJUpCrkVirLHxEFgvr+QPMRFJlGazMnICUiIsMWWRtlBkfxd7GsocdMSAiC6gbLiVqWHMXv9w2oNn8aY3/NbuWs2k6Y/WnNSy+pNoMvbfLsuMh03Cmyug5NTKo2VYN9+rQzzvDsYpElTbFEh2pz+kUf9Ow/rGWp0dbtm7lvO7arNuEYywKNCM83qSpLsloNSL4PRaoqqymPO8P367PFXColbtLuamtXbfrn9Hv2lq0bPFv6a9e8FtmEDJvXI1fM8a0plsKNTRZ8bbhvQSHZNoNCjupoGZzr8jpju7y2OCJ0wa+cs4Xk20yKrMMxtnMFnRE5brLPl+t8XKHCa2O+qNuUSvo1aE6CIlSsIvYwMjSIiMgRku+g2E+MbRcVE4pattk7l0P5tg3zvD80xG0KJb+8mcfXrFliLyfkrnVXfwfU2837svZOlpnXRKb5aFpLV+PCF4tlDr8wxW64N9xDChHiYDgiTFCswyFT71nTCZ5PZvWIEImy8PeQXuQ72vR6B5qPipjXrSGW71tFvccfHuNxP7aDnzmyk7y/MiM6HNYkfrY5dulJnl13eVzEYr5qFBURuib8s62Vs4HXq9qnyyV+NomKDOCZFh6zGd9YbOvknxVyvN+r1zikwqroZ716ldep4WEOE1z1vAhtzaRVm9YWvu7sOezfYVENw/XNUc0CvqEGAAAAAAAAAAAaAA/UAAAAAAAAAABAAxxQyfdpRy/27FScv+p/+rkX1XFHLOIM4N01/uq+LrKFVso6k10kxrKdaJJlEj0iy2ObT6IgC5PndrHk2y6yLKGlvUu16eiey/asbr6fFr5+LpdTbWTmyYkRzn5niOyUoYjOTkkig3NcyMRNgz8DKckiIkomWepRrvBxNZGi0/bJxEOQrjY9hpB2GkLKEjC1HMwV0lBHaFodIRMt13zZ5IWOLXQYZ+yeTLFUdc0Lq1Wb7BRnl2zrYP+wWrmN7Wj/DIS5D6U8t6dYK1+/JSGb0JIjl3r2CWez5Lsi5oFgQd/PMcexDOrMs8/z7J/9522e7da0Dzy/ab1np4IcKtEpMmzajm4TI2THPxTIlVg6JjMDB3x/K5avZPL8kJhjY2k9Pk864QTPTolsruMTLMtb/YwOfUi28jw/ey6vU6Go8F1bV5YIiz4ExVpiCjloOKzlpFQRWV+rMuM3j1uDtO8YIjtxQUhdw2H26+m6lqOXbRlaxHY+z/dQqer7MVxkKj4UMETYmCsyfvtDBQxR1STscJvSUNazy1M6c/2ihW/z7LYObt+S4ZPni3oNkRUp2lpZXprP8blLO3apNuMj/Lqni/drrowrDPjCeSwOSWht4/XJCIjs/zXdt3CAzycrQtjis3EdPefEwiIsI87XiUfZTvjmnHhCZ0kGTYiYR8Nh3pMX8toHdm3f5tl1MZ5qRd4fuVUtE18wm+2yw2Nh4za+TsRXyaUswknzeX7WCgZ4/SlX9DOLDFMti/Adea6hEe1rtJ59wLFEBvKaDDPSe9ZIhM89sos/n52DfFxrRvtngFgev/Q47s87Tjyc9k5zZAbHN9QAAAAAAAAAAEAD4IEaAAAAAAAAAABoADxQAwAAAAAAAAAADXBAY6jnt3E889Aop2Uv12x1nEMiTkzEiYZDHCdWIl16Y2JyyrOTbRnPTiQ5BiUU1unkI0G+Tus8Tr8+McLXDMV1DEtQlNEKiniWusUxEC0pHediilJXxShfs3c2B0RMl3VMZjTOMdmOiEGoVTgeLZbRJVlmy/PlSp49uGuU9obRJLEFYO84MqhTVlBz9e9OHlYzON6rlhR5BLoXyyZUqfBx2U4uBfL0Fs4pEA7qaaBN+HFHO9s7bB7DNUuP52SajzMT7Icd8/o9+53L3qHanP3uCz27c3Yfn1uUeAhGde6BSpXHfVjEZB995DGePbxprWozUea40GJrm2cfddQyvn65pNpMvfAnAs2PLeKRAyIG0zD034qDAR7jUREPHYlwTGi9qteclgzHQL7z7NM8e/16Hl/jj02oNvUCr3XpCI812+aYM8PW66FYpigqcoWExTpT91UJCYhQtbLIZyBC48gI6Hg2U8RUy3JBgSRfp2romL5ygddxstivA2LrkIlpHw35Sl6CJkUsKHWRe8W/Z5C5YEwRJ5wI8LjJ5rP61C77VWsb5+Eoi9w4saT20VKZfXl8nMddIMDja+68PtUmF+G9z9QEl+/pnMf5dDJxPT5zU9zXflGeqyjWlklR8pSIaOsm9p3DFnJJsFCM5wgjqGNbLYd9KZvjEkrJNLdJtfhippHypumJR9g/MnG2BzfuVMc98/RTnl0VpRYX9fCYW3DEItUmHGK/ufNebj+dZd+YzunrjA5xjphSkWOlTVFCK5XU5bmkT1liPZLrpOVbdOqi7GJd/EzmXEik/Nfh8xXz7J+7dopSXZnZqk0ywj5RKXEJ1MMG+Bmus1tfx2mSKlr4hhoAAAAAAAAAAGgAPFADAAAAAAAAAAANcEAl30lRyqdXyNVGclpGViqJkhsV/plti7IFdS2Lm5ziUleBNJ+7Pc52NBpTbfJCJh4WMrSAycfVyjpleyTDUlZXyK/dGr9v+0pRhYRMo0tISh0hj8oXdTmSUoXlhSMTWc+OiXIP8USvahONsuQunWFJ045xbi8/JyKijpSvXBdoOlwp7XYM8b7/SJbw1IVsdTLDZTjaFixQLUoWn2TTBMtOuw8/2rO3b9ug2thB0QeDZT4l4QNHHnWUavPud7/bsxce1u/Zs2ezTKetq0c2IUf8PW98UoxbUS7IqmkZ7k9+fItnP/qLn3v20V18zYql/044JeRJhx/O/T71HC67FRwZUW0eW/M8geZHqNooFuZ5OOorMxUVuupgiJc9WWZwakrLt0dHWVp3xOEszZvdz+P4gsQ5qs3kJEs7U0nug2uwRG1yaodq4zo8xutCfucKiZ1rhFQbR2pDTemv/IEYAd3GNNkPKmLdq9l8HTPm+xu7WIYzQQ6xCNbEcXW9hhZ9ax1oTgIi1McRi01uWpfYMSqirJsIb2uJc2mrXY6ePycmeD7PDLBMO5fn/d7kpJZVx0Sp1YBw7EKex1NKhDcRESVn8x7pmT89wn0O8jV7Z3erNhM72K+HBrfyuUVZyInhYdmE/vDQfZ69WMwFJ5/5Ts/umTtLtSlXxNwyyeVUoyIkKhrR/lbzlXwEzUdxmsfj1BCXeMrn9V5lZIpf26KcYb2bx6Msx0ZEtG0Hj7vRcW5jWRza0J7WY6ZzwVI+X5zn/KEhsafyRX5WKrzWvbT5Sc8ulzjswfT1zRYhf7297AOOy+vHi+ueVm2khN2y+Hlq7lzucyY5VzYhI84+UBXPYBNjvH/t6tHzgOvq58WDBb6hBgAAAAAAAAAAGgAP1AAAAAAAAAAAQAMcUMl3yGHZUGuM5W7RWEYd15bm11LuGhIyvZaMlqttG2ZpxXSRM5QuFtmF1z7/gmozPsQyiSMXLvFsM8RtClNadjS6YY1nG0HuTzLOfS6K6xMR2UKml6+ypGmjyL69ZdugajM8ybKqspC3m3G+puNPXSdUfhHxWaXbWXq1fVTfT7iosxeD5kNmVTVFduK6T/NdFxkTp0QmxBdEBvnimo2qTSyT8ex0O0tVc2JcbBvS8jZXzApRkRG1OMXj/tq/+qBq8/9deqln1+oibEJIzkuFmmpTFb4iE6QGRQbze+76hWrzx/+4w7Nj4yyvLRe4073dOhNs7+xjPfuE01ii19XFcsFwQkuIIi2dBJqfVIJlyGHhHyFTL21SqhoWUuhYimWeLRmdObRUZYlZew+PhyUdLHdb/9xq1aang497ccOLnt0/n+Wg4aCe14emX/JsR4RNVUTK7kBI/+1bnUFUygiFOZzJ8qngHEeWEBCZwW2+Tijqyzps8bmjIhylXmI54+SorjKRzeuwI9CcyOzdQZHtPpfPq+PsIo82V4SkdSUznj2w+AjVJl/k8REToUJt7RwSl0rrKiYxkeF+TGTZNohD92RFFSKiupBIGyb7zs7BbZ49u7tdtQnLohois39HyzzPLmfjsgm1ioov61bxHjEvJOxLjjlctYmJ7OIyrKJ7Nq/DId93WoapM/OD5iPZxuOpEOZxkm7REunWDt6LRUT5lmSC22wZ1OE/P/3V3Z5tG/2e3dXFY7OnU+8LoyKDd+9cDvlrbeNnpkhEj+ddOznML2Ly/qijPePZ6Va9JyoIOfjSpVyxxSX27yeeeEy1iUR4HZa+mk4d5tmzZ8/XbUSlpXSSfWhkmNeZBYt1GEcg0BzfDTdHLwAAAAAAAAAAgEMMPFADAAAAAAAAAAANcEAl3/EwZy+0hT55alpLiAyTJRORFMsKajY/31sVLauuVFlWsH0TyySOPmKpZxf8Ga7TLIVo62Cp0Y6XuFj4M6t0Nt+Wbs6YPDHKmfC6O1myN17QMurBMT5uWmQw37WTJQrlks50Ho2LjORC5tMipKeGT7OXbmF5IwlpeKuQGdbs9bIJTde0zBY0ITb7iiu0nHVDS0MdESrR+44TPfuFER5/+WHta7Vp8fsPc3bKlzbyOKnlK7IJuUIS297C/hBqZdlQS0uHajM0zL43KSSf5TKf23c71NrCYz0pMp/K9OY9PbNVm6OPfJtnl6ZYCtg1f6FndyxaotqkO9n3pTIoX+DPqjUelU3IaW0l0PxEAvx7i0VEGExSy7fbRfWFnl7OPN/axuM4ntBhRh3d/LP1mzicqGd2F5+3K6PaREUm7NXr1nq2cHGKJbT8LlDiZbgmwnyksM91tfMYQl0YFNnNHakYtbQ0sFbndcsQEvK6w3NE2Kc4Led4HR6bZLs2yX5drurstobpSykLmhJDyKcjooKI2puQrkgSSvLYNcI81juSOlQg6/B+J5vnebpD+FsqmVBtojE+d0JIrOMx9uV8Xu8Li2JR6ZrNa8XgpnWeLaWiREShEM8TwSD7Tq3M53aret+0sJ8lqu0ZXt9Gxtnetv4l1SbTxutbtc7+Ylf43MmQXnfSrVoGD5qPmJBCl0VlouxkVh1XFBJpWTklKsKUtoiM80RE6zaxTHz2LJY7R6NcnaRc12GdW9Y969lrN3J7uebNmTNHtXFs7s8FF17g2Z09Gc/OTuvnHBkikhKhUpYIGXrX8gt0G1F1wrbZB1rS3LcJsY8jItq4icM1duzgZ6CxEf7cj146oNq0d2p5+sEC31ADAAAAAAAAAAANgAdqAAAAAAAAAACgAfBADQAAAAAAAAAANMABjaGWpUmmZVmNqUl1XEeF42hqomQQxTluMegrj9Ai4gH++9e/9+yF/RwvOdC/QLWxi1yaajrLfZiaHPPsjCj9QER0+snnevb2TZxafv16tndN5FSbTaMcA1AjjhmwbI7P6WnV14klOXZmaJr7FhcxNSHSMXABEd+WmcUx3dMW/xptX5zqdEXHt4EmxBblbETcfKm9Sx12wsV/7tnRZSd49so7fu7ZhZd0fI1j8blDMY7JKUxnPbte0OM5EueYtXiU433auzlGLRDR8W8jE3y+gohFk+Ox1VcmpSr6lhvh0l2yrMSxZ75TtQmLc+wY4vijUIbfr7o6htMUZbycCscFObbIyzCsy1eMlHUsOmhOFgws9uzuDvaXzg4d458W4yYY5Dm2KuIZA7744aVL3+7ZmwY5Nm3tJi6HlfatoIkM57OQ/rZjeJdn987WMapBUVqk4shcGzz/O47Op2GKwllBUS4sINbNQFCvH7aIlQ4E2ffqNT53taTzKZRE3LQ5zseF6nxNwwyrNobvuqBJUWOFf59t7b4yUy7n3kiKMowucSyy64vXz8R5fRjO8f5mdITn7GhErweRKPtFSJQsjYv1QI51IqJylfs2u5/L7zgWj+NRXynRuX393Ic4x2qPi/JvOV9cZ4uIHY+JXEGtaV5rMqK0KhFRQuR3sEVpy+EtXM6o4NtL9i8WsdqdJxJoPlSpX+E3oZBeQCyROGPnJPvA8ATbY5N6nCWTXMrTELlkdu3k9Sfou04uy/N6ucrrzC5Rkmvji5tVm7lzuLRoJM7xx888zXkAtmzdqtrERex3SwuvtWWx37PqvucNEUNtWewDJ564zLO3D46oJk/98SnPTou8QUGx1hd9JVg7upojbwe+oQYAAAAAAAAAABoAD9QAAAAAAAAAAEADHFDJt0yrHhclEObNnauOiwo5j1VjGYAZZkmZI2WwRGSaLJ/esYsl2/986089+6LlZ6g2HRmWrsZGWRo0vTPLB+XrJMltZTnO7DRLn8YSfK71W3apNoYoo9XW1c0/EBKJmE8FFzL4jYAobSWluHanlgaGRbmHZIx/1ivKuLR16XI/Y76SEaD5sIW0p1pnH5hzxrnquHes+IRnPynkPOlOlgmFEptUG9fl8V2vsZy0lBeSZlf7QF3I6DZuYanQ3IHDPduMaJlnxeIxXBMS65iQjBfzBdXmvnt+5dnPv/CMZ3d2s2x2+bt0GYaBxVw+ItjNYQ/5LEunSlVd7qEqZN6yilwpx/157PcPqTY7hrQEHDQnx7/jZM+OhHl+lHI5IiLD4LWpWOKx/8cnHvVsN6j9oKWD17DpCq85U9M8p3b7ZJ7ZHEs4Ay082EolHp9FS8vVgqJsYlgsya5YIxzDJ/mWskOX703+hbzu+mVwsjyfOLclSnWVdcxQMsjrTDXAcr6ACG0K+D5r19GfI2hOTFPIVQNCYh3XJbBKITG3i31ZOMpjoGL5SqfV+LiMkEvLkALL1aVE66J8Y06UWu3o6vHsmNgDERG1pUXpxQyvB72iTOrGNbo0alKU5CqVeW2YGGdpeKWi+xYXEvZgiH2iu5v3iIm4LodXFetQqSDOJ/w6b+m1auMaXr+XnUygCXHE2A4IH0qktd/IMIqdQyxrfvJZEYbnH88Zfn6Q8uld21d5dmtnv2oTFePZEStArSbCdxz9LLFjx6BnP/LIHzy7pYXLa6VbZqk2jijdmM3xuJVSbtvW61QwyHNESKwlq1fzOC/6yhCHI3w/YtkmS4Rx1Gv6+dBoDsU3vqEGAAAAAAAAAAAaAQ/UAAAAAAAAAABAAxxQyXdUyJANoRwrT+lMhqVpllrWyyyFsWnas6fHhlWbQSFxlRnAxye5zc9+dZ9q09LCMu1ukSW8M8DycTM7rdqUiiw/SHeynGisyBIkJ6I/tqqQzJamWBroirSxMZ/8rreVM1x2iH66om91S8sn8nmWgHRWWYYVj3J/WtvSqs3UkM6gB5qPksVjwxGZ7mN9i9Rx9z7BsujhaZaQZsTYjkS1hMgQmSaHd7LMp1LlzIzhiG4TjrLkJi6yLIaEpNb0pUSuCS21JTOLi8P++5d3qza3//v/z7Ndg9sYQfbvtc+/oNpccfX/9OxFQv5tCAnq5ISuKlAW2f7rRfb3Rx6417Off+Jx1aYNmYoPCcJhOXbZj1yfBswU2YFLIqThkSd4zZiY1nNlJM3jsGzzGIon+JqVrM7SWqplPbvoiJ8FeUEcHtOZtN0qz/PhBM//hrgH2yf5JofHe1DYjpD5lSs6xKImstpb4ppU4euE6/pv7DI7er7O1ynneC0K+bpm2vg7/aGAK35vJvG4i4S1dDkY4XFUKPA+KBbkdSLqkztXSkVxHIcHpVpZIl0Pah8d3sZ7vKlxDr0LRnk8OQG9VjmuyJAfFj4R4mv2zNLS1XqZ72d013bPzos+p3wVKSgsMpALOxLlTN5lX0WVnAirqom9XFSs0a5vXzi8HSF6zU5F/J4tR2TKF2GpRESZFt6Lz+5lKfVklkMLErpYCkVFKN1kidecYonb2ON6/YiK/VprK4fXtrZwqEQ8oZ8Lhoe5atGqVRz21N7O/fSHMJRE5aZKldeSgJB11+s6VKJvLmcTL9f42Wrtji2e3d3Tp9oMDPC+Nyg+01qV19OKL6zPoObQfGPlAwAAAAAAAAAAGgAP1AAAAAAAAAAAQAMcUMl3ICwkDxWWcNYrWqIgan1TYTLr2U6aZQS5nJaJT4yxFObIfs5q3NLOGYF37NIy8fEplnduK7FEoCqy4nWGtYSoFOHOrd++zbM3j7DkwohEVZucuJ9ale9VSqrGqr6MlkJ+N7uNJbtSzl63tOz0pZdYstvRxTImI839aU3pbH5ahAKakZqQSEc7WWr26LPPqeP++9/+w7OPOe5tnr3gbWxHfPJtS4RUlIT0WWZfNH0Sv6OOO96z+xYs8eyYyNwf8Em+lcw7xKNubJQz4t/767tVm2iIx3pbO2e3LNdYWvTSphdVm1/eyVn93/uBSz1bhkNMCEkVERHZ7JN/WHm/Zz//J5Z5R1ydeTmW0Bk7QXNiGzNL8x1fttFigcf+lm2D4jgex5FISrUJirilghhTMqTAqunwAsvgdcYQPhJ22a+Lw3otqApp6OzDWJoXErfmBHRWU1e8NGpC6i7u2/BlkE1E2C9DFvfBKolwi6r+3CIx3iKEOzgcZUiGajm6b4Eg/k5/KCAz8spE7aGQ3haGozxupsZ5rNpJbh9vyag2sQivFY5YG0yRttd09FiLiYzJMSHZtoWM1DX0umMLKXVehEGZYvNlmloOOi0qqYyMsLQ8LmTeyZSeC6Sc11FZ7cW5fWEm8ji5LhdFWGFeVtsgonJZS1lB82EZPBZsUS2h7gt9yedFmJCYR+d0c7WU9S/pqiyhIO/lU8mMZ5crWb5OXe9VyhV+Nurpme/ZXT0dnn3k0UeoNg+v5H3ZlpfWevZhffxccdppx6g223dySMbEBO+3Wlp4XSgU9HPbsmP5HL29Gc/+7j/cxP0v6zV0/nyuWjQ6OsH28LhooytJWCJUKaQL0LyhYOUDAAAAAAAAAAAaAA/UAAAAAAAAAABAA+CBGgAAAAAAAAAAaIADGkNtiZic6WzWs5NxHY8YCrPIPS9iqEV1BXJJx8b1z5nt2Yv6+GdDu1hjH03r1PCHd3BcZiAs4sws1t9nUrrNqIivWbODy6gMZrnUgutmSRIQMaOhAN+ETPme85XAKoo4vEKFY4S6otw+PrtXtRmf4BihLes5tnT+EYd59uy2VtXmxaCOOQLNh00cY1ZxeGwO7tiqjguaPO5l7FVY+FMmk1FtNu7iPAB1i2NvIsIn462dqk0qw6VNZLxXWxu/39XVRXsjKGJHN6x51rOnp3WsTEbEqU1N8c9sl2NX00ldV2LNc1w6bNEijkXqmcM+ID8PIqKXXmRf2bBujWdHTL5Op28eSER1ngTQnORF+bexUS5ZuGXrFnXcNhE3XZBrU4zjzGIxHTfpGuwvkw7729YtfC4rrMvcBMLsy5EAj92uJJcw6WzT/rZhhMfn6tVcxqdtDrc3Y45qExNjPB3l2M9IjMdxwBdLZouyJZYou0gF7nOgrrcETkiUZ4xxf1JptqcmsgQOPWQosCX2RGZAf88Sj/FAckmUXrN53Di+72bCYZ4/DZEMwBWxzTVfvGXc5Djjnjb2S0ry9cOk9zMBWZ9V7HVk3HalruMtp6ZErLUop5dK8poYDGo/sOoy3pzvJy5KC7mOvk5UrCGOw/2cnubcPv59bjKp5yDQfFRrPE6sGu/dy75STlPTvGZs2MDlP0854STPntUzR7UxQzx/y7w0hRKvbbJ0HRGRKWL3N7/0vGcPDW3lNkVdEnJ4mPNNyRKoVeErwZDeA8XiogxxmNecdAvvBU1fueOAyMcwIcolV6o87ksV3bf/+39/y/0Wc0QmyXOCSzo/SE3kEYn5SpG9keAbagAAAAAAAAAAoAHwQA0AAAAAAAAAADTAAZV8T0yy/HpKSLnnzNKyhpYMy5K3ZVkylx3iEgZ98wdUm87+Ps8eH1zn2TtfXM9tWrpVm4DDkut4hG+1XmeJQ66gZRpOlSUPbS0sMSi5LDGo17S0pypeu3WWHhRFaSwrqAtYGaJk0IiQ1XanWK9gBLVmb2yE5RRulT+DaJzvrbu1XbVZtEB/jqD5KIi/a1ULLGF1OrUcbP68uZ5tC5mPlI3FYrpsmiyNEhAl4lqE7LS1p0+1cV0+d7nI/Zkzh/3YNPXf4kqiLJ0h+jYywnKeYEj7QEJIvuNCblcQ18xlp1SbfJ6l4ZvWr/bs3nn94vr6c9u+datnW6IsSUaEV0R9MkdytMQWNCc/v/vnnj0iZGyVqi7VKCWXQUdIQ8V8XyxqCWqlyhK1sMl+Nbed59Qt47pkVKXEcrxYktukOtgOGrpN7xwumzghumCK8lO+6o4UCotyVkLjZobYjxzS5VWiUVFaJME+MjEswpl8oUmlAv8sKMoatbZlPLvmk9QW8kUCzY/0CVuUsLIdPW7I5J9FYsJ3REhE3VemzhZjwiC+jkmizNWoDgHa+eJmz+6ey+FuSVFKsl4pqzYBQ8rJxT5MSMuLee3Xts39iSfYdwJC5i3ltkREpTLPJ6bBx1VESVjH0euOLC0pQ7SkFNxf5tK/twTNR3aax70jwtOKJd/cWeLfZaHE8+izLzzn2ce+7VTVZsGipZ69YSPv8WNx9oGKzweqQnZerWb5mnneO42P7VRt5FiPxHg8btzEPjg29jPVZt78eZ7d1sb9cR2xToV06bgXN3JZsGeeWiXugfscDOkwjuEhDlM0RJm9tgzPCZWKbiOiKKhFR72+oeAbagAAAAAAAAAAoAHwQA0AAAAAAAAAADTAAZV8m+L5vLeLZWwRU0uIijmWhkfEV/rTQiY+YgzKJhSWEqDeWZ7ddyyfu8uXrXhyJ2fGG94+zu1F9rqWmM5k58RZsmDGWKKaFBLXXF3fz3iJJW6lmpAKVYR8x9ZtYiZfNyQkQJbI3jqU09n8RidY11BzuJ+V5zhL7Lz+eapN31wttwfNx6jNY6tWZQlRqaolRG6UJWVSrqdkZ1p1prM2CmloSydnHZ7Td5hq0yHCBgwpJxfjdGhol+6buHAkyjI2W/TT8IU9BERIQ7ol49mWw35rlbXflIR8b9sWlhMtEDKhQlHLfXdu58zJNSEFrotsrSWrqtpQWEvnQXOy+jnOIi+zEwd8IQl14QeVIkvmrDL/3kO+iggREZYTDYmx2slzaiqZUW0mJ1h2HhUZsl0h5SySlqCGE3yduMPXMULs/6Gw9h1ZKSOd4bU2JDJ+5woTqk1VzBOxBLfvmM3rZn7btGrjis+tIHwvIzL+twj5NxFRvqjDqEBzIrN8a/m3ngsrFd7fhKO877ANHk+2q+dp1+UxXa+xvxlCTr7h+bWqzYanWRJ6wjtP8ez0bB7ftq0l0ZaQjsqlr1zmaxaLBVKIkKS6yN4tP4NqVX8GUgIusyqPjfFa5TqWr41POr+7vZibCgXdN9lv0JzkCmLci8gwKX0mIlq69GTPlvubkCnXKT2v2+I5oVTisZBO8xxdr+n9TbUmww5EqIXwQZd0CJuUqltijp8uZj27q1uH0F586Qc8u6+fn8GcOl9neGhMtZFr8uDgVs/evoNDdUO2fgwNBXn/2NbG1Z0SSdZyF/LaP3M56XsH9LH2VYFvqAEAAAAAAAAAgAbAAzUAAAAAAAAAANAAB/i7cSExELKGqqszv5HIzNieyXh2PM2S1B3jo7IF/eFxloAvO/Htnm0FWIb69GotIUqKbIyWkB60drF8Ih7Uf1MITMuskUL+7e5d8t2Sinu2I+5bSjZKRZ35NCGzS4pskFIeVS1qWUN3R8azZ/ew5KJ7Fsvh165do9r0th3ElHdgv8jJMShlqxU9zqwky9Ncg6VCJSFxTrbpLO+z5i/y7HQHS+cWLjncsxcvOlK1mdPDUh/ZtUicpTgRnwTVFSEIJPwmEeNM3qbhkzfJEJHZLO3p7GY5+rrnn1dtSiLz8vAIy843rOHjiiUtmxsb5QyXNSHdK8q/J/oyTVIYf2s8FJBZ26s1kXW4pn1HyjmjER6HsbjIfO0bAqaQl9bFdfIio32tqiWocfFyeizr2VNh/kG0U4cTRBPcn4iI8igTz/+2q8ejXJsCAW4fFNm/KaDjPyrifLU6+0gkwueKJX0hUNP8udXrPM8UChyOFI7HVZuEqFQBDg0cIVf2y6prck9S49+7bfL4st0e1SYc4jHhEo+vWklk93X0vjBmcBhCwOZz14Ss25+xu16S8lc+X16Mz3JJhyAUxV5MhoLYlpR/a98pl6S/8L3lctyfUlGH6MXj7EsZsc+Vc1Hc5zv+rN+g+ajVOJTGEI9QyWRaHXfCiRy2MHs2h9W9tHmjZ5dK46ThcSYzvsdifO7u7n7Volrl8T1S4JAd6Xey8goRkYxuCsrwIfEsE4nqNUeO77FR/gyqwj8rFS0tlz5Vq7HfVcp50Ub7Wns7h1QlU/ysFgyJSkuWblOvN0dVFuwaAQAAAAAAAACABsADNQAAAAAAAAAA0AB4oAYAAAAAAAAAABrggMZQW0Iv74rSVCNTOrYkIh7j57dwjK8p4lZSER1nNmVNefbW9Vs9u7W7y7N3FHWZIUuEDURFyR7TFSUQbB041xrk607arPlPi/jRtpCOlbBlCasKx0BURKye0abbpNP82na438UyX9N1dZxAyOS+pkTZk4QIdE2IeAgiIqeCMgxNT1S4ocgvECrpkhrpKI+nvBi2tRz7xuSkLpVDLo+tcoHH1oZ16zx7eHC7apKMsQ+EhN+EYjy2TNIxOY7wffmzaZELwanr2LxwiO9744YNnh0Q43x0bES1qdY5Xief53ihJx97hI/xl5UQ8a9BEaNeEXGori9GNWj6AmpBUzI5LmLQRCmQiG8ejIvXkbDIjWHwmLTK2t+qOX5dFiUMS3l+P+QLvG4TOSucKMejjYtyJJVpvU5FDX4dEbFglgoL021KDo/pXRXOJRBr475VXT33V0UZR0OUCxKuSyHbV6pPxogbfK9lUe7H9pXqSyQRQ31IIPYXjvi9W3V/DDXnI6iJOPqa8LdyVc+5cbHJC7g8biyx1+ntm63adKR4T9Q+p8OzJyfZxwv5KdXGFWVKyyqWk/tTqen7GRvn0j6pFOf4qFsyjtwXCyo+n6q417LYr1mWvo7oguqP3PtFojpnQc1Xrgs0H5Uqj+e2Nl5XgiE9EeamJz27VuP52hW5neq+cRYK8zksm8eCaXKbYFDH2YfDPIYiEe6PI/w7ENDrYVDk3WgRz2DdXZyPKRZLqjYP/98n+Zoh3iOm01yqsbNLl9qqi/3a2AiXlCRT5ADx7bVCIZFrR5RVtuQc5fvcqjW9bh0s8A01AAAAAAAAAADQAHigBgAAAAAAAAAAGuCASr6jQipaE/KwqbwuW5CJ8Vf6VSGFyU1nPVuW5SAiao2yjMyos5Rh85oXPbsloqVmfV1cyqEkJHeuwxImx9WlfMJCWtEqShrUhDw15Cv/U5xm+ZsUqgdFCRIlYyCieJyPlFKjmpDV2o6WNThCYiU/n5fWsay2u7VDtenv6SLQ3JhB/p1HhZSmSPr3Pzy42bPLorzGru3sA8OjWiJdnOZx4gq5sxQn+SU36q9swo+NAPuAaei/xRkyPEHYJvHYrte0nO2weVz6zRAyqPFxlq3P7tXlWNat5/tzLPbj6Slu45KWXplCRu8KmwIsO3IC+rN2fWUmQHMSCPHvKWyK8lO+PxWbFq8z1SxLoWtVlmyWp/WaU8vzzwwhLQ2KUIF4a0ZfR5RNDIl1LumyvyZ84Uz2qJCai/I8QSHzdnxyQluMz3GD19dQO8sMo0l9nYiolWLYvDbVinzNck7LxCOipElUyPQcQ5Sfq2upfCgByfehgJw/a2X2j7pPuuyKl1KSbNk8Bqq6Sp0OVxBrhUMihKgrRZJ4B4+bgpBS56dZ5l327QsN4Yt14aMVIf+eyk2rNmURBtfewfslq26Jo3xlhoK8PrmuvDm2bV+4hGGyz5uiNKr0ZNuW1yQqV7R0HjQfyRaWONsinGFsUpfGLRW5pJotQnQyrewDuZzed2x5iUt8VoSvmUFRfsoXFhAW5aTiMfYhGUrql3xLCXlNhHiMjHE4RCKunbpcFiG5yQyf2+DnpHhUzx1RUWJOyrLldjEU1H2TVMT6LMMzgr7nKb8fHSzwDTUAAAAAAAAAANAAeKAGAAAAAAAAAAAa4IBKvkdFFrdIgjMZdqa19Kyno92za0KaExLy0ta4lgORkKtG0qmZ3qaIqW8nKuWd4jjXYJlFhbREISgOjMVYSmHYfFylkFNt6kKml06x5CIa43MZpv7bRVTK78IsXyiLrKqOT3Vad0RGS/F+u5CgdLS2kiQZ3rucAjQHoThnUwyLDI6ObzxXhdRnWGQdLopMiuGIzgDZ2ctZG4tlHjUy2+q+M1oLHxJtlE1EjghbkLblivAKX5s1a5737MWLjvTs3m6WeQ8OblJtKhWWThmib1KBbvjkevKlIWTeRogbheM626oRxN8aDwXiIgzBrfNYq5R0mFE5z3N2TWTzdoXslXyZQ2X6a1O6gVxWHF94gUh5bQg5qKy+YFS0lM6aFjJvS2Z5FZJvU/tOKCwlb+K4Gs8Ljk9+54jMroYIJ3KFXtctaOmcVP/WTf6ZzFRb8WXVr1i+zxE0Jbkc+8TUFMuqXfKPNf5dS1nztAh1K7XoUIFaksdKQGSxN8VaY/vm2LJY38piTauK8VmtaLlrSEhZZZbvoghjmJzM6jahmfdExaIInfBJSqMiG7dhyOoQ7K+RqF574yJkUB6Xz+dnfJ+IqObLSA6aD8vicTZdEFUifNNezeYxZFlybHCbYEDv8TZv3sLtxQnDBo/Zes0fFsB+FBWZuSsiG73M6k2k/dAQmyfp37Wq9mkpaHfFs4grwvrK5axqk0zyc2Cmpc2zh0cG+ZqOXnNkpGu1wr4SifV5diisw4pKZV/MyUECu0YAAAAAAAAAAKAB8EANAAAAAAAAAAA0wAGVfMvM1ekkSxRScS35DkdYPjM5xV/Vh0UmxYBPliMzXLui4HlHhr/6j/myxYXqQrok/nRQsPma4z4JkVXhNqmoKJIupIEBn1QpJiTtrpCUmkLOYZhahiqzCEfF5yGT1dm+TMOWkBPGEyztcESmwZAvw3HNJ30EzUdVSLtdoU+u+UMY2lja3xtnKY0R4XGaTOtQCVfIVrduYTmRzHQqs/MTEQVERtKACI8w6tzGrvsywYrrWEK2Zjsie2xNy3KKwvfWvrjBs2UGytz0mGojkrpSSNy3K+IjDH+GbvFS3ltQyGblnERE5PikeKA5yY9whYOykFLWizrztCMyzIfFeIiL0BszqP2tJiTbjggfkrI41zemHRFWYZjcXmbYzk3rkKGAkHkHxRwfEJK/YFj3TWY3llUv7KKQ1wb12lazuG8yyCMk5X+29h1bhG9U5Y/EEmg5ftmqznYLmpPRCZ5bp7NZz47GtDw0FeK9hpQ+l3Zx+5GhYdWmI93t2ZGw0HDK7L5+6bUYa2Nj4569c+s2bl7X/hYRGfMNMbeXKjJruZawt4uwuKpYq1yhNfVLvgMitlBmEI+JtdPfRs4TuWnONC4zFMeiet1JJPRaDJqPXF6EIIjxY/gqn0g5f1hUKQoERSiAOaraTGbZp8IiQ7YoYEGWrSXfdTGvR8R1TJll3tRj0y81nwn/nigYkhWIeGyXS7yeObZecypVHvdRERIRlX7r+1o3INbKhKgYMf+wJZ4d8lXKqNWbY7+Gb6gBAAAAAAAAAIAGwAM1AAAAAAAAAADQAHigBgAAAAAAAAAAGuCAxlBHRDxJUsT4BsP6uT1X5hirHbksv5/lGLiOhI4FTbeIGIQqn28kN+HZ8bguWxBR5U1Yl18XpRZqdZ0aPitLGlh8P3FRjsgfc1oXsW6GiLULyxhPX0xmUMTryZhPFavjixdKij4kRexNTcQzBPxxHFZzpJMHe8cSv1eXONYl2Nqpjuuew2UD4l2zPbsufuXFso6Zz46zf4QTHIOdbOvybBmLTETkinj/kBiPQVkqwdE1IlxRcqgu4tdqFfb1SkXHVspThMPCp8S5bFfHaldFWSBZiU7GCPnDn2W5rpCIHYqKUkYBQ5cOc1z4zaHAkIivNEQMZsSXsyIgxkBExDC6VW5Tq/rKTAX5HLY4nyXyedi++dUQ15E5A4JizTBtPUdbog+uiLs05EB2dWkREnHXAXGc44hSjY5e3mWpE0fEPUt/91VMItEdqor2svyc6/u7vOs0Rzwb2DdjYm2YmhL7qISOnSyJ/VogxGOgUuJ5fldhp2ozu3OuZ6fTvL7JMqmyBCIR0eTYiGdv3cJ+PbR9u2eXCzo3QiLJ+8R0RsRGi71TPKn3ko5IqlGWPkp7z8NRq0vfcWY8Livi0ImILDkfif1aSpTTCvvirut1lM1qdiyRsyga4z2EP/7dNGfOK1MoiOecDr3HMwxRQrfMscnlSk4co+fbZIrz6cgywq4r9pJB3TdX5OCwHO6bzAOQEeV4iYhiUR63li2fWXidMQ0998t1JhRjv+kf4DKp9ZqOu45E+dnx6GOWevb8Pt7/Bki3CQabo1QjvqEGAAAAAAAAAAAaAA/UAAAAAAAAAABAAxiuX4sMAAAAAAAAAACAVwTfUAMAAAAAAAAAAA2AB2oAAAAAAAAAAKAB8EANAAAAAAAAAAA0AB6oAQAAAAAAAACABsADNQAAAAAAAAAA0AB4oAYAAAAAAAAAABoAD9QAAAAAAAAAAEAD4IEaAAAAAAAAAABoADxQAwAAAAAAAAAADYAHagAAAAAAAAAAoAHwQA0AAAAAAAAAADQAHqgBAAAAAAAAAIAGwAM1AAAAAAAAAADQAHigBgAAAAAAAAAAGgAP1AAAAAAAAAAAQAPggRoAAAAAAAAAAGgAPFADAAAAAAAAAAANgAdqAAAAAAAAAACgAfBADQAAAAAAAAAANAAeqAEAAAAAAAAAgAbAAzUAAAAAAAAAANAAeKAGAAAAAAAAAAAaAA/UAAAAAAAAAABAA+CBGgAAAAAAAAAAaAA8UAMAAAAAAAAAAA2AB2oAAAAAAAAAAKAB8EANAAAAAAAAAAA0AB6oAQAAAAAAAACABsADNQAAAAAAAAAA0AB4oAYAAAAAAAAAABoAD9QAAAAAAAAAAEAD4IEaAAAAAAAAAABoADxQAwAAAAAAAAAADYAHagAAAAAAAAAAoAHwQA0AAAAAAAAAADQAHqgBAAAAAAAAAIAGwAM1AAAAAAAAAADQAHigBgAAAAAAAAAAGgAP1AAAAAAAAAAAQAPggRoAAAAAAAAAAGgAPFADAAAAAAAAAAANgAdqAAAAAAAAAACgAfBADQAAAAAAAAAANAAeqAEAAAAAAAAAgAbAA/UMrFixgvr7+w+Z8wIA9qS/v58uvPDCg90NAAAAAACwF94M+7X9fqA2DGO//j300EOvY3dfO9lslqLRKBmGQevWrTvY3QFgDw5VX1uxYsV+9XvFihUHu6vgLcSh6k+7kX0MBoPU1tZGy5Yto2uuuYbWrl17sLsHDmHeDL7x6U9/esaf/fjHPybDMOipp556g3sF3kocqj6E/dqBJ7i/B952223q9f/5P/+H7r///j3eP/zwww9Mz14n7rjjDjIMg3p6eugnP/kJff3rX9/jmH/9138lx3EOQu8AOHR97aqrrqJzzjnHe71lyxa6/vrr6corr6TTTjvNe39gYOBgdA+8RTlU/Uly7rnn0sc+9jFyXZemp6dp1apVdOutt9I//dM/0Y033kh/+Zd/ebC7CA5B3gy+AcDB5FD1IezXXgfcBrn66qvd/WleLBYbvcTrwumnn+5+4AMfcP/n//yf7vz58xs+T71ed6vV6qtqc9lll7l9fX0NXxO8NTlUfe3JJ590ici95ZZb9nlcoVB4Xa7f19fnXnDBBa/LucGhy6HmT0TkXn311Xu8Pz4+7p500kkuEbm/+c1vDkLPwJuNN4tvuK7r3nLLLS4RuU8++eQBudbrtU6BNxeHmg/tBvu1184BjaE+88wz6aijjqKnn36aTj/9dIrH43TdddcR0cuyiBtuuGGPNv39/XtICrLZLH3uc5+juXPnUiQSoQULFtCNN964x7fGQ0NDtH79eqrX6/vVv8HBQXrkkUfokksuoUsuuYS2bNlCjz/++B7H+WOdt27dSoZh0He+8x266aabaGBggCKRCK1du5YeeughMgyD/uu//ouuu+466unpoUQiQe95z3to+/btr9in73znO3TyySdTe3s7xWIxWrZsGd155517HLdb2nT33XfTUUcdRZFIhI488kj63e9+t8exO3fupP/xP/4HdXd3e8f9+7//+359RuDQoNl9bW/sluE9/PDD9KlPfYq6urpozpw5RLT3HAM33HADGYaxx/u33347HX/88RSPx6m1tZVOP/10uu+++/Z5/VtvvZWCwSB9/vOff033Ad5cHIr+1N7eTj/96U8pGAzSN77xDfWz0dFR+vjHP07d3d0UjUbpbW97G9166617nGNiYoI++tGPUjqdpkwmQ5dddhmtWrWKDMOgH//4xw33Dbx5OBR9Y188+OCDdNppp1EikaBMJkPvfe979wj/273mrF27lj784Q9Ta2srnXrqqURENDw8TJdffjnNmTOHIpEI9fb20nvf+17aunWrOsdvf/tb7zqpVIouuOACWrNmzetyT6C5OVR9CPu1V8d+S773l4mJCTrvvPPokksuoY985CPU3d39qtqXSiU644wzaOfOnXTVVVfRvHnz6PHHH6cvfvGLNDQ0RDfddJN37Be/+EW69dZbacuWLfuV7Os///M/KZFI0IUXXkixWIwGBgboJz/5CZ188sn71bdbbrmFKpUKXXnllRSJRKitrY2y2SwREX3jG98gwzDoC1/4Ao2OjtJNN91E55xzDj333HMUi8X2es7vf//79J73vIf+/M//nGq1Gv30pz+lP/uzP6Nf//rXdMEFF6hjH330Ufr5z39On/rUpyiVStH//t//mz74wQ/S4OAgtbe3ExHRyMgInXjiid4DeGdnJ/32t7+lj3/845TL5ehzn/vcft0raH6a2ddeiU996lPU2dlJ119/PRWLxVfd/itf+QrdcMMNdPLJJ9NXv/pVCofD9MQTT9CDDz5I73rXu2Zs86Mf/Yg+8YlP0HXXXTdjqAd4a3Mo+tO8efPojDPOoJUrV1Iul6N0Ok3lcpnOPPNM2rRpE33605+m+fPn0x133EErVqygbDZL11xzDREROY5DF110Ef3pT3+iT37yk7RkyRL65S9/SZdddlnD/QFvTprZNyqVCo2Pj+/xfqFQ2OO9Bx54gM477zw67LDD6IYbbqByuUw333wznXLKKfTMM8/scb0/+7M/o4ULF9I3v/lNcl2XiIg++MEP0po1a+gzn/kM9ff30+joKN1///00ODjotb/tttvosssuo+XLl9ONN95IpVKJfvjDH9Kpp55Kzz77LJLTvgVpZh96JbBf208a/Wp7JlnDGWec4RKR+8///M97HE9E7pe//OU93u/r63Mvu+wy7/XXvvY1N5FIuBs2bFDH/c3f/I0bCATcwcFB773LLrvMJSJ3y5Yt+9Xno48+2v3zP/9z7/V1113ndnR0uPV6XR3nl2Zv2bLFJSI3nU67o6Oj6tiVK1e6ROTOnj3bzeVy3vs/+9nPXCJyv//97+/1vK7ruqVSSb2u1WruUUcd5Z511lnqfSJyw+Gwu2nTJu+9VatWuUTk3nzzzd57H//4x93e3l53fHxctb/kkkvclpaWPa4Hmp9D0ddcd2YJ0W4Z3qmnnupalqWO31tIxJe//GV1/xs3bnRN03Tf//73u7Ztq2Mdx1H3u1tC9P3vf981DMP92te+tt/9B29ODjV/on3IWl3Xda+55hqXiNxVq1a5ruu6N910k0tE7u233+4dU6vV3JNOOslNJpPeOnXXXXe5ROTedNNN3nG2bbtnnXXWfkn/wJuPQ9E3XumflHwvXbrU7erqcicmJrz3Vq1a5Zqm6X7sYx/z3tu95lx66aXqelNTUy4Rud/+9rf32qd8Pu9mMhn3iiuuUO8PDw+7LS0te7wP3lwcaj60G+zXXjsHvGxWJBKhyy+/vOH2d9xxB5122mnU2tpK4+Pj3r9zzjmHbNum3//+996xP/7xj8l13f36C8zzzz9PL7zwAl166aXee5deeimNj4/Tvffeu199++AHP0idnZ0z/uxjH/sYpVIp7/WHPvQh6u3tpXvuuWef55TfXk9NTdH09DSddtpp9Mwzz+xx7DnnnKMSBBxzzDGUTqfppZdeIiIi13Xprrvuoosuuohc11Wf3/Lly2l6enrG84JDk2b1tf3hiiuuoEAg0FDbu+++mxzHoeuvv55MU09hM0mN/v7v/56uueYauvHGG+l//a//1dA1wZufQ9WfkskkERHl83kiIrrnnnuop6dHrXWhUIg++9nPUqFQoIcffpiIiH73u99RKBSiK664wjvONE26+uqrX3OfwJuLZvaN9773vXT//ffv8c8vEx0aGqLnnnuOVqxYQW1tbd77xxxzDJ177rkz7tU+8YlPqNexWIzC4TA99NBDNDU1NWN/7r//fspms97+cve/QCBAJ5xwAq1cuXK/7gu8uWhmH3olsF/bPw645Hv27NkUDocbbr9x40Z6/vnn9/rgOjo62tB5b7/9dkokEnTYYYfRpk2biIgoGo1Sf38//eQnP9lDXj0T8+fP3+vPFi5cqF4bhkELFizYI67Gz69//Wv6+te/Ts899xxVq1XV3s+8efP2eK+1tdWb2MfGxiibzdKPfvQj+tGPfjTj9Rr9/EDz0ay+tj/sy5deic2bN5NpmnTEEUe84rEPP/ww/eY3v6EvfOELh0wcDjg4HKr+tFvauvsPutu2baOFCxfusXnZnWV227Zt3v+9vb0Uj8fVcQsWLHhd+gkOXZrZN+bMmaOyFe9mx44d6vXucb948eI9jj388MPp3nvvpWKxSIlEwnvfv05FIhG68cYb6dprr6Xu7m468cQT6cILL6SPfexj1NPTQ0Qv3ysR0VlnnTVjf9Pp9Ku4O/BmoZl96JXAfm3/OOAP1PuKF54J27bVa8dx6Nxzz6W//uu/nvH4RYsWveo+ua5L//mf/0nFYnHGX+ro6CgVCgXvL/1749Xe2yvxyCOP0Hve8x46/fTT6Z/+6Z+ot7eXQqEQ3XLLLfQf//Efexy/t78Quf8vtmd3YoKPfOQje42DO+aYYw5Q78HBphl9bX+Zqe8z/RGJaM9+vxqOPPJIymazdNttt9FVV131mhYG8ObmUPWn1atXUyAQwNgGrxuHqm+8Vma678997nN00UUX0d1330333nsv/e3f/i1961vfogcffJCOPfZYbx922223eQ/ZkmDwgG+7wSHAoexD2K/tH2+YZ7e2tnoJvHZTq9VoaGhIvTcwMECFQmHGvzg2ysMPP0w7duygr371q3vUgpuamqIrr7yS7r77bvrIRz7S8DV2/1VyN67r0qZNm/b5AHvXXXdRNBqle++9lyKRiPf+Lbfc0lAfOjs7KZVKkW3bB/TzA4cWB9PXXgsz9ZuIv1nYzcDAADmOQ2vXrqWlS5fu85wdHR1055130qmnnkpnn302PfroozRr1qwD2GvwZqeZ/WlwcJAefvhhOumkk7xvqPv6+uj5558nx3HUt9Tr16/3fr77/5UrV1KpVFLfUu9WcAHwSjSzb/jZPe5ffPHFPX62fv166ujoUN9O74uBgQG69tpr6dprr6WNGzfS0qVL6bvf/S7dfvvtXlheV1dX06ytoHk5lHxIgv3anhzwGOq9MTAwoDT+RC9ncfP/NePiiy+mP/zhDzPGNWezWbIsy3u9v6nhd8u9P//5z9OHPvQh9e+KK66ghQsX0k9+8pPXcHcvF3PfHcNGRHTnnXfS0NAQnXfeeXttEwgEyDAM9Rls3bqV7r777ob6EAgE6IMf/CDdddddtHr16j1+PjY21tB5waHFwfS118LAwABNT0/T888/r677i1/8Qh33vve9j0zTpK9+9at7lIvYrdaQzJkzhx544AEql8t07rnn0sTExOtzA+BNSbP60+TkJF166aVk2zZ96Utf8t4///zzaXh4mP7rv/7Le8+yLLr55pspmUzSGWecQUREy5cvp3q9Tv/6r//qHec4Dv3gBz9ouE/grUWz+sZM9Pb20tKlS+nWW29VDwKrV6+m++67j84///xXPEepVKJKpaLeGxgYoFQq5YXsLV++nNLpNH3zm9+c8R6wDwOSQ8mHJNiv7ckb9g31X/zFX9AnPvEJ+uAHP0jnnnsurVq1iu69917q6OhQx33+85+nX/3qV3ThhRfSihUraNmyZVQsFumFF16gO++8k7Zu3eq12Z/U8NVqle666y4699xzKRqNznjMe97zHvr+979Po6Oj1NXV1dD9tbW10amnnkqXX345jYyM0E033UQLFixQCV/8XHDBBfS9732P3v3ud9OHP/xhGh0dpR/84Ae0YMECNUhfDX/3d39HK1eupBNOOIGuuOIKOuKII2hycpKeeeYZeuCBB2hycrKh84JDh4Pla6+VSy65hL7whS/Q+9//fvrsZz/rlRpZtGiRSqa3YMEC+tKXvkRf+9rX6LTTTqMPfOADFIlE6Mknn6RZs2bRt771rT3OvWDBArrvvvvozDPPpOXLl9ODDz6IWDawXzSDP23YsIFuv/12cl2XcrkcrVq1iu644w4qFAreGrKbK6+8kv7lX/6FVqxYQU8//TT19/fTnXfeSY899hjddNNN3jfZ73vf++j444+na6+9ljZt2kRLliyhX/3qV94asTdJHwC7aQbfeDV8+9vfpvPOO49OOukk+vjHP+6VzWppaZmxFrCfDRs20Nlnn00XX3wxHXHEERQMBukXv/gFjYyM0CWXXEJEL8dI//CHP6SPfvSjdNxxx9Ell1xCnZ2dNDg4SL/5zW/olFNOoX/8x388oPcFDl0ONR/aDfZrM9BoevC9pYY/8sgjZzzetm33C1/4gtvR0eHGDv1ZPwABAABJREFU43F3+fLl7qZNm/ZIDe+6L5cd+OIXv+guWLDADYfDbkdHh3vyySe73/nOd9xareYdtz+p4XeXBvm3f/u3vR7z0EMPqRJXeyubNVOphN1ls/7zP//T/eIXv+h2dXW5sVjMveCCC9xt27apY2dKM/9v//Zv7sKFC91IJOIuWbLEveWWW/ZIO++6ey+dMtPnNzIy4l599dXu3Llz3VAo5Pb09Lhnn322+6Mf/WivnwFoXg4VX/OzrzIMspSJ5L777nOPOuooNxwOu4sXL3Zvv/32Gf3BdV333//9391jjz3WjUQibmtrq3vGGWe4999/v/dzWYZhN0888YSbSqXc008/HSXk3qIcav5EogSQaZpuJpNxjz32WPeaa65x16xZM2ObkZER9/LLL3c7OjrccDjsHn300TOWwRobG3M//OEPu6lUym1paXFXrFjhPvbYYy4RuT/96U9fsW/gzcWh6Bt7Kym3t7XmgQcecE855RQ3Fou56XTaveiii9y1a9eqY3avOWNjY+r98fFx9+qrr3aXLFniJhIJt6WlxT3hhBPcn/3sZ3tcf+XKle7y5cvdlpYWNxqNugMDA+6KFSvcp5566hXvCxy6HGo+tBvs1147huvO8J072G8eeugheuc730l33HEHfehDHzrY3QEAAAAa5u6776b3v//99Oijj9Ipp5xysLsDAAAAND1vWAw1AAAAAJqHcrmsXtu2TTfffDOl02k67rjjDlKvAAAAgEML5O8HAAAA3oJ85jOfoXK5TCeddBJVq1X6+c9/To8//jh985vfPOBlIgEAAIA3K3igBgAAAN6CnHXWWfTd736Xfv3rX1OlUqEFCxbQzTffTJ/+9KcPdtcAAACAQwbEUAMAAAAAAAAAAA2AGGoAAAAAAAAAAKAB8EANAAAAAAAAAAA0wJvmgbq/v59WrFjhvX7ooYfIMAx66KGHDlqfAGhm4DMz09/fTxdeeOHB7gY4xIA/ATAz8A0AXhvwoZlppv3aAXmg/vGPf0yGYXj/otEoLVq0iD796U/TyMjIgbjEG8Y999xDN9xww2s+j/w8gsEgtbW10bJly+iaa66htWvXvvaOgkMa+AyzYsUK9Vns7Z9cTACQwJ/2BGsQIIJvzIRhGHtNvLf783rqqade83XAmwP4EIP92t45oFm+v/rVr9L8+fOpUqnQo48+Sj/84Q/pnnvuodWrV1M8Hj+Ql3pFTj/9dCqXyxQOh19Vu3vuuYd+8IMfHJBJ+9xzz6WPfexj5LouTU9P06pVq+jWW2+lf/qnf6Ibb7yR/vIv//I1XwMc2sBniK666io655xzvNdbtmyh66+/nq688ko67bTTvPcHBgYaOj946wB/0mANAruBbwDw2oAPYb+2Lw7oA/V5551Hb3/724mI6C/+4i+ovb2dvve979Evf/lLuvTSS2dsUywWKZFIHMhuEBGRaZoUjUYP+HlfDYsWLaKPfOQj6r2/+7u/o4suuoiuvfZaWrJkCZ1//vlvaJ9KpdIb7vhg78BniE466SQ66aSTvNdPPfUUXX/99XTSSSft4T+S1+tzAIcu8CdNM65B4OAA3zg4YJ168wAfwn5tX7yuMdRnnXUWEb38Fwyil6UCyWSSNm/eTOeffz6lUin68z//cyIichyHbrrpJjryyCMpGo1Sd3c3XXXVVTQ1NaXO6bouff3rX6c5c+ZQPB6nd77znbRmzZo9rr23+IInnniCzj//fGptbaVEIkHHHHMMff/73/f694Mf/ICItFxuN0NDQ7R+/Xqq1+sNfybt7e3005/+lILBIH3jG99QP6tWq/TlL3+ZFixYQJFIhObOnUt//dd/TdVqdY/z3H777bRs2TKKxWLU1tZGl1xyCW3fvl0dc+aZZ9JRRx1FTz/9NJ1++ukUj8fpuuuua7jv4PUHPjMzuyVXDz/8MH3qU5+irq4umjNnjteH/v7+PdrccMMNqi+7uf322+n444+neDxOra2tdPrpp9N99923z+vfeuutFAwG6fOf//xrug/wxgJ/2pN9rUGjo6P08Y9/nLq7uykajdLb3vY2uvXWW/c4x8TEBH30ox+ldDpNmUyGLrvsMlq1ahUZhkE//vGPG+4beOOAb7w6HnzwQTrttNMokUhQJpOh9773vbRu3Tp1zO41Z+3atfThD3+YWltb6dRTTyUiouHhYbr88stpzpw5FIlEqLe3l9773vfS1q1b1Tl++9vfetdJpVJ0wQUXzPgZgoMPfGhm3qr7tQP6DbWfzZs3E9HLC/huLMui5cuX06mnnkrf+c53vG9Lr7rqKvrxj39Ml19+OX32s5+lLVu20D/+4z/Ss88+S4899hiFQiEiIrr++uvp61//Op1//vl0/vnn0zPPPEPvete7qFarvWJ/7r//frrwwgupt7eXrrnmGurp6aF169bRr3/9a7rmmmvoqquuol27dtH9999Pt9122x7tv/jFL9Ktt95KW7ZsmXFA7C/z5s2jM844g1auXEm5XI7S6TQ5jkPvec976NFHH6Urr7ySDj/8cHrhhRfoH/7hH2jDhg109913e+2/8Y1v0N/+7d/SxRdfTH/xF39BY2NjdPPNN9Ppp59Ozz77LGUyGe/YiYkJOu+88+iSSy6hj3zkI9Td3d1wv8HrD3xm33zqU5+izs5Ouv7666lYLL7q9l/5ylfohhtuoJNPPpm++tWvUjgcpieeeIIefPBBete73jVjmx/96Ef0iU98gq677jr6+te//lpvAbyBwJ9mZqY1qFwu05lnnkmbNm2iT3/60zR//ny64447aMWKFZTNZumaa64hopc3hhdddBH96U9/ok9+8pO0ZMkS+uUvf0mXXXZZw/0Bbzxvdd+oVCo0Pj6+x/uFQmGP9x544AE677zz6LDDDqMbbriByuUy3XzzzXTKKafQM888s8f1/uzP/owWLlxI3/zmN8l1XSIi+uAHP0hr1qyhz3zmM9Tf30+jo6N0//330+DgoNf+tttuo8suu4yWL19ON954I5VKJfrhD39Ip556Kj377LMHZA0FB463ug+9Em+5/Zp7ALjllltcInIfeOABd2xszN2+fbv705/+1G1vb3djsZi7Y8cO13Vd97LLLnOJyP2bv/kb1f6RRx5xicj9yU9+ot7/3e9+p94fHR11w+Gwe8EFF7iO43jHXXfddS4RuZdddpn33sqVK10icleuXOm6rutaluXOnz/f7evrc6emptR15Lmuvvpqd28fy+7+b9my5RU/EyJyr7766r3+/JprrnGJyF21apXruq572223uaZpuo888og67p//+Z9dInIfe+wx13Vdd+vWrW4gEHC/8Y1vqONeeOEFNxgMqvfPOOMMl4jcf/7nf37F/oI3FvjM3nnyySddInJvueUW773dn9epp57qWpa1xzX6+vr2OM+Xv/xl1a+NGze6pmm673//+13btvd6P319fe4FF1zguq7rfv/733cNw3C/9rWv7Xf/wRsP/GlPXu0adNNNN7lE5N5+++3eMbVazT3ppJPcZDLp5nI513Vd96677nKJyL3pppu842zbds8666w9/BYcfOAbe0JEr/jvySef9I5funSp29XV5U5MTHjvrVq1yjVN0/3Yxz7mvbd7zbn00kvV9aamplwicr/97W/vtU/5fN7NZDLuFVdcod4fHh52W1pa9ngfvHHAh/YO9mvMAZV8n3POOdTZ2Ulz586lSy65hJLJJP3iF7+g2bNnq+M++clPqtd33HEHtbS00Lnnnkvj4+Pev2XLllEymaSVK1cS0ct/JazVavSZz3xGSQM+97nPvWLfnn32WdqyZQt97nOfU9/gEtGMMoOZ+PGPf0yu6x6Qv9wkk0kiIsrn80T08mdw+OGH05IlS9RnsFtSsvsz+PnPf06O49DFF1+sjuvp6aGFCxd6x+0mEonQ5Zdf/pr7C14f4DOvjiuuuIICgUBDbe+++25yHIeuv/56Mk099c10P3//939P11xzDd144430v/7X/2romuCNBf60//jXoHvuuYd6enpULGAoFKLPfvazVCgU6OGHHyYiot/97ncUCoXoiiuu8I4zTZOuvvrq19wn8PoB39C8973vpfvvv3+Pf36Z6NDQED333HO0YsUKamtr894/5phj6Nxzz6V77rlnj3N/4hOfUK9jsRiFw2F66KGH9pD47ub++++nbDZLl156qfqcA4EAnXDCCXvs7cAbD3zo1fFW268dUMn3D37wA1q0aBEFg0Hq7u6mxYsX7/FBBINBT0u/m40bN9L09DR1dXXNeN7R0VEiItq2bRsRES1cuFD9vLOzk1pbW/fZt93SjKOOOmr/b+h1ZLesKJVKEdHLn8G6deuos7NzxuN3fwYbN24k13X3+Ax2s1s2spvZs2e/6iyA4I0DPvPqmD9/fsNtN2/eTKZp0hFHHPGKxz788MP0m9/8hr7whS8gbvoQAv60//jXoG3bttHChQv3+LwOP/xw7+e7/+/t7d0jueWCBQte7y6D1wB8QzNnzhyVrXg3O3bsUK9339fixYv3OPbwww+ne++9d4+ES/51KhKJ0I033kjXXnstdXd304knnkgXXnghfexjH6Oenh4ievlzJuK4XD/pdPpV3B14PYAPvTreavu1A/pAffzxx3sZ8PZGJBLZYwA6jkNdXV30k5/8ZMY2e3vIPJRZvXo1BQIBb8A5jkNHH300fe9735vx+Llz53rHGYZBv/3tb2f8y8/ubx12E4vFDnDPwYEEPvPqmGk87+2vr7ZtN3ydI488krLZLN1222101VVXvaaFAbxxwJ/2H/8aBN7cwDfeOGZapz73uc/RRRddRHfffTfde++99Ld/+7f0rW99ix588EE69thjyXEcIno5jnr3Q7YkGHxdUx6B/QA+9Op4q+3XmsJDBwYG6IEHHqBTTjllnw+AfX19RPTyX3sOO+ww7/2xsbG9ymjkNYhe3kTM9FfJ3eyvNOK1MDg4SA8//DCddNJJ3rcDAwMDtGrVKjr77LP32YeBgQFyXZfmz59PixYtet37CpqTt5rP7IvW1lbKZrN7vL/7r727GRgYIMdxaO3atbR06dJ9nrOjo4PuvPNOOvXUU+nss8+mRx99lGbNmnUAew2aibeaP820BvX19dHzzz9PjuOoDeH69eu9n+/+f+XKlXuUYNy0adPr3m/wxvNW8w0/u+/rxRdf3ONn69evp46Ojv0uBzQwMEDXXnstXXvttbRx40ZaunQpffe736Xbb7/d+wy6urr2+RmAQ4+3ug9J3sz7tde1bNb+cvHFF5Nt2/S1r31tj59ZluV9+Oeccw6FQiG6+eabvcyJREQ33XTTK17juOOOo/nz59NNN920xy9Tnmv3xDjTL/xApJSfnJykSy+9lGzbpi996Uve+xdffDHt3LmT/vVf/3WPNuVy2cuQ94EPfIACgQB95StfUf3efR8TExMN9w0cOryVfOaVGBgYoOnpaXr++efVdX/xi1+o4973vveRaZr01a9+1fs2YDd+XyJ6WRL4wAMPULlcpnPPPRe+9SbmreRPe1uDzj//fBoeHqb/+q//8t6zLItuvvlmSiaTdMYZZxAR0fLly6ler6u1ynEcrxwLeHPxVvKNmejt7aWlS5fSrbfeqq67evVquu+++/arjnupVKJKpaLeGxgYoFQq5ZVFXb58OaXTafrmN7854z2MjY29thsBB423ug9J3sz7tab4hvqMM86gq666ir71rW/Rc889R+9617soFArRxo0b6Y477qDvf//79KEPfYg6Ozvpr/7qr+hb3/oWXXjhhXT++efTs88+S7/97W+po6Njn9cwTZN++MMf0kUXXURLly6lyy+/nHp7e2n9+vW0Zs0auvfee4mIaNmyZURE9NnPfpaWL19OgUCALrnkEiJ69SnlN2zYQLfffju5rku5XI5WrVpFd9xxBxUKBfre975H7373u71jP/rRj9LPfvYz+sQnPkErV66kU045hWzbpvXr19PPfvYzuvfee+ntb387DQwM0Ne//nX64he/SFu3bqX3ve99lEqlaMuWLfSLX/yCrrzySvqrv/qrBn8T4FDhzeozjXDJJZfQF77wBXr/+99Pn/3sZ71SI4sWLaJnnnnGO27BggX0pS99ib72ta/RaaedRh/4wAcoEonQk08+SbNmzaJvfetbe5x7wYIFdN9999GZZ55Jy5cvpwcffBCxbG9C3qz+9GrWoCuvvJL+5V/+hVasWEFPP/009ff305133kmPPfYY3XTTTd432e973/vo+OOPp2uvvZY2bdpES5YsoV/96lc0OTlJRAf/GxBwYHmz+sar4dvf/jadd955dNJJJ9HHP/5xr2xWS0sL3XDDDa/YfsOGDXT22WfTxRdfTEcccQQFg0H6xS9+QSMjI17/0+k0/fCHP6SPfvSjdNxxx9Ell1xCnZ2dNDg4SL/5zW/olFNOoX/8x388oPcF3hjgQ8yber92IFKF706RLssMzMRll13mJhKJvf78Rz/6kbts2TI3Fou5qVTKPfroo92//uu/dnft2uUdY9u2+5WvfMXt7e11Y7GYe+aZZ7qrV692+/r69plSfjePPvqoe+6557qpVMpNJBLuMccc4958883ezy3Lcj/zmc+4nZ2drmEYKo17o2UZTNN0M5mMe+yxx7rXXHONu2bNmhnb1Go198Ybb3SPPPJINxKJuK2tre6yZcvcr3zlK+709LQ69q677nJPPfVUN5FIuIlEwl2yZIl79dVXuy+++KJ3zBlnnOEeeeSRr9hX8MYDn9k7+yrDsLfP67777nOPOuooNxwOu4sXL3Zvv/32Pcow7Obf//3f3WOPPdbzsTPOOMO9//77vZ/LMgy7eeKJJ9xUKuWefvrpbqlU2u97AW8M8Kc9aWQNGhkZcS+//HK3o6PDDYfD7tFHHz1jGayxsTH3wx/+sJtKpdyWlhZ3xYoV7mOPPeYSkfvTn/70FfsG3jjgG3tC+ygpt7fP64EHHnBPOeUUNxaLuel02r3ooovctWvXqmN2rzljY2Pq/fHxcffqq692lyxZ4iYSCbelpcU94YQT3J/97Gd7XH/lypXu8uXL3ZaWFjcajboDAwPuihUr3KeeeuoV7wu8PsCH9g72a4zhujN8dw4AAAAAsJ/cfffd9P73v58effRROuWUUw52dwAAAIA3DDxQAwAAAGC/KZfLKrmObdv0rne9i5566ikaHh5GdQkAAABvKZoihhoAAAAAhwaf+cxnqFwu00knnUTVapV+/vOf0+OPP07f/OY38TANAADgLQe+oQYAAADAfvMf//Ef9N3vfpc2bdpElUqFFixYQJ/85Cfp05/+9MHuGgAAAPCGgwdqAAAAAAAAAACgAZqiDjUAAAAAAAAAAHCogQdqAAAAAAAAAACgAfBADQAAAAAAAAAANMABzfL953/7TzO+bxjGXtuY4meGuffne3mOkDhdwHXEMb5zi/MZBttmQIaN6xByHVHuzniUY+h+RsUPQ8SdqIkO2UZdtQmSxed2xHUceRP6Ora4jmvycZZt8zG2Qwpxun+9/jMEmhEeC7bDv0t/egNnL25kisMMX0YEeQ53b+19fifbSL8z5GDau0v7OiDNvadr2NccsR+nJhI+tG7VC+q4ieykZ594KtfHDYfDfC7fZ63vO/Sq+wbeGD7yzj7PLtf4/VDLXHWcme7x7HCIfSzglD3bFfMoEZEdiHi2E+DM1WExNqYmJ1SbJ59Z5dn5Ip87EOSxZuxj2bXtmf3fIV/f5HrisP8GXLHOGZZsQok4XzdgBPhcFp87lUqpNrlczrOrVb5mkPiz8f9Z3hJz2ESuSKA5WbCw37PnzGH/GB7ZpY6bmub5s38O+9XQjjFxlJ4/w2GeM+VcWqmwk5ZKVdWmWOSxIjPF6/JsekzbYhxXajw+oyF+PxkLqzazOts9u60149kjO4Y8e3JikjR8vkCAz1cX16y6+n5cU/osO0m9xp9Vrab9OhRgH50olwg0H0/87ELPntjFvtLa066Oq1d5L+4UeNxaTtyz80W9t7CSSzw7FJ/t2cedfKJnm+EW1ebZJ5/37HMvfD+3D/NYchztn3KdcdyZ1xzDt8mTfmyJ5wzLEvdp11SbksP+kY6mPTsei4pr0n4hj3McZ6/HxeIH73tifEMNAAAAAAAAAAA0AB6oAQAAAAAAAACABjigkm9TyFUMmlk2us/2+5B8Sz23KeTOprF/bRwpfZUS2T104uJnJCXj3CjikzcF5cco+2PIa2rZkeOw1CMUYDlIOMQSiWRc/3oyLW2ebQkJ0tYdw55d1Kojcs0D+isGrwNSImlbPBY2rHtRHdfR1cl2d5dn1+sss3nuj39SbSpllp2eeMbpnh0M8bioW1pGFxRj2DGEnEccY/r8RkrNHeUfe5cQkTpKysmF7Zdi7+WFIWRH29ZtUG02v/SSZx934gmeHQgK39iH5DuAPzs2LQGDf4e2w+M46lPpHza/27M72pKeXZwa9ezR4SHVpiTkpbaQb1oVHmtbNm9TbXJTec92pETO4ok5YGq5mlzDokIKF42wXbO0lM4Q56jXhP/avH7Mm9uh2rSk+LMqZgt8LnFMPB4jSbWFfzo5nuX+lLg/vbN7VZtcSfcVNCejozz2i6Vpz+7t7VbHRSI8bmbNZhlqIsrhAZs3v6TaFAo8vup1HpNatqnXg4CYaKWkc9asWZ49lZ1SbUoV9isZLlWp8Lpn1SqqTVDM51JCHhAy9W5xzZePYzs3zfcmZea2T7pqy/sTktuaWG9d3zoqQ/lAc5Jg5TLVKiKUx7dPyOd4bATE+AkEeX5MRbWsv1x4xrOndj3u2U9MP+XZdnyBahOOcxjGxm0sQZf7sFBQL4iVKvvE1l0culEWIQiO49/48NgsiPCfUpXbmLb2z0qR7++UpUd49vHHHu3Ztt9x9vK8qMIX96kTD+/jZ68v2CoCAAAAAAAAAAANgAdqAAAAAAAAAACgAQ6oHlh9U7+XbNlEPsm1el9K4XySUmE7KgvxPjoks6Q6e88GLlGZwaW0XGaVc7VE1pK9E20cU0idfPImx+GPXmYdT4T5uP5enc2vs5OlWFu3s1yLpBzQ9WVsJtDs7E3UPD40rH4SESEVXT0s+d4+uMWzX3zmadUmINpMH3WUZydbeWwF4lHVJjfKGU7DcZbPBMVxjs8/VeJ8pd4WWe+FDO/lkwhJUjwhzi1l4r5M55acI9gOiqyubW3ab0a382dQmGZJUjzGsr49JERwnEMDg6VsEZHNd95sLVvt72J5qmux3C0QFHK1Fu0HBSFlK4tht2tSZL4u52UT6u3mTK+BsMgSLsZXLKF9R4YwRYTM2xES1nJJD8ipKZbSJRLcplzgtcCwdGWJQpazKOcm+B7mzeG5ZHJiVLWJi3N3ZthHy0GW2na2xVWbvedfBc3EEUcu9uwXX1zv2RO+DNdhIfnO51juHBbj+9hjj1VtOjrYDwYHt3v2c89xFvxqVYcGyEzEcuxPTXF//PN0RIQuRaPcn+yU2KP5MwKbvFbkSzwXREM8fySTCdUkIPZvaZOPiyV5rcl06HWnWudzb9myVbzPn2EgGJBNyPS9Bs1HzeKwGFNk0g7HtKy6e7aQSE/y3Fuc4t+x46vEYApteI+IpNlQZp35jiE9Nuf0cJsnf8vScJFMnsIBPa5c4rVhWlSjsOqmOEavUzUR3lAT+7C6qBJRq+s1JxPm10uXCH8XMYIyy/jLiGcw0Yd9y7ybA3xDDQAAAAAAAAAANAAeqAEAAAAAAAAAgAbAAzUAAAAAAAAAANAAB7Zsliy3o3TxvnjovcRY7i+urEYggh33qbAX19m3Ep+PM+SFxN8eHPLHKYvX4r6tatazA76POhTg0i0JEaM0p5dLI7VlkqrN5CTHf+7YxSVeLFnTwZe7H0UYmh/HnTm+P2DquJepcS5vsH09j+Lf/+q/PXt65y7VpmM2xwk/84fHPDvewjGl7zj9VNXm8ZUPevaCxRxnt3gplzqo++NeRBxopcjxQuEwx5tt3rhJNamK+LV3nHwKvy/icMIB7Te7RnZ49vjEhGcftnjAs0fGdPmjsW2bPfvp++/17LM+dIlnG77PWpZwCSCsrWmpi19OVycHnWUiunTGyDqO3bRrImasymPVsXU8WyDC8288yjFsdo3jj8Nh7QcRkWcgEuVYu/mHHebZpXLWdxfs/yMjHMMsY6PbMr445ZoowyXerwm/zI7p67S2cn9aUuz/pogJDYV02ayJcY737GrnGNFZ3VySq1TSuRF2DuvcD6A5mTWrx7NlmalyuaiOy+V4vK9Zw7HWXe28V+kROT2IiDZvznr29DSX5IoL/3BdvTuR5XNSYnzm85ynIOCbjOfMmT3zz0QJvXxO34/cv01k+d5mdfPnEYnrOFUR0k1Hi/I/b3sbx47PmTdHtXn4kYc823J/79mTYt3K53MkqVR9dU9B05Ed4fFUrrAdiOi9d7nIY9Dg8H7KdPJxtbLe3wRFTbdynQfd8zs4Pnu07MtFY/BxK5/n/ZErSmVFDH+cMo8zmQNKhkAHfHsvWWKubrGvWjavXyVfCdYlc7jU7x//+Byfq87XP/4dx6g2sTCvdbZ4ttlnWeUmofl7CAAAAAAAAAAANCF4oAYAAAAAAAAAABrgwJbNMvcml/YdJ3Ste5N87ytFuqiuoCTf+4/8O4K/nJX4ieHOeJTr/9gMfm3YLMeYGtnq2dGAvk7/vCM9e0H/fM/ubGNpob/M0Es7xvncZSEtN2R/9N9IDgGVxFseNbbE4LYqWv71yP9d6dkpUaEhKspwWMWsavPSBpaUTW1nKXQ4zZK2xUcvVm3cojhfhcvz1KusB6r6/FO4Pq1b9Zxnp5M8nquFEklKeZZL2ULq5sjr+MqIFHIs/ytNsj20edCz1/zpj6pNh5A77XyGy0qsOYz9bt7Cw1WbdDrDL3Q1DNBETAn5W6jA42nbdFYdZ+S59M6cHpYrV/N8XC6n20QTGc+2IkJ26nD5j3RKrwWBME+4iaSQUgfZXwrTFdUmHmdpeTTEsurxEZ7vXV+Ixby5LLct5vgzcGt8rpaULgMmoi8oN82+uGuIP5tYVEu+LZsd+6Vt3J90nGV5pbouf1TdowwKaEa2bOFQmKGhEc+u1bRsU5YctcXP8ln2iZ07t/va8HiX0tGQKG9Yq+n1TW4FZdmsoJCuVn2S6K5O9mWpy96y5SVxYtWEKqJcV1sH+5G862JZ++jb336CZ59wwsmePWsWy7yjMR2WMWceh3l8/C+WePauXSzL/f7/vkm1KZX1Ggmaj0RM7FVMHpuOocuzFbI8hlyxj7HF/iYa0psL+ZwQEPZ2Uc5wSIThEBH1JFhWvW1QhAwleS2I+Er91qo8zizxrGYkONQi4lsLZD1ER5SRk+WO63VfSWEhB1+9aatnr1m31rO3bB+UTeg973m3Z2fEPVgiJGSPx8YmqdWIxy0AAAAAAAAAAKAB8EANAAAAAAAAAAA0wIGVfO+HlPvVHLd3RGbvfUjD96e9XzHuGjMfpt42fRpQl+UcIaE9aE3wcVZxUjXpbOE2PZ0s83Nd/pXsGhlRbXZNsrSvSpw20BBSE/+naTYkiQdvJE+uWuPZuwZ3enZdSMOIiKZe2ujZ6a5Wz25vZ1lMIKllniM5lh2V8iwVkqESK+/8lWpT3snZxKeGWUL0wlPPe7bl8ztDCOZ2DbKUMB7i8ZwS8m8iomKF2+zcsIHPZbF0L5TWMrqikPUWxznrfVDMZGlbh0p0tbGMqW4JCdJ9v/PskR06O/rp51/k2TGf8gk0D9tHeAxMjrEENerLNtopsgt3tkt9GM/DVk1LlasOZyeuTLHcOZbkAdEW1UtoXkikk0me14eH2KfS6RbVplZjCarMNN7VxZmTwxEd+pCI8+tyidsEIiKdrC/Tec1lqWJQSG9HRnltqia0pNYRsRyu8OURIVsPh3xhRg2t6eCNZmqKfae3l8fa8NCE7zj2A/m7DRpSnurPVsy2KSoohMO8J8rn9Txty2zBInO8rBThD2GbnuKxO09m/BZ9K1a1fNsR/TFFpYn5ffM8+93vfrdq097e7dkJ4b/rReWK//rpf6k2MgP5ddf9jWcXRFjWE3/6g2rz+GOPE2hugjGxTqh1Rs+3mTYe63WR1bpQ4/fLvnVqcpLXqVCC90ttAX6/fW6PahONslNkUtyHWIyd0BTPC0REwTC/dqTvyvAKS4fylEv8WlY2kj7tkr4f2xbVKOJiIyWqEf3uAR2it02En7z/gnd59uKFC/hcvicdq0k03/iGGgAAAAAAAAAAaAA8UAMAAAAAAAAAAA1wQCXfEvWF/AGWgLlKl/3qzy0l0io9MfmykwtbShxsn4raFEXSA8QZ/Lq6Znl2blTLJ5w6Z192iSUkQxMsad24U8vEyy7LNExxD1FTSr5152rNoYQA++C3K1nmNT7C0tBF4bo6bkkHZ+ZOCQmoVWWZTSKkpT2tER5b28s8TisWj+fpVS+oNiJpI0ULLCePF7m97ejxTBZL9JJC2hN2uI1bnlJNCnnud05Iuasi+3fr3F7VpqObs7Ju3cxyu6joT19Pm2ozLfodCbA8KZBlOfugu1q1qZ11Lr/QSnXQRARDHBJQybM0tVrSMs9QnX0pO83HhQIiq77jmyyFTC8gnCIkZHoVV8v8RkTm421VznycSHPYgenTrZZFpvJIlMenCo3yzesFkTF/Ksv3Ewhyf0oV/Rm4Dl+nM82D2jDYp4I+mXhVyOAnsrxm2WLNy6R0CFSxqK8LmhPLYp+YnOC9hpRwEvnC8sQwlP4S8mUrTovxPn8+V1OoiDFZKq1Tbaoi+7Zt2zO2kfJvIqKxMV4vM6JyRUsLj+/JnM6KTCJTeXdPxrPPPofn/KOOPkY1KZfF+tLX79mbX9rq2cGQ7pusRrN9J4dyHXPMEZ799ne8Q7V55ulnCTQ3wzt47hsZ5b1K35KUPi7Pkv/xCq9TVYvn25Kl48kMk193B3g8L5jFYRgLFsxSbdbv5Pn/uLdzZnlHhOX51xxXPDfZogpKqs7rl+WTo4/keL4Y2rnVs7NTnKXb8WXutzsXenYxxPuyTExkIPeVUXn2hS18vvo9nv1n71nu2aOT06pNUvj72SceSwcLfEMNAAAAAAAAAAA0AB6oAQAAAAAAAACABsADNQAAAAAAAAAA0AAHNoZ6L9Wo9hXl3FDZK9Wkgb8JmCLtveEv/2MKe+Z4atvW8aMhk1+3JvgjDZpsR0XMABFRLscxAGOTHL+0cRvHSuSquoxLSMTHhUV6+kXzOKbC8oUBvrhNlwMCzce2TVs9ezKX9ex5nXrMdAU4broY5rFltHd4dkDEIhMRRUR5gu42jmFJtHKbRCqj2hhhWbqB+zB7zhzPjkZ1rLZVZx8IiH4aopxBvar9ZonwKUf4mltjn6wHtX8GRemfHetFqa0clzWq+kurmBy/lBbxgYkgx6EaNd23WkHE3XURaFK62ngcmyL+2J7OqeOcEs+3+QL/LCHKaRkBPXBCwsdMEUPtisQUUUePz7AYxzlRrsfK83HVio4z6+rkmLpqlX82KdaFYlHHgQ4M9Il74PE9McH3lm7R8Xm5Ao/xLeNckq+ri+eFSsXnB6KEXUB8PoZYN4MBvejIkl6geenp5H3DyC7eJ+Ry2ndI7NFkLhlDlJ8qV3W+DyryOmSE2CfiYY4L9ZdebGnlUpAFMf+WKxz7H/TFUJtRfr1jjHNi1MWpIxEd25pKt3v2smNO9OyF/RzbnAjr0nZtohxRjyhn15Jk3yvks6pNqczxqI888ghfZ+GAZ8+e3afayBwIoDkJiPxFLTHehz/6nF4/nhrkuN5agMega4hcFE5WtVnQxzHQRpCvs2Wa5+VUSfva4BjH58dFvhdH5DhwbF+uKPloI9Yww+K+BQ1dgnXxPN7/HTGH15bnnuS915N/eFS1CczjcnMU57W6Lq5Z8+3XonH2vWSKbUfkNLn3oSdUm/Z29knEUAMAAAAAAAAAAIcYeKAGAAAAAAAAAAAa4HUrm9XMOCQlqVoKoaXq/EqWwwqTluzN62apUl8PSxQGN6zy7KDvTxdTopTDhg1c/qdQZclPwNDp5JMBln0smc/yi+6eHs9e/9J21cYvAQfNx8ggyy+3bNvq2XMX9Kjj+jpZNhRNsbYn1MaymugcLdOJxVhiZ0d5bLpCCu4vAxcQJRZqVZZFm6I0SjgWV21SGZaNBoNS8mnMaBLp0ijyR0GXp6V6QHduWsib2lMsR7eKI9xPW5d7CEX4M5Fy9GCdjwvkdYm6zc/+0bNnHbaYQHMSFyEF8xcu8OyuVEIdN7j5RW4T5dGm52UdYmOI17I0XV3IWx2fRDMYZB+JitCJgChH1dXRodr4JeC7SST4HjKZjPqZLCUUDInwD0OGJunJX0q2YwmW7MlzFStaThgQpYCSce6P6bAf1cu6Ta2mP0fQnExOZD07IOXXjv79BQM8vhy5ZRRhEJWaHgPtnSyr3rpNlNURMtS6pa+TaeN9VEqUwdm6dRv3Jbz30lR1sZAVRYnIzq5u2YTOeieX33nbMcd5djzC47uzvVO1yWS4P0GxPq5+fpU4St/P7FksqT/lZJaWJxK8dsajeh2V6xNoTqJx3ofXLB4z69bqeTzgPuzZ3WLM7Bzm9vm6DkeY8w5ew2qi5Gg0zvN6PajHWUSE2GQSPJfbwo8dQ48rV4TsyBK8jnj+GB3XG7ZadrNnz5vFe8mFCxd59roX/qjalAoc9hBK8xrqRnke8Qf9uq54PjN5Pc108JwS8LWazmapGcA31AAAAAAAAAAAQAPggRoAAAAAAAAAAGiAQ0byLcUHDeQF9yHkD76TmUK2EzTYFgoFmtOeUW2OXMSZGsPEkoudNtuGrSVRRZEFs2pzdspAjKVGqbiWAx3Vz9Kl/tmc1W772BRfc2hEtXH2mWMdNAPbB1kSVxUZTZ/bvlMdN2/+CZ69dCnb4c5ez67U9TjL1Vg2ZAlpqSPkoJal2wSF7Mx1WKZjCbnetC+L8q5d6z27LvpQE9dvacmoNlLSOjE2xu2r7JR2UI/f9hi/zuZZTmSIzOCpsL6fqMikaYqUkpbICk0+mfgfRFbW0z54GYHm5HAxD8aElLJnzlx1nAxXKE8PeXYxNyEO0mMtIKSudZFh1A7zGGqf3avaOBZnv98hMm47YqEpFcuqjax0MWfObM+2LB6TyaReC6pVDhnatJHnj2CQ+1wo6oz/IRE+IcOZDBH+4V8t6nWxHobY/xNx8bf4mpYTVkoVAs1PqcThPCGx7zH9fhDmMS1DyAyxj3JcPX+GRRtZ6UGGLnz4Uj2vvv3t7/DsaJTDJWSG7DvvvEu12bWLw6V6Z/H+KJlkKe1xxx6n2px22qme3dXBbdJiPYpEtLS8XchNx8Z4j7VhA697tm8dHRNr2gsvPO/Z8+f3i2NGZZPGqt6AN5TxcZ7fduxiHwgE9Rw9t5Nfd7SxD5RklQjSYX0dPRwmsGEjS6yTCfanes3nayL8zhXTsiWGkj+UQIZxBMT3qjVRRcUw9HhOZbjNaccv8eyNcQ4z/aXvOSdf5nUq6eh+78YXYUKOqP6SL/FnlSuJvrn6u2D/Z3KwwDfUAAAAAAAAAABAA+CBGgAAAAAAAAAAaIADK/mWCX2N/ZMam2YDz/RCFiMlMvu6ohTSmFIKYWiJTTTAEoO2BMt+ZndxBsqBXl8GyBTLMSZGuMi5Y7FEIeC7TUPIH+ollgamkywtmtWVUW0605yZdXqKsxJvHRz27FLVJ30I6EzhoPmo1jjroytkY739R6njzDkssylGOMuiJbLsFgta5mkJCU5rG7eRUmy/XMYS3uKITK5ksmzovt/dq9o8+nuW5aXSGc+uVPneTjn5FNXmiCOO8OzHH+PskEWZRdnVXn36O4727N55nOk+GGcfjMf0tDbl8vmCdb6fcInlSBWrptpMNoeCCLwCh4tqB5t38jw4Mj6ljosmef6OBkS2UfF7z+Xyqo1hikykwm7rZzn52884R7XJ2bxmrNu0lduLEItY3J/Zl889S2QGrpRZWjg4uFU2obCQnS9bxpLWUJDXiGJpWrUZHmJ5rCXmiVyej7NJfwYBU/qSqHQhMs12icoWRETdPTpzLWhOHKG1lEmA29oy6rhQgl8PDfP+Ru5pomE9pqMie/XAwHzPPvts9pcTTjhBtekS2bhbM+yvJ598smdffPHFqs3vf8+ZlKens+InfEPdXbNJkkpydYhusZdrE+uW5VsPYjFeX2q18ow2kc6qnxP9efLJJ/hcUZ4jtm/fRgq//hU0HbGkyLgtnMANxNRxrsFjqCpCzQIhHks9XfNUm4AoOzEtKgHNEqEJMtSNiCgi1o+gzX1zpCza8D+AiGoQYn/kiJiOsq/6RKvJ/e5s5UoVE63cT8NXmUhWkLEd+dzG7/v3eK4ItbVEJZhcnj9Paw/5eJiaAXxDDQAAAAAAAAAANAAeqAEAAAAAAAAAgAbAAzUAAAAAAAAAANAABzSG2hBRzPtK/r+/8dX7035/zyWPCojehUlr8TsSHAMwq41jInpaWKPfmoyqNoYrS07w++3tHGdQFunjiYiqFY6PK5Q4hiET4b4lDR3HUylz3NvIFJ9vPC/ieII6liD4Gj9r8AZgifJsMR5zb3v7MnVYSzrt2RVZ8iTFMYuGr+SJXeNz79y5i98XsSkypoyIKCDibQJBjkUbGeFyIb///e9VmxPecbxnzz9swLMnJjnWv6enW7Xp6mb/OPWsMz07KEoc2Y6OSwuKmCXb4vi34LxFnu2YOo4naLF/2Ds5Zq08Ij8PX8mTSR1/CpqTQJjnu2Cc5+VNm15Ux83r4vJW8zpEPHUvl8qxQ62qTbHIYyDVwvPy/KN5rLfPPVz3R5SqOkzkHwgJt+xp16W23CCPV0ccV6+ImLGyLkVlhNkv+/r6PTsiyhW5vlW4VuWYuPw0x+Ft3bbJs3du26ja2NPsvxURuzc4zOXGJkZ1TF/PnFkEmp9Eguf9RJgHXiKpY+Atg31MlpPqFvP3UUfpfB/RCMdQJ0Q5u8WLOG9GOq1j72VJrUhUlAkSZRj7+vpkE7r44v/Psx0Ro5md4rw0u3YNqzayFJzryrJw7FPRaEK1kbGttojfDIj1yJ8npyp89g+Pco6Rp57gfCGdHTofT72m41ZB82E5vPcquTyGS3X9u8vYYsyIeORIrI2P6dDlHYMiuDgh4vYzLbz3G92hS621JTOeLZ+HZN4O17ePcmQeqkBd2OwDlZpuI3FFfHa5zP5gGhF1nGOJGHOxuNkiV4D0WyJd0jGe5PYhUUK17utbzW6OUo34hhoAAAAAAAAAAGgAPFADAAAAAAAAAAANcGDLZimJmbR9adFpL6WuZAmsfSqVX73MW76Ih/i2u9Ja2rNwHssxiuMsD33mD097dvLMd6k2ra0s+wgLyV1bJ0tci9P6bxfpBB9XLLFkolhg+dz0iC6p4Dhc/mG8wJKJupBkmT7dkUkow9Ds1IVUqKObf8fBkJbPVER5LSnTlqXj/I4zLmTa46NsyxJYCxYuUG2CQqIXEKUSnnnyOc8ul3Q4Qncvly96RJTAev655z37vPPOU21Kde73jhEhY3JnNImIyBYyprq4byl1bU9oCXsyzv7emmBf3SFKeoUr+n6CweYowwD2jSz50ZricVtvTavjWsI8BvJl/l3XwywTX/Q2XcanXudQgVSSx1drL8tOq1U9bopZLtflVLl9JMnrTL2kS9sZEe6D8r0ov9/f36/amOJ+ZBmukggFsSwdztQiygKFQ9wm1cL+0taiS78Mrn7Os7N1vteeXpatTxVl6SCil7aPEGh+urt5fzKnm8t1ypAbIqKRSd6THNPOEuXjj3+7Z/tlm0/88UnPXrKEZd6totxOR0eXaiPl01LmLcexWutIl3WTstaQuId02idhF+eTJayms3sPT5IlsXbt4vJzNeETIREe9XJfhbRc9G1kmP2jXNRzQamkfQk0H9M5Hqcjk2Kf4Cu1Ztv8LFES5WsTnbxXSmfaVBtXPKhExRwfEPs1w9V7EyPCxxmiBKopfKVmazm6LFcsy0OWhZQ6YOpnh1Iu69k7tu/0bMvm+/aHHKZjfN9CwU5VUb7UsfU65YpQqWSa7zWVFHL0sp4HSnZz1DnFN9QAAAAAAAAAAEAD4IEaAAAAAAAAAABogAMq+Q4YLBEwhE2Gfm53hKxBSpSTQf4aP+hq+UREZHN15N8BxLkjIX07hsyyKuQ4nUIC1NESV226O1iat5XVezQxzpLU7du3qDYtLUfydUSmyHiMz5WKa5lGUkghRMI72r5tyLOffeZ52YR2PL/Os+cc+Q7PDposDXRsLdPYV7Z10Bw4Qg7W2cmSunpVZ54OCtloWPqDaC8zOxIRuUL6Fm/nLMYy7CHk8xtXZGo0RDbH7BRnPfZLovM5zjq/5SX2j2mR5dvwZZqUGWNNkV1yfJwdr+iTxFWqnM0xLDKid4l76+jS2WM7MixprZb5Xl+cZplQp0+uFWv3S/5AM2KKdUIowigzd7Y6LmDyWLt/Fc+rWaGEO79voWrTO5el3S1pHmtVkS17x4a1qs3IrkHPDotMxa1Cvr1r6CXdNyHZnn84ryUBEfIRCfoqS4iMpwGx5khJbL6gs2/LeSIYED5v8L0dtmCJakMl9reIkIkvmc2ZvHO+cIlf/OZ+As1PUoQNLVrEVRJqdb3uxFp4DCwW8u2uLpaJr1+/QbWxLLEmiTXEqsuwPtPXhvcuFVEFJSDWBilVffk1r28hkS0/EuFzJZNaDjo9nfXsmgi3mhgZ8+y2dr2GVCp87scff8yzCwXOJm5beu81PcmZ8ONiLkjN6fHsTEZXFti4cTOB5saI8O+yYnNoUTKo91GRdl4/Jjp4Xg2P8D7KrGgp9qAYg1t28fhpa+X9SD6vK5BE4iKEQYQwBaPsK+GYfs6Jxfg44ao0LWTdybBec0yxt3zqqT/xDxwRqlErySZUFw83Uk7uiucUy+c35PL9DA2ytHxk0TzPLtR0Vu+60xxPOviGGgAAAAAAAAAAaAA8UAMAAAAAAAAAAA1wQCXfjpDj6EzevsLdIvthTGSSSwdYOtaV1JkmZ8/hrKJmmOULISmL80lXpZZayr/DIhFdtawlpdNjnIHRFtkgQyKL8NZtWpYzr4/lb2mRYdgVMgvD1HJXKdmTBcs7hOS3d1avapOjLLd3ZTY/lo0Yvl9pHX8zaXqiQg46/7D5nm0GdMZEqZBzxNhWmd1N7WvzYvw6bbAEVGYdLbta3lYkDokICN+VmX3Xv/ii7y74uGKer+NYItNkXUtD81mWLmUnWTq3fv0mz6775IdVIQU0wzxHFDv5HhYkdbbVosG+UrK5jSWyZVZqWdVmchKZig8FQiL7aUymESU9BnaJ0IMNo9s9uyLGw1ShoNp0mZyN1Q6xj06McFjOjq0bVRunmPXsaCtLYosTfP3chB5b4TrLBuXaGBHSQgrp+xGJWSkgwpliUZZvy3mFSPtiwOD7DoR5zQqFfBU0FrHvGK4Im+rlDM3prk7VZFc2S6D5keNDhgpMT+fUcQsXcxjCgoUDnp3P8fydTOpM2jIZdywaF+/z+MrndEhCXFQ+yYox1NrKsuigT1arsh8Lp0gmODxKZg1++dzsiyr0QVD0ZeIPCr/Ytm0r34NY68gX0lQTVTlkuEWX8Jd6TUt+ZRgUaE5GR3iO3lHi0KKapffawxt4bCbHOXt7WyuPzWQ0o9qUqzzuTl12nGdbQm6diOg2uWm+Tl48ZySi7IQhfyigcNC6CMMoldgfckW9lyw6vLY4EZF5f4yfh2R4BhFRSZyjVfiAJapzlMt6j2cG2Af++EfeZ27ZNOzZBe02lM7o+edggactAAAAAAAAAACgAfBADQAAAAAAAAAANAAeqAEAAAAAAAAAgAY4oDHUtQBr7AMkyh7YOnayLcaXLQ9zuYXh3Lhn97/9WNWmPcXxNaEIx/5ERGyz4SupYIj4GtNgOyhiaqoRHatdrfH5pqe5P4YILSuVdWr48TFOdR8JynJYolyDL617XcSzOY4oIxbheKOjjn2HauNkROzeBMf7OXuJAyIi1M06BDBNEUPfkfHs7p4OdVyhJGLbDD7OEnGXjq/cXGpym2fHtj3l2XWDB0Z5qY6BrImYyoCIeVv/oohttnRMTiDMvueQiJURU8wuUXqOiCgi4l7GRKmsKRE/59R1yRND+JEh4qvzYX5/Yiorm9B4Tnxuaf5MA6KUSbCmY0fH8trHQXMSC3A8mhHk36f/t7ejKOL6RYx9ZYqPHB7eodoMDBzGL0SeApkLIOTq+K+2FhG3LPyyKMekr+RHa4rL6CREHLgpcoIYro6tNAPsYzKGWpYVsn0lFG2Zu0TkIQlEec1yDb1gxNMcB16r83UGN3F5sPm+NXTevC4CzU++yHuI59ZySc5Zs2ap4xYuWuDZQbHFqssShr78NeUyn3uX8KuazcGPdV+pwnpdxFeL2GRZItIfo2mK/BgBkT9Eli+1fHHJshylIZaxtrYMv/DFXRcKHNtaKXO/i0WOjbUc7W8VETNaz/PnkSvwnBP35TmI+cobgeZjYph/r0NZXn8mqwl1XGyIx/AF/ZzjJS72Sm2tOn8NWTxWYykeG7UK+0ZiyeGqycpVuzx77Sbe60QMHmchU+cHMSN8XVuUQBXVtCjm6lW0pZfXw/mH8Ry/ZoRjm+f363KVeeLxHEmwrVzF1c9tdeF6FZvb1HdyzoZ4Ki2bUFzlTzl44BtqAAAAAAAAAACgAfBADQAAAAAAAAAANMABlXzLUk4Rh+VAh/d3q+P62vlr/GyUSxjEoiwXiMRjqs34MMsKwqKciJTMxJNaPhEI889CwiYhi/OXYQgLuassQZJO87nrjpahjoxwGZSgkJm7PrmqJJtjCUZBSIhqokmlrmVHu4Q8MZjIeLYsHUG6yR4ly0DzYYrfX0KUXWtp0bKWQpnlPI6Uc4p4BMNX9cYQEnCrwr4WCAv/qmmpmilCEKQEVIY61Gpa6hoQoQ5toixIKcfnDpHuXEGUJikIiWA6zdKpSEjLSWMixKMkSo4kU9xmV177nSukrkZtQlyT5Xq9ju5bQN8eaFJCYr6ui8E/XdUSt9E6j91UF8/lhgiXyYoQHyKickmcw2nzzNY2tsOHH6HaBPJ8jslxlqiVK2LuNvT47GgX54uwX8qoCtPwTewSMXRlORTL9q0/cp6Qa4aox2eYvglElAsLxdnHhrZxubBKXZdZytq6HBJoTrbvYCl2Ps+/w/fN61PHRUVozLQIXUiJ0lSTvjCbSpXn1mdXPePZD658wLM/+P73qDZBoSffvp1L25VK7Dt9fbpvKSEjNYQc3BHfFfm/NRoZEuV3RKm80049ybMTSS3flf3ZuXOn6Bvvc2u2XjTq1sz7v5Dop5xLiIhaUi3+w0GT4QbYH2aH2W+ivrJps47icnPdbTxO77v/IT6o0kOSwUH2yf7+fs+W5bRsX/nRc044x7M37uQyU6M5MR59Jb2skgiBNXmcZoK8ZnWk9f1YokxpNM4ycavM+7C2hC5fFRZy8vY0r21lseYkbf2MUhP7UVuU5woJObwZ1GEcqZjeJx4s8A01AAAAAAAAAADQAHigBgAAAAAAAAAAGuCASr7jFku9jpjLUpZTjp6njsvu3OLZJSEpjcRYZlN39Vf4lTLLF1qFLE5K5OJxnSFRyvlsIccpinO5vkyokSi3kdlTUymWFk7lplWbISFHj4kM5NUiyzR27RpRbdZt4M+gavPfNQ474hjPDiW05DciMq46BvdTSgP9Am+/BBg0H4cfwTK2sMhWbfkyjQaETMYVYQchkcHe8g2AWpQlZLHuAc+2A+xftk9O6oq4AVcMoIjI5mvqZKsUE+khzzn7TM8e7GcJUzKhwzgGt3N2ym1bWFIXEaPYCussqDkhaa2JzM25KPvnLnNItZGJYWMxfrEwwbKhoJAOExGlE3sP1wBNhJhvC2UeD1vHd6rD8iJjaUDM8cEEj+nRwphqUyjw+QyhsuvsmePZbRk9R08NvuTZYZszYUcmOcN9teobWyb3p2aLjNtiYnctLau2Q2LsigzglpKZ6slfhkpRSGQDF1JF2xempGSsQmVnBvk401f1Iu7sQ54OmoaxMQ5/kbLuoE9OOTTEe5ew2BOlM638fsiXhV6sGyWRTfz+++/37COPWKTaLDuOK7ts28bVKbZu3erZjm9szZnV69lxcQ9hGdLkyyL84ossi80Kqfrxxy/z7I6YrrDx5JNPevYLL6z2bJlJ33b86ygTDMwcVmH5/C0R02skaD4efUHsT1L8u6xUdPUGsb2gbJafGawa+0NZhL0REU2O8hq0YC4/Nw0KHxgd0evUKW8/0bNPOJz3Mb/5E8/dbXE9zmaHeZ16scT7z5KompEt676lC3x/WZHhv0Tsd9sn9HUWHc7nm9XJz2cj03zulojeTIaSYs8n5hjX4vZhX+b+ZilnhG+oAQAAAAAAAACABsADNQAAAAAAAAAA0AAHVPIdC/LX7p0ZzvY2OaolmM89w1kfd+xk2dHCY/jr/fZZOjN4XOg2zSjL4hwh9XRDWh5KttDpOSx/MISU1gxquYEhM6EqyRzb5bKWdtREtuFRkfH7xbXrPHvXDi353jk85dmTZZZJdC1gyXemTWd8lEm/hfKVXMcV7/tkR9B8Nz2zu1nKkg7z7y9kVdVxhtBzV+sibEH8ji1fZtHpxCzPnpjPMraQCLVwAzqjadhk/woE+Lh0mn26S2TyJiJqa2PfbUmyDNYWGRsdR2dBPXPhCZ69cC73LVASUsRYu2pjxTmUpEbs30GRZbwzpUM/2gzOOBsW7r5DSIieefQB2YTKJv7WeEggfk87J1hWvXV8lzqsEhbjUEyerpCKbd2+TbV5cTNLQ/vm9Ht2Usi8QwmdpTfZxWPcjLJfBYbYHt2+WbURRR6oUJCZWYWs2tZzQTApJNvifupiXoj55KNyrXOIz21V+dz5yQnVZkqsZ24+69kdIgQq5ZP7FiplAs2PbfNaI6uYjI/rbPdbtmz17COWLPZsGQYXEXLrl889cxWKoWHeC27auEm1mTeXQyl+9av/Fs15fL+05SXV5vhlLNOW8u/29i7PDvv2hRvFdbNZ3odNTbEtQ5iIiHI5DrmQlWFqwt/8cnQ5tzhij1YX2fdzeZ0RP59Hhvxmp2Tz/H/4YvaHWb06/KdWZx94dgPPq8Eoz8MyxJSI6KTjOeyhu5X3VOvX87miIb032Smerwa389iqVrlN3dRjsywygDsG24lWUdWhpvuWtvm5J1VgCXvfLFE1o+RbD2M87vt6ud/drWLP6Wi5dl1UkCnk+ZoBcd+WrZ/BCsXmWHOwawQAAAAAAAAAABoAD9QAAAAAAAAAAEAD4IEaAAAAAAAAAABogAMaQ10zOI5m3VYuJeWWp9RxY2Osf68FOE5gW45jbUYcXSYkHuQYgEiYu93SwgFovW269E1LiNvEAqIEicMxDIav/k+5xFp8GRPjiji1UkmXCYmIFO7T0xxbsHMnl24pFHQMXLXG5860cbxPMM7xCBXfr8cS/TFJxk0L29FlwAgh1E1PPMNxKy0tHNebSukYyIksj4eqLcpHiSBMGUNJRGQYHFtsiVJrMgLFdPUgMUtZzw6K8lpt7RzPnE7reKGenh7PTsS4TUeniM2b0LF58/u5XMM7juJYpNLGFzw70KLzCAyFOI574xaOeZXlfhxf2ZeczHlQY/8ui7JbvT1dsgnVY81RhgHsmzERA7l5hEu05XwxxzXxt2NX+E40yr5nBguqzaN/esyze3s5F8EpopSHbE9EZER4DQpm+JotIs7YCPrahHlM53LcB8fiubwlrmNUA2JiLxa4jYzvDPjzAIhYVNsVcWo5ju/bvn61alKfmvTsNlE2jzIcK2fYOj7PsVE261AglRQ5MTo5Z42/xGdIjNcjDz/Cs00xvjKZjGrT2cXz6eYnuOTUlChTtXbdWtXmxBOP9+yxMS4NtG4d56JZs0a3efyRRzx7fh+vJ/J+VAktInr8cfbrgCit+tRTT3n2smXHqTbvfOc7PbtQ4JI///3fHOv9wro1qo3MbeOI3Day/KU/ZlruGUFzMr+P90HJFD8/zG7T+/XtI/y73THF69FAG8cPDw5uUW3CJs/zO3bxeuaGeL5PJvWe6NHnuOTojjH26QvfwXlpwmG9fkxk+RzZKZFfRNyC4eh94dQw79+mwiK22eV7y43vUG1GtnO+gtVP/dGzK2VuY/geUkxRYi4tcvPIcpPRmN7jxWK6zPLBAt9QAwAAAAAAAAAADYAHagAAAAAAAAAAoAEOrORb6AVGciwJMB399Xywfb5nB4QkNWexfCI3rWXVQSFRk2UUQpMsd9s5pP8+cORclmb0d7FE1RUyn7ql5WmlgpT9cX+GxliCPlnQpYmW9i/07HlCOjp/Xr9nF6ta1rB2M0viLSGpSrawxKHsU85JEarMNC9LMriOX6oKzXezk1owz7OrQpozNaQl0lNCHjY9vtWzE2EeP/GELoEVivH5giI0wTT3Lg2VI8YVr2Row+joGEl+//vHPbu/j+V2wTD3Jx7XUtfpdSwFvPsxlpoOFljCXshmVZvJafbPXImld44oReL6/k6YFrLx1iTL/waErPtt736HahNs03MWaE62jHPJkPEKjw0rrOc9NS8K2zD5uK5ZuhTc8HaWvj7yxMOePdC/wLN7umepNoZYW0oFltLlRWlEiutwiZIIV6hXhM+LUIxaTY9Ho8CLQ0n4QXsHr3ktvnAJuYAEDF7bCtO8tu3aPqiadAlpXUs8RTNh+yTelgPJ96FAJsNjJSBCe/xlsxLi9z42xj9rE+XjwmE9PuXrgCh5GhByzmeefka1Wf6ucz27Q4xjGcbkX3eykxzyUczzOK5Wn/XsXTuHVRs5PFtaMp79D//wD5595JFHkOTd7363Z0+I0KUz33mmZw+Pj5Jk+w6em8Ki5I/cr5m+tdf2h+yBpsMO8f7kN3/g3/EDj+nffygu1qBIxjNFxBBRQUv+H/z9nzxbhv+cehqXGJ3Vo9ep9eMiFNDlPdYxi1ny3ZvQzyw5scea+iM/qw3Xeb/o+EruBkQIbSTGa86GNVzK7pknn1Vt5h/GpfCyYu82NMphRq2+cJFUC883b1u0hPs8yZ9VukWXRt2xTZfgO1jgG2oAAAAAAAAAAKAB8EANAAAAAAAAAAA0wAGVfJsy27SQlDkBnWXRkcf5BKa7MQxf5lB5PtGmysoFqlXLsgn19YozC0mTzHzs2DVSCFmcJbKBlyyRJS/STpKe2QOevWA+SwBlf6ZrOgtdMcrZ8CZzLGWQ2SBNn3pbKN11Zm9XZpP0SbwNSL6bHTfEY8N2eczVLD0Ahnfu8uyH77nXs0Pidx4MaZc2oyy9S6RZSpMRUre2tjbZhHp6WLItJeTPPclZUPPTOiNyMsL+kWthf7cLnIGyffY81SYyxXK9iU2cvXUywFIlu66zNUeFpDbZzscFxH37ZXSGeB0k9q+gwTKomqWvE3SbI2sk2DfbsiwBrcih75v2QnI5EdnuRVQPBWN63PTM5fCdbTtZCr1hM4/VtlYt3w4LP6iKEI2tGzd79siklgY6Nss8wwH213yew57qlpaCGmIcy8oSx7ztGM9uVdpComiUZXLRINsBYplgoaDX0IjNcts5IpwpKPwwHNSVMowYwiUOBWIxnqenhezfsvyVQtiZpNy5PIc3WJat25RFJZSBAd4fnXDSyZ79+CMPqTZPP/20ZycSnC1fbmGkZPxleI0sFvmalQrv61zfPkquDwUR4pfPZ/lcvkouxx/PGchfWM3ZvOfMnu3Z/nV0+3aWA8t9pS005/4Mx5B8Nz/Lz1nu2a3ree6bKOgKK474XU7s2uDZ5Unedwzv0uEIZp3HRkJUINq0YatnH7VosWxCkQk+ny189z9+96JnJ4PaCUIRPvd4idcsM8Hvt/oyZweF6xVEeMXAwn7PPvJtR6o2xVzWszu7+LkpJkLvHF+YaiIlKmUYfD+ppKjO5Or9p0nNEWaEb6gBAAAAAAAAAIAGwAM1AAAAAAAAAADQAAdU8r237MD+vNN7lyELyfcePzFmtOW5/Nl9yeDXMpOxlMtZjs5+Z4tzTJVEIfEWlrt1pbUsJ5Zg2Z8hMnZbohD58MSUaiNl3nWVJZXtPeTbe8Hdi/3/erRf5wAHj5CQtQQCbLe16qy6lTLLMVvaWV5WFzLNQl5LYQwRE7F5A8tOpdwvFNLSnoDIfBwIsp0X57YdPa7GRjgjck/snZ59WEpIWLMTqk1VjG+ZQTwsdLhGSGdzlPIgGR5BwrbrvqzDdf5MHSFhLfdxFuQxn7ScshUCzc9kncdkXYQJuT6dZ0CsBVLyKQ8zDL1+hKV0OchjaHDHNs8+4e3HyyZkiHHo1His5UW2+jUivIGIqFjitSAqQhfkWK/UtJwwIqoBWOJn2cfYx3p92WAPX3w0n1vMOT2zWLrbv1jLCXeK7KlTwne6hGSvVtdhU84MqxBoPkolnuMqFV5D0mmdHV7KSLdt49CHlBgDhZKeL0fEepBMZzz7qKOO8uxnnnpCtVm/br1nt7ZxuEI8xmuA4/Nr6W/VKs/hdZE53+fWai9oy4zbQk4+NqbDMjZs2OjZJ590omfLbOYT03qPJ6XhrvCJoMh63tmuwweTSR0eCZqPk5dxxu2TjmPfyFX0HD05xaE42TEeJ4NbWeYdPnaRahMWvlYScunVO7jNlsGdqk1NrC0Zl8Pg6hZXoxiq6jCcvJCdB8VTYEuSx2nA1T7tlPn11CTfa0c7r0XzBuarNmtXveDZs0V4hCn2mC+8sE61kf4pJd+uqNwRNXWYUdDVz3EHC3xDDQAAAAAAAAAANAAeqAEAAAAAAAAAgAbAAzUAAAAAAAAAANAABzSG+sCyj9jfvfzIHzcnUTHUFuv/HUvHf1Vd/khG8/yzqsExCEFT6/XrIp7UNjketWTx+8PjWdXGEnHTjvi7hm3vraQY+WLPEaf2ZsF0uUTHyORLnm1UI+q4TJLj8zOt/3/23js+zurK/z/Tm2Y06pKbZEvuxhhMAGNaAMdUA4GwNhuwWQIkoZgsm0KyCaRBCJCfsyZhId8EHOyEBEgclmZMsFl6NTbuVZJlq0sjaTR95v7+YPWccx9JxgwCjczn/Xr55Tszz32e+zy655aZzzmHfcx6RBogZdH9of0i7VUo1C0+GbjPERGFw73iKOFjZpXphnQflpBI8fP4c69zO8VXdipf982rLOd76Ezy+bp62RdNjy9AlBD+0Glh78mk8PfJ6HUcwl9n6hT2K6o8itO5tCVCWp0U7GtEELex36SSf3dTnI70IC8ywmfNYTfFEhBlt/Dx7+5m+1BKt4OUmAvkLFFSwX7KRV11JEm1S181bk/Az/6UAYubJDKjni3N7W6pY9/VF9euIY0E229FZZVR7hEpUHqU7mvXkWH/1fdqOUXZDOEqZ0noc6gzNzKYgI+gt5fjD8i1k82m205EpJBqOMipoGIJ4VPZqfsPt3ewL39c+Ngf2F9rlGVsCyIii5X73tixE4yyLy9olLu75RxGZBO5fBwizU9MxMSw9suAyNeVU1pG+GXarfrcW1/PvuMTJ/AcYhHp44qLS7U6cgiyiHPbhNNq2egKWYXKysvNjQU5RiLNI7tD9D+fTfehTrrYpgomjDXK//OPfxpli2m9ViBSjpaUsj/01UsWGmWXU59zwr08HyXS3J4ekcYrasrGFk2yrW3ey77er+9i/+x9pjgCpV62qZJCjhtlS/M44HaYUiaKAAbJFD83l0i16LTrdVJJEaujhGMMdEU4zoOM80NElJe/i3IB/EINAAAAAAAAAABkATbUAAAAAAAAAABAFgyp5Ft9VjJJeZnDzAqVTovUOTGWSGSU/p1Cd4JP3iYkE2khR5IpeoiIYkJ/lxJSocZOlkq1dUe0OhmZy0HojjJCmmGWfA92q5ZB05CRnhcG5CST80bxCyG/9gZ1iXTsIPch93ROP7J1+06uXqD3BZdIw0M7OS1JSshvzP1Hpg+S6YbIwjKd/EChrEJOF0uV2ttZQtRqYbmftTWkty3D9nXppRcb5f9+4GGj3HCgUVbR3CPcPpajTpzMMjyvR5fH7tjKaYraO1mK2NHBEj2HKVuJXVdvgRwlYxVSVTFCWkyuAhYx/jut/Md2ObkPeT16J3C5uR95FJfz3FzHPPLGYyx/SwtpYGkJp7AqqdNtJ2GVqe643V6LkJ2a5py4SKEnx/iSPHajqN/boNX5a/NTRtkRZAliU3MbtyWhp4+zCUmrRaRRqatnaflRNeO0OhNKgwRyn3ic/54ylVxIpOEhIurp4bRueX52IUoKWXVXd5dWR/Z9JRY14jKUSOqDbJ2QVZ9wIqemGj2G0+10bdGv4xNzQEEwKK7JNtFuSlkqpztpVVYhxR5dMUarQ2I8iYg0laWjeO6eXKOnQArmcdrLiEg5JCWtW7boKfQa9us2C3KPzZveM8pjRwmJvthXEBFFo7z2GT2JXRhOPutko7x3b7NWpzvEc0HtAR6XQ2LdMqFqtFbHQjxPVE6YaJRVnO3WbpZip7kPex3cN9/YIlLppUxuRilef+b7+HzHzpxqlDu639DqyNSP9XXct+U4kDbNbV3CBcnnYxtq7ggZ5WRad7vN8+ltHS7wCzUAAAAAAAAAAJAF2FADAAAAAAAAAABZMLRRvodQXWw+1WCi5kNdMimkNVLepJIsF4grXSrQJGQFkYSQxYoojZm0HmWvo4elHlt31xrl3XUHjXLC9KitIkpySslwkFzOmO7aKqURQuanRTc3Sbz7RQoHOcfkQJlRjsVYRheNxLTj7AmWro0qY5nlFlZy0/jqKq2Oz8VRJN94+WWjnBYSNqspYrdVSmeFzNvhZGmR3a5/Fzd+gpR98rk/2LrJKLuV3hfjvXyvm7dylMbeiHSPMPVnIRO3Ki7nubidaVPUYSVcMja8tdEoh4UE/VtLr9Pq+Hw5nAABMCLKtlW6S1h0iZvPx3Jun5MjlHpcLBmVslciIreb+7u3kOcJlyOPyyY7CMe576q0iLIaZlv2pPXIrhVedj1IiIjIFqG+Tqd0eawrKTJLCHuzOViS6xrl1erUNfI81di6n9spXTxMY4EWqjzDNtG9i+WEre17tCrd00YRyH1kf5d/90jE5J4moud397Dkur198DHS6+W+J92LlJh3ikSmCiKiRhFBvKWRy6PLuT/t3bVbq2MTvwkpEbG/IMDuUqE2XSYuzTwl7k2J9eKEcWNlFQp6xJghxoWigqBR7u0JaXV8Yr5MCcl3RknXFH1+6xbrT5Cb3Lfsd0Z57CiOxF1RFtSOczh4nC/bzou0qvGVRnn0sbq7jMPF88yoUdwHfQ7uMz1duluARYz/6QTPJckY23HKqtuaEpLpeITnhYBYLzqCPq2ONclRv20W7rdSop0x7T+cTm73AeHOIPdTXp/uapVI8P3U7uWMGH7hh2dz6Wu8wuJqygXwCzUAAAAAAAAAAJAF2FADAAAAAAAAAABZcITpGnVJqYzsHU8IqSix3KArqkeLa+7oFq+ENEeG3zZJA5taOAJfU3OrUY5m+DoWmznhuShmxHVsMgSlWe4qXgipkpRkmSUXehxLkItEhSSuR0Tv7Qzp0UlFt6Vtm1lKvW/nDqPssOv9LJjPUrW0kMRJS7Gao8QLCah0J5CH+f26HCgS4eiU48dXGeXGgxzRuKnhoKxCO7rY1jYLKZ+UoCvTd34yInmsl2U/b7/OkTfTaV0emx/kZ/DFM+Ya5ZlHc6T0skpd4mc7wkbGIxVHWkTitrFcrcCbpx3ndfBxmTiPiYletj2rRe9r6Rj3/ViU9dd2P9tYPKbLY63CRSEqpHSNB7nvJ+N6JG2XsNlkTMhjhTTUZdNdkyyKZXIZu5B/i+G/uVWPOhtKsv2nneJAzc1Itx0lJh2rlZ+vSvHzrWvr0eqE3txGIPeRY6nT6RzwfSKicJjHdptNRAPvDYs6+rntQu7qEueWkfTHj9XH3Pfeetsob9qwwShPnzbNKBeLSN5ERKFOjoTcJiLUjxrFblRuh27XThe3JyLsOipd/MRcSUSUirKdNx1k6eqpZ5xulP/nH3/X29bWYZQ9HplZgK8v5fBERHHT2AByD4eNpfzNwp2gxxTl2+nkfvf+Dl6jNTVyX7LZ9PV6sICjWo+t4Ajio0uLjHJenu6WU1LGsvPWdl4/Brxsg/nFRVodv5fvQQkXuULFNl1SprscRsJs5D4fr/96wjz+p5N6/xVLLwpOEW4THuGqZfIycgqXKrctZJTLioKivr7+lK6Jwwl+oQYAAAAAAAAAALIAG2oAAAAAAAAAACALsKEGAAAAAAAAAACyYNg9Bc3+Osb7h1tf+KxZSPd7kf5s0sknbeHbbusKaXWiwtdahnZXwp9ZmXzt4sJX2yq0/BlRtphSBlk1J1arOE402ZwySEuPZRHvyzKZQNqsXKcnzn+jbuG3Gc3o6XU8InVHSR77txxTPdooH2ys1ers3MJ+yjKmgCSZNKWZEn3IKvw7pTd+Xp7uo1pbu4/bLfxKA8Lnrb21TVYhbz77hZaVs89bdze3uampWasTjUm/HmE3wsE8ndH9QMeMqTDKV1+z2Ci7PSKticnvOgVXthFB0Mb+Y34/+5/ZzWO0GNdTCdGHMgPbBJGeSkims0sKn7PeHj0lj0wX1NHKfXfPbvahc3v1dFbBfPZvk2nubFaRtsvj1+rEhb9nTKSP6xYxPBpCuk9fJCOeiXA5U9KyTfOHTK2UkeOHiPuhTCnK2uNDmD8TfGpERbwOsy+vRPYBh507Tjwi+oNpHZcWfTIlxumYSMl19IzpWp21zz5rlPft5jSKNSLNUNW4MVqdje1sYzIFVXszzzV5Ht3e5JrTG+Q5qCMUMsoH9u6TVahqDLchEePn1ij8qZMJfdIYX1VllPPzOY1XnvA/lb7rRETpDGLe5DpjKnm8zmR4LrGa/HijUR5/HQ7+LCHmnO523U+5dn/IKL/9DtuA3S5TI+rXsQubDIo5sDCf12glBQGtTmGQ+2NnlNvT1MzX7zalDvXkcb8Nj+JnYHcEuW1WfRzJz2Nby8/nubqkkOvbbHraLJ+b76FI1JFbqHRan9/V4NP4Zwp+oQYAAAAAAAAAALIAG2oAAAAAAAAAACALhlTyrcx6scNgMMn3IeuIsk1c02X6esApUjeQneVz4RjrA5o79dREFiF/U1Z+PGlNvq3fZ4Zk2hF5LpEOS28aZTSZtpTc8bmtJvmPrJNR4mY1KbhJCgHJd84j+49F5GuymnI3eYV0bdRoljEXFhYY5cqODq1Oi0jpFqriNAxS7pdI6JLv3l6W5UWT3LeSQuZp1thMmcqpTTq7OY3CgUaW5CXSuhzojJNP4naPY9l6Zwe3ORLRZXRvv/2uUa6rZbmdEu4eLo8uo5sxY4pRTif4vruFJMtuyt1glgyD3CTgYulaRnTjhGnYSySEy47ohkqmLDRJ9tJi+LUotsVgvlcco7sKdPeKvt/UZJSbhV1OKAxqdSwuvq6U78nUJF6TbNWW4Ma1t4SM8q56lrqaU0KSVaZKEf1bzMHmFHrymcino6x833GlX8dBuoQP5CZS5i3dgTKHkB2nk6KviPczJneitJBfx9M85q7754tG+Qffu1Wrc/655xjlZ59h+Xft7j1G+aSTTtLqNNbVylYYJTkn2m26XRcUcCrHtJDfRkXqR59L78PFBSVGWcrW21pb+H2T5LtLpBOyiHRjvUIyHgjoUtxs1sPgs8XnZbuJx0XK025TmsJusY4SY7GNuFyYr7v1KeK1i0rx+B8R6dQ6evXrxIXLXk+vcPkRbg/mlJBynvHa+TO3cDnqEHsmIqLCIp5rpyYnG+VEL9tQ0Kfbmq9KpOuy83E2N9+ny6nPbQ63cLXK8P4sFeX3U0n9fqzO3Fiv5UYrAAAAAAAAAACAEQY21AAAAAAAAAAAQBYMreRbkx6L6NtDLGOxWlja47LzuR1Klxu0dnK04ESco+nFUty2cK8eZY+ktFtIcaXIu1/07SzuTz4rKbGS72tScDJH85bH0YBlouxk+OCzxSlCu6dsQlLn1qXLeXaO2mjJcHTSlJAGlRfrErL0BJZSJ+IsNUunWH6TMEX5jkbZJiK9XCcUYkncpj0tWp1wmCVyiTj32+4QR0G2ZPS+uOGd94zy1vc/MMpeH5/LJyJLEhG5HTxkOe1ijBG2MrFyrFanNMjnaKzbzdfxCkmt263VIeuwJ0AAh4HMikCiD0iJJRGR28W25HAIWZ2YAhMmhbRNuDUEAjwvVIkorzarPvbXNhzkc9tYPjd1xiyjHDTJt6Uk1WKVcw7fT2+PHiE/I+a6lmaWk7e3801kbPr4YZVuGsI1yKLJAfX7SSZFdFk5/4g5OG3Xxw97Ur8uyE30NcTAZfPrVFr2Bzn+mrKYyIDyYn20axtHu//57bdrdTxiDD7huNlGuaAgaJRnTJ0sq5Dl4ouM8nPPPGOU0zHukzFTBPN0nN0VIlGW5bqEbLSgTLfRhDiuQ7g0rf7734xym5jriIjau/l1W5eQroq5t9/SEcu1nMfjEGOniDadMfmcKj/PLWL60TKSkCladVTsTTrjLO2Oi2jidrteJ5PmTmRzChcdMQdaTfYp+5lT1MnL434fMK29ioSrUjrJ9mAXa9FCvQpZ/ewqERWy9YTicjoR0uokMvzcHC5uTyIlMrmYXFsdDl2ePlzgF2oAAAAAAAAAACALsKEGAAAAAAAAAACyYGgl3xkp8x7KM+tIKZ5KspwnapL2HGhj2U+T0CDJSKZJkww1Y5GSO13o/Uk4lIwqG+mVLvMeWD5ORJ/uHwIMCR5iWbXDIfqww/R9l5DWZERfT4pyKqm7PaTSbOJJt/5ZH2aXjJSwqaSUx4VZguTz6pK493c2iDosByrzCSmOKTK46mVJnBSNpnu4PVGH3jankFXNrC4zygEfy+HLSou0OvakeL4plpN7LKzDcpsk3i7zswc5iVvI1cgi3AGcuuzYYRfyO1FFBGmlnpgesdsmZGXFBdy//CICcKixVavT0dBolMv9QaOcn89RhzMxXSKdTktbFlGHRfR9i0laHhH69EYRzZWEfNtm0yPIWi1i3hT9XUq+zVG+03I+EeWgn5+BxRRFuavNpJ0HOYlVrIkOte6Q84NNZEMI5rF7kd2u9zW3i8f9oJBspxJsYx3tuhtDaRFH35aRtHe3sY1t2rhRqzP7mGP4uO3bjXKjiLAfExktiIgceX6jLF195JifSelzVVMnn2/rnr18nJPve9KMaVodTxOPGe0dejaZPszug4jynfvke1nG7HeLyO5Bvc8khStdOs39vqeXXVGjcb1OQ5NwGxBZGaIibYXFJBN3CDfVtLRVYZIqrfcru5U/9Hl4LC8uYc12UZHuPpjv5TnVY+F2xnvYFTBlshuHXdoXRwkv8PG5Ukqfd0OdvM6MJrmdKXGf5jwEPqefcgGsGgEAAAAAAAAAgCzAhhoAAAAAAAAAAMgCbKgBAAAAAAAAAIAs+EzSZmk5FEj3EzH76wx0TP/rsII+kxF+YRaT/6hV6PTldwcZ6eOlXyejBvahtnyK6QwG84HOmP27xUv52WDP8KM+A7mByJRFdpd0fDEdKP7msgfbpS+cQ/dlS0n/zOTAfpPm9GzkEv3RzfaV72efsGKTn/KMqVVGuaebfWpicelHpPvXpFLsO5NKylQi/EDMKSJkKgjpJ2sT9+126ykUXMKfT6bKcouy06XXMfvggtyktJD9spLC59hqsh2L8N9PibRwdpFCK5Cn94FYjPtxT5h9IJ3iOum47g+dR9wPPcLXOi3iD6ikyc/MJu2S67t83D9TFt0O3t3OaebaRDo7m0vmLdGnd5vwMZexQvS0WfqDs4p5U06vMyZW8rnCIa3Oe+0HCeQ+cpwdLHWnmYzw5Y+KuSXg1dMO5gXZ/zI/GDTKTuFvP7qoQFYhi7huXKTYiYa5f69/4Z9anZTwj5YrOYf09c7PJ0k8xvavxH2nxPwaserpVGPC5gN+trG4mNP2bd+p1xHtlvOWzGBkCitC1k8Yqwd8+pSN4bEvFeV+aiFT7Ai55RBrrGSc0xwmUmFZg0aN4TVWOMLro04RVyYe1eccSokUVMKmXSLejMuur2dsYjAXYQ0oEOQ50OfX+6LLznENrGKeSKZlDA49to6cT+Q2MJkQ6ffseh2PR6aR5EpJkbrOatrrqZgeJ2G4wC/UAAAAAAAAAABAFmBDDQAAAAAAAAAAZIFFQRMMAAAAAAAAAAB8bPALNQAAAAAAAAAAkAXYUAMAAAAAAAAAAFmADTUAAAAAAAAAAJAF2FADAAAAAAAAAABZgA01AAAAAAAAAACQBdhQAwAAAAAAAAAAWYANNQAAAAAAAAAAkAXYUAMAAAAAAAAAAFmADTUAAAAAAAAAAJAF2FADAAAAAAAAAABZgA01AAAAAAAAAACQBdhQAwAAAAAAAAAAWYANNQAAAAAAAAAAkAXYUAMAAAAAAAAAAFmADTUAAAAAAAAAAJAF2FADAAAAAAAAAABZgA01AAAAAAAAAACQBdhQAwAAAAAAAAAAWYANNQAAAAAAAAAAkAXYUAMAAAAAAAAAAFmADTUAAAAAAAAAAJAF2FADAAAAAAAAAABZgA01AAAAAAAAAACQBdhQAwAAAAAAAAAAWYANNQAAAAAAAAAAkAXYUAMAAAAAAAAAAFmADTUAAAAAAAAAAJAF2FADAAAAAAAAAABZgA01AAAAAAAAAACQBdhQAwAAAAAAAAAAWYANNQAAAAAAAAAAkAXYUAMAAAAAAAAAAFmADTUAAAAAAAAAAJAF2FADAAAAAAAAAABZgA01AAAAAAAAAACQBdhQAwAAAAAAAAAAWYANNQAAAAAAAAAAkAXYUAMAAAAAAAAAAFmADTUAAAAAAAAAAJAF2FADAAAAAAAAAABZgA01AAAAAAAAAACQBdhQAwAAAAAAAAAAWYANNQAAAAAAAAAAkAXYUAMAAAAAAAAAAFmADfUQs2TJEsrLyzusYy0WC91+++2fboMAAAAAAIAG1msAgKHiM9tQWyyWw/q3fv36z6pJH4twOEy33XYbzZgxg3w+HxUVFdGsWbNo6dKldPDgweFuHjjCGen2I9tot9upsLCQZs+eTUuXLqWtW7cOd/PACOdIsI8bbrhhwM8efvhhslgs9M4773zGrQKfV0a6PWG9BoaLkW47g7W3vLx8uJuW89g/qws98sgj2us//vGPtHbt2n7vT5069bNq0mGTTCbp1FNPpe3bt9PixYvpxhtvpHA4TFu2bKE//elPdPHFF9OoUaM+9nmj0SjZ7Z/ZnwCMYEay/fQxb948uvLKK0kpRV1dXbRx40ZasWIF/fa3v6W77rqL/v3f/324mwhGKEeCfQCQK4xke8J6DQwnI9l2+uhbq0k8Hs8wtWbk8JmNDl/96le112+88QatXbu23/tmIpEIeb3eT7NpH8nq1atpw4YNtGrVKrr88su1z2KxGCUSiazO63a7h6J54HPASLafPiZNmtSvvb/4xS/oggsuoFtuuYWmTJlC55577jC1DoxkjgT7+Kzo7e0ln8833M0AOcxIties18BwMpJtp4+B1mqDoZSiWCyGDTflmA/16aefTjNmzKB3332XTj31VPJ6vfT973+fiAb3X6mqqqIlS5Zo74VCIbr55ptp7Nix5HK5qKamhu666y7KZDLacY2NjbR9+3ZKJpOHbNeePXuIiGju3Ln9PnO73RQIBPq9f+DAAbrooosoLy+PSkpK6D/+4z8onU5rx5jv6fbbbyeLxULbt2+nyy67jAKBABUVFdHSpUspFosdso0A5Kr9HIqioiJ69NFHyW63089//nPts5aWFrr66quprKyM3G43HX300bRixYp+52hvb6crrriCAoEABYNBWrx4MW3cuJEsFgs9/PDDWbcNHFmMRPs4FC+++CKdcsop5PP5KBgM0oUXXkjbtm3TjumbU7Zu3UqXX345FRQU0Mknn0xERE1NTXTVVVfRmDFjyOVyUUVFBV144YVUW1urnePZZ581ruP3++m8886jLVu2fCr3BEYOuWpPWK+BXCdXbedwqKqqovPPP5/WrFlDxx13HHk8HnrggQeIiGjv3r30la98hQoLC8nr9dKJJ55ITz/9dL9z1NXV0YIFC8jn81FpaSl961vfojVr1uS0FP5wyDn9Snt7O51zzjm0cOFC+upXv0plZWUfq34kEqHTTjuNDhw4QNdddx2NGzeOXnvtNbr11lupsbGRli1bZhx766230ooVK2jfvn1UVVU16DkrKyuJ6EPpxn/+53+SxWI5ZBvS6TTNnz+fTjjhBLrnnnvohRdeoHvvvZeqq6vpG9/4xkfew2WXXUZVVVV055130htvvEH/9V//RZ2dnfTHP/7xsJ4B+PySi/bzUYwbN45OO+00WrduHXV3d1MgEKBoNEqnn3467d69m2644QYaP348PfbYY7RkyRIKhUK0dOlSIiLKZDJ0wQUX0FtvvUXf+MY3aMqUKfSPf/yDFi9enHV7wJFLLttHLBajtra2fu+Hw+F+773wwgt0zjnn0IQJE+j222+naDRKy5cvp7lz59J7773X73pf+cpXaOLEiXTHHXeQUoqIiC655BLasmUL3XjjjVRVVUUtLS20du1aqq+vN+o/8sgjtHjxYpo/fz7dddddFIlE6P7776eTTz6ZNmzY8InsHox8ctGesF4DI4FctJ0+BpqL/H4/uVwuIiLasWMHLVq0iK677jq65ppraPLkydTc3EwnnXQSRSIRuummm6ioqIhWrFhBCxYsoMcff5wuvvhiIvpQIXXGGWdQY2MjLV26lMrLy+lPf/oTrVu37mPdf06ihonrr79emS9/2mmnKSJS//3f/93veCJSt912W7/3Kysr1eLFi43XP/3pT5XP51M7d+7Ujvve976nbDabqq+vN95bvHixIiK1b9++Q7Y1EomoyZMnKyJSlZWVasmSJer3v/+9am5u7nds3zl/8pOfaO8fc8wxavbs2Ye8p9tuu00RkVqwYIF23De/+U1FRGrjxo2HbCf4/DCS7Kfv+tdff/2gny9dulTr48uWLVNEpFauXGkck0gk1Jw5c1ReXp7q7u5WSin1xBNPKCJSy5YtM45Lp9PqjDPOUESkHnrooY9sGzjyGIn28VH/3n77beP4WbNmqdLSUtXe3m68t3HjRmW1WtWVV15pvNc3pyxatEi7XmdnpyIidffddw/app6eHhUMBtU111yjvd/U1KTy8/P7vQ+OXEaSPWG9BnKJkWQ7fdcf6F/fWqqyslIRkXruuee0ejfffLMiIvXyyy8b7/X09Kjx48erqqoqlU6nlVJK3XvvvYqI1OrVq43jotGomjJliiIitW7duo9sY66SU5JvIiKXy0VXXXVV1vUfe+wxOuWUU6igoIDa2tqMf2eddRal02n63//9X+PYhx9+mJRSH/mNjcfjoTfffJO+/e1vG/WuvvpqqqiooBtvvJHi8Xi/Ol//+te116eccgrt3bv3sO7h+uuv117feOONRET0zDPPHFZ98PklF+3ncOhLXdLT00NEH/b18vJyWrRokXGMw+Ggm266icLhML300ktERPTcc8+Rw+Gga665xjjOarX2syEAiHLbPi688EJau3Ztv399804fjY2N9P7779OSJUuosLDQeH/mzJk0b968AecJ83zk8XjI6XTS+vXrqbOzc8D2rF27lkKhEC1atEi7V5vNRieccMKR8YsC+ETkoj1hvQZGArloO30MNBfNnz/f+Hz8+PHaa6IP+/vxxx9vuBQRfbiuu/baa6m2ttbI5vLcc8/R6NGjacGCBcZxbrdbW8ONVHJO8j169GhyOp1Z19+1axdt2rSJSkpKBvy8paUlq/Pm5+fTL3/5S/rlL39JdXV19M9//pPuueceuu+++yg/P59+9rOfGce63e5+1y8oKBh04WJm4sSJ2uvq6mqyWq39fNsAMJOr9vNR9Mla/X4/EX3oYzNx4kSyWvXv/PoiY9bV1Rn/V1RU9AvmUVNT86m0E4xsctk+xowZQ2eddVa/9xsaGrTXfX1/8uTJ/Y6dOnUqrVmzpl/gsfHjx2vHuVwuuuuuu+iWW26hsrIyOvHEE+n888+nK6+80kiPsmvXLiIiOuOMMwZs70C+qODzRa7aE9ZrINfJVdshGnwu6sM8nxB9OC+dcMIJ/d6Xa7YZM2ZQXV0dVVdX93PFOBLWbDm3of64keLMgSMymQzNmzePvvOd7wx4/KRJk7JuWx+VlZX0b//2b3TxxRfThAkTaNWqVdoAbbPZPvE1JB/lAwRAHyPBfgZi8+bNZLPZBhyoARgqRqp9fFIGuu+bb76ZLrjgAlq9ejWtWbOGfvjDH9Kdd95JL774Ih1zzDFGYJtHHnlkwBykSCEERoI9Yb0GcpGRYDuDgYjeAzNiZsSCggIKhULae4lEghobG7X3qqurKRwOH/LblaFsU3V1NW3evHlIz7tr1y5tY7F7927KZDIIAAOyJhftp4/6+np66aWXaM6cOcYv1JWVlbRp0ybKZDLar9Tbt283Pu/7f926df1STuzevfszaz8Y+eSyfZjp6/s7duzo99n27dupuLj4sNNiVVdX0y233EK33HIL7dq1i2bNmkX33nsvrVy5kqqrq4mIqLS0dFjvF4w8ctGesF4DI4FctJ3DobKyctA5qe/zvv+3bt1KSinty6cjYc2Wcz7Ug1FdXa35BBARPfjgg/2+tbnsssvo9ddfpzVr1vQ7RygUolQqZbw+3FDyGzduHDD6al1dHW3dunVA6d0n4Te/+Y32evny5UREdM455wzpdcDnh+G0n0PR0dFBixYtonQ6TT/4wQ+M988991xqamqiv/zlL8Z7qVSKli9fTnl5eXTaaacREdH8+fMpmUzS7373O+O4TCbTz4YAOBS5ah8DUVFRQbNmzaIVK1ZoC6/NmzfT888/f1i53CORSL/UPtXV1eT3+w0f0/nz51MgEKA77rhjwHtobW39ZDcCjliwXsN6DWTHSJqLJOeeey699dZb9Prrrxvv9fb20oMPPkhVVVU0bdo0IvpwXjlw4AA9+eSTxnGxWExbw41URswv1F/72tfo61//Ol1yySU0b9482rhxI61Zs4aKi4u147797W/Tk08+Seeffz4tWbKEZs+eTb29vfTBBx/Q448/TrW1tUadww0lv3btWrrttttowYIFdOKJJ1JeXh7t3buX/vCHP1A8Hh8wZ9wnYd++fbRgwQI6++yz6fXXX6eVK1fS5ZdfTkcfffSQXgd8fhhO++lj586dtHLlSlJKUXd3N23cuJEee+wxCofD9Ktf/YrOPvts49hrr72WHnjgAVqyZAm9++67VFVVRY8//ji9+uqrtGzZMuOX7IsuuoiOP/54uuWWW2j37t00ZcoUevLJJ6mjo4OIIL8Dh0cu2MfH4e6776ZzzjmH5syZQ1dffbWRNis/P/+w5qOdO3fSmWeeSZdddhlNmzaN7HY7/f3vf6fm5mZauHAhEX3oI33//ffTFVdcQcceeywtXLiQSkpKqL6+np5++mmaO3cu3XfffUN6X+DIAOs1rNdAdoy0uaiP733ve/TnP/+ZzjnnHLrpppuosLDQuOYTTzxhKA2vu+46uu+++2jRokW0dOlSqqiooFWrVpHb7Saikb1mGzEb6muuuYb27dtHv//97+m5556jU045hdauXUtnnnmmdpzX66WXXnqJ7rjjDnrsscfoj3/8IwUCAZo0aRL9+Mc/pvz8/I997UsuuYR6enro+eefpxdffJE6OjqooKDAWMh/8YtfHKrbJCKiv/zlL/SjH/2Ivve975HdbqcbbriB7r777iG9Bvh8MZz200dftEir1UqBQIDGjx9Pixcvpmuvvdb49rIPj8dD69evp+9973u0YsUK6u7upsmTJ9NDDz1ES5YsMY6z2Wz09NNP09KlS2nFihVktVrp4osvpttuu43mzp1rDNIAHIpcsI+Pw1lnnUXPPfcc3XbbbfSjH/2IHA4HnXbaaXTXXXcdVhyCsWPH0qJFi+if//wnPfLII2S322nKlCn017/+lS655BLjuMsvv5xGjRpFv/jFL+juu++meDxOo0ePplNOOeUTRagFRzZYr2G9BrJjpM1FfZSVldFrr71G3/3ud2n58uUUi8Vo5syZ9D//8z903nnnGcfl5eXRiy++SDfeeCP9+te/pry8PLryyivppJNOoksuuWREr9ksSik13I0AH3L77bfTj3/8Y2ptbe33bRQA4PBZvXo1XXzxxfTKK6/Q3Llzh7s5AAAAjiCwXgNg6Fi2bBl961vfooaGBho9evRwNycrRowPNQAADEQ0GtVep9NpWr58OQUCATr22GOHqVUAAAAAAEBiXrPFYjF64IEHaOLEiSN2M000giTfAAAwEDfeeCNFo1GaM2cOxeNx+tvf/kavvfYa3XHHHUjvAAAAAACQI3z5y1+mcePG0axZs6irq4tWrlxJ27dvp1WrVg130z4R2FADAEY0Z5xxBt1777301FNPUSwWo5qaGlq+fDndcMMNw900AAAAAADwf8yfP5/+3//7f7Rq1SpKp9M0bdo0evTRR+lf/uVfhrtpnwj4UAMAAAAAAAAAAFkAH2oAAAAAAAAAACALjrgNdVVVlZZWZ/369WSxWGj9+vXD1qbDYcmSJZSXl3dYx1osliHPpQgA0ci1HwA+bWAbAAwtI9WmsF4Dw81ItZ0jmSHdUD/88MNksViMf263myZNmkQ33HADNTc3D+WlPnWeeeaZIRkEw+Ew3XbbbTRjxgzy+XxUVFREs2bNoqVLl9LBgwc/eUPBEQPspz/yedjtdiosLKTZs2fT0qVLaevWrZ+8oWBEANvoj8ViGTROQN/zeueddz7xdcCRCWyqP1ivgcMBttMf+Tzkv/Ly8k/eyBHCpxKU7Cc/+QmNHz+eYrEYvfLKK3T//ffTM888Q5s3byav1/tpXHJQTj31VIpGo+R0Oj9WvWeeeYZ+85vffKKOlkwm6dRTT6Xt27fT4sWL6cYbb6RwOExbtmyhP/3pT3TxxRfTqFGjPvZ5o9Eo2e2IJ3ekAvvRmTdvHl155ZWklKKuri7auHEjrVixgn7729/SXXfdRf/+7//+ia8BRgawDQCGFtjUh2C9Bj4usB2dvrWa5POUaeVTsfJzzjmHjjvuOCIi+trXvkZFRUX0q1/9iv7xj3/QokWLBqzT29tLPp9vyNtitVrJ7XYP+XkPh9WrV9OGDRto1apVdPnll2ufxWIxSiQSWZ13uO4HfDbAfnQmTZpEX/3qV7X3fvGLX9AFF1xAt9xyC02ZMoXOPffcYWod+CyBbQwPn9YzBMMPbOpDsF4DHxfYjs5Aa7XBUEpRLBY7ojbcn4kP9RlnnEFERPv27SMi9j/Zs2cPnXvuueT3++lf//VfiYgok8nQsmXLaPr06eR2u6msrIyuu+466uzs1M6plKKf/exnNGbMGPJ6vfTFL36RtmzZ0u/ag/kVvPnmm3TuuedSQUEB+Xw+mjlzJv3617822veb3/yGiHQZQx+NjY20fft2SiaTh7zvPXv2EBHR3Llz+33mdrspEAj0e//AgQN00UUXUV5eHpWUlNB//Md/UDqd1o4x++TcfvvtZLFYaPv27XTZZZdRIBCgoqIiWrp0KcVisUO2EeQ+n1f7ORRFRUX06KOPkt1up5///OfaZy0tLXT11VdTWVkZud1uOvroo2nFihX9ztHe3k5XXHEFBQIBCgaDtHjxYtq4cSNZLBZ6+OGHs24b+OyAbXw8XnzxRTrllFPI5/NRMBikCy+8kLZt26Yd0zefbN26lS6//HIqKCigk08+mYiImpqa6KqrrqIxY8aQy+WiiooKuvDCC6m2tlY7x7PPPmtcx+/303nnnTfgMwS5x+fVprBeA5+Uz6vtHA5VVVV0/vnn05o1a+i4444jj8dDDzzwABER7d27l77yla9QYWEheb1eOvHEE+npp5/ud466ujpasGAB+Xw+Ki0tpW9961u0Zs2anPEd/0x0KH0DVVFRkfFeKpWi+fPn08knn0z33HOPIY+47rrr6OGHH6arrrqKbrrpJtq3bx/dd999tGHDBnr11VfJ4XAQEdGPfvQj+tnPfkbnnnsunXvuufTee+/Rl770pcP6FnHt2rV0/vnnU0VFBS1dupTKy8tp27Zt9NRTT9HSpUvpuuuuo4MHD9LatWvpkUce6Vf/1ltvpRUrVtC+ffuoqqpq0OtUVlYSEdEf//hH+s///E+tow5EOp2m+fPn0wknnED33HMPvfDCC3TvvfdSdXU1feMb3/jI+7rsssuoqqqK7rzzTnrjjTfov/7rv6izs5P++Mc/fmRdkLt8Xu3noxg3bhyddtpptG7dOuru7qZAIEDRaJROP/102r17N91www00fvx4euyxx2jJkiUUCoVo6dKlRPThZHbBBRfQW2+9Rd/4xjdoypQp9I9//IMWL16cdXvAZ8/n3TZisRi1tbX1ez8cDvd774UXXqBzzjmHJkyYQLfffjtFo1Favnw5zZ07l957771+1/vKV75CEydOpDvuuIP6smtecskltGXLFrrxxhupqqqKWlpaaO3atVRfX2/Uf+SRR2jx4sU0f/58uuuuuygSidD9999PJ598Mm3YsOET2Tz49Pm82hTWa+CT8nm1nT4Gmo/8fj+5XC4iItqxYwctWrSIrrvuOrrmmmto8uTJ1NzcTCeddBJFIhG66aabqKioiFasWEELFiygxx9/nC6++GIi+vCX/TPOOIMaGxuNe/nTn/5E69at+8h2fWaoIeShhx5SRKReeOEF1draqvbv368effRRVVRUpDwej2poaFBKKbV48WJFROp73/ueVv/ll19WRKRWrVqlvf/cc89p77e0tCin06nOO+88lclkjOO+//3vKyJSixcvNt5bt26dIiK1bt06pZRSqVRKjR8/XlVWVqrOzk7tOvJc119/vRrs8fS1f9++fYd8HpFIRE2ePFkRkaqsrFRLlixRv//971Vzc/Og5/zJT36ivX/MMceo2bNna+8RkbrtttuM17fddpsiIrVgwQLtuG9+85uKiNTGjRsP2U6QG8B++kNE6vrrrx/086VLl2p9fNmyZYqI1MqVK41jEomEmjNnjsrLy1Pd3d1KKaWeeOIJRURq2bJlxnHpdFqdccYZiojUQw899JFtA58dsI3+ENFH/nv77beN42fNmqVKS0tVe3u78d7GjRuV1WpVV155pfFe33yyaNEi7XqdnZ2KiNTdd989aJt6enpUMBhU11xzjfZ+U1OTys/P7/c+GD5gUzpYr4HDBbbTn8HmoL61VGVlpSIi9dxzz2n1br75ZkVE6uWXXzbe6+npUePHj1dVVVUqnU4rpZS69957FRGp1atXG8dFo1E1ZcoU7b6Hk09F8n3WWWdRSUkJjR07lhYuXEh5eXn097//nUaPHq0dZ/4W77HHHqP8/HyaN28etbW1Gf9mz55NeXl5xjcRL7zwAiUSCbrxxhu1bxFvvvnmj2zbhg0baN++fXTzzTdTMBjUPvuobyT7ePjhh0kp9ZHf2Hg8HnrzzTfp29/+tlHv6quvpoqKCrrxxhspHo/3q/P1r39de33KKafQ3r17D6td119/vfb6xhtvJKIPgw6AkQPs5/DpS13S09NDRB/29fLycs1/yeFw0E033UThcJheeuklIiJ67rnnyOFw0DXXXGMcZ7Va+9kQyC1gGzoXXnghrV27tt+/vjmnj8bGRnr//fdpyZIlVFhYaLw/c+ZMmjdv3oBzhHku8ng85HQ6af369f1kiX2sXbuWQqEQLVq0SHvONpuNTjjhhNz6NQEQEWyqD6zXwMcFtqMz0Hw0f/584/Px48drr4k+7O/HH3+84VZE9OG67tprr6Xa2lojm8tzzz1Ho0ePpgULFhjHud1ubQ033Hwqku/f/OY3NGnSJLLb7VRWVkaTJ08mq1Xfu9vtdhozZoz23q5du6irq4tKS0sHPG9LSwsRfaijJyKaOHGi9nlJSQkVFBQcsm19kowZM2Yc/g19AvLz8+mXv/wl/fKXv6S6ujr65z//Sffccw/dd999lJ+fTz/72c+MY91uN5WUlGj1CwoKBl28mDE/j+rqarJarf3820BuA/s5fPqkrX6/n4g+vLeJEyf2e15Tp041Pu/7v6Kiol8kzpqamk+7yeATANvQGTNmDJ111ln93m9oaNBe993X5MmT+x07depUWrNmTb9gOePHj9eOc7lcdNddd9Ett9xCZWVldOKJJ9L5559PV155pZEaZdeuXUTEvoRmBvJDBcMLbIrBeg18HGA7OoPNR32Y5xSiD+/xhBNO6Pe+XLPNmDGD6urqqLq6ut+XAbm0ZvtUNtTHH3+8EfluMFwuV7+Ol8lkqLS0lFatWjVgHfPgNdKorKykf/u3f6OLL76YJkyYQKtWrdIGaJvNNqTXO9xvoUBuAfs5fDZv3kw2m23AgRocecA2PjsGir5688030wUXXECrV6+mNWvW0A9/+EO688476cUXX6RjjjmGMpkMEX3oRz1Q/lGkD8o9YFMDg/Ua+ChgOx+PIymi90Dk1OxWXV1NL7zwAs2dO/eQD74veMSuXbtowoQJxvutra0f+e1gdXU1EX24ED/UNymf5uBWUFBA1dXVtHnz5iE9765du7SNxe7duymTySAIzOeEz4v99FFfX08vvfQSzZkzx/iFurKykjZt2kSZTEabxLZv32583vf/unXrKBKJaL9S7969+1NvN/js+bzZhpm++9qxY0e/z7Zv307FxcWHncqlurqabrnlFrrlllto165dNGvWLLr33ntp5cqVxjMoLS095DMAI5/Pi01hvQaGms+L7RwOlZWVg85LfZ/3/b9161ZSSmltzqU122eSNutwueyyyyidTtNPf/rTfp+lUikKhUJE9KHfgsPhoOXLlxvRR4mIli1b9pHXOPbYY2n8+PG0bNky43x9yHP1LS7MxxAdfij5jRs3DhiBta6ujrZu3Tqg/O6T0Bf+vo/ly5cT0Ye58sCRz5FmP4eio6ODFi1aROl0mn7wgx8Y75977rnU1NREf/nLX4z3UqkULV++nPLy8ui0004jIqL58+dTMpmk3/3ud8ZxmUymnw2BI4PPk20MREVFBc2aNYtWrFihXXfz5s30/PPPH1Ye90gk0i+tT3V1Nfn9fsO/dP78+RQIBOiOO+4Y8B5aW1s/2Y2AnOFIsyms18BnxZFmO5+Ec889l9566y16/fXXjfd6e3vpwQcfpKqqKpo2bRoRfTi3HDhwgJ588knjuFgspq3hhpuc+oX6tNNOo+uuu47uvPNOev/99+lLX/oSORwO2rVrFz322GP061//mi699FIj39+dd95J559/Pp177rm0YcMGevbZZ6m4uPiQ17BarXT//ffTBRdcQLNmzaKrrrqKKioqaPv27bRlyxZas2YNERHNnj2biIhuuukmmj9/PtlsNlq4cCERHX4o+bVr19Jtt91GCxYsoBNPPJHy8vJo79699Ic//IHi8biWm3Ao2LdvHy1YsIDOPvtsev3112nlypV0+eWX09FHHz2k1wG5yZFmP33s3LmTVq5cSUop6u7upo0bN9Jjjz1G4XCYfvWrX9HZZ59tHHvttdfSAw88QEuWLKF3332Xqqqq6PHHH6dXX32Vli1bZvySfdFFF9Hxxx9Pt9xyC+3evZumTJlCTz75JHV0dBDR8H9rC4aWI9U2Pg533303nXPOOTRnzhy6+uqrjbRZ+fn5hzUX7dy5k84880y67LLLaNq0aWS32+nvf/87NTc3G+0PBAJ0//330xVXXEHHHnssLVy4kEpKSqi+vp6efvppmjt3Lt13331Del9geDjSbArrNfBZcaTZzifhe9/7Hv35z3+mc845h2666SYqLCw0rvnEE08YSsPrrruO7rvvPlq0aBEtXbqUKioqaNWqVeR2u4koR9ZsQxkyvC+UvEzVMRCLFy9WPp9v0M8ffPBBNXv2bOXxeJTf71dHHXWU+s53vqMOHjxoHJNOp9WPf/xjVVFRoTwejzr99NPV5s2bVWVl5SFDyffxyiuvqHnz5im/3698Pp+aOXOmWr58ufF5KpVSN954oyopKVEWi0ULK3+4oeT37t2rfvSjH6kTTzxRlZaWKrvdrkpKStR5552nXnzxxcN6Jn0pFiQ0SBqGrVu3qksvvVT5/X5VUFCgbrjhBhWNRg/ZRpA7wH76QyL9gtVqVcFgUB1zzDFq6dKlasuWLQPWaW5uVldddZUqLi5WTqdTHXXUUQOmwWptbVWXX3658vv9Kj8/Xy1ZskS9+uqriojUo48++pFtA58dsI3+0CFSyg32vF544QU1d+5c5fF4VCAQUBdccIHaunWrdkzffNLa2qq939bWpq6//no1ZcoU5fP5VH5+vjrhhBPUX//6137XX7dunZo/f77Kz89XbrdbVVdXqyVLlqh33nnnI+8LfDbApnSwXgOHC2ynP4eaj5T6MG3WeeedN+Bne/bsUZdeeqkKBoPK7Xar448/Xj311FP9jtu7d68677zzlMfjUSUlJeqWW24xUqC+8cYbH9nGTxuLUuK3fzAiuf322+nHP/4xtba2fuS3VgCAwVm9ejVdfPHF9Morr9DcuXOHuzkAAACOILBeA2DoWLZsGX3rW9+ihoaGfunKPmtyyocaAAA+K6LRqPY6nU7T8uXLKRAI0LHHHjtMrQIAAAAAABLzmi0Wi9EDDzxAEydOHPbNNFGO+VADAMBnxY033kjRaJTmzJlD8Xic/va3v9Frr71Gd9xxxxGf3gEAAAAAYKTw5S9/mcaNG0ezZs2irq4uWrlyJW3fvn3Q9GOfNdhQAwA+l5xxxhl077330lNPPUWxWIxqampo+fLldMMNNwx30wAAAAAAwP8xf/58+n//7//RqlWrKJ1O07Rp0+jRRx+lf/mXfxnuphEREXyoAQAAAAAAAACALIAPNQAAAAAAAAAAkAXYUAMAAAAAAAAAAFmADTUAAAAAAAAAAJAFQxqU7J3anUZ5d0OdUe6IhrXj5C6+0Bcwyjang+v0dGt1emK9RjmVjhtlt9tplLt7erQ6XaGQOM7NZafLKGcyGa1OKpUyyolEgo9TfFzaVMd8DuP9VNooK1EmIrJYLPyZdGMX5RTp7u2Kq5DVyk/RKs7lcDhlFXK5+L7vuGLpgO0Ew8uSCy40ymnxN06b/v6y39nsNqMsugLZbPrf32n38QtxOhubAE2aVq3VmTG1hl9EQlyOcR+2F4zR6hzo7jLKu9952ygnoxGjHE8ltToZ0fBkhhv3vy+/Z5T37D6g1fE4uD+X5XmNslux3XZFIlqd3jR/1iPKRWNGGeVf/+4Brc6xs48xyuNK8gnkJqf8+D6j7HFyf7DG49px3gyP5T4vzzOxDB+X7O3U6qSjPJ/ExVxAdjYep0OPBp+IcB8PuPO4bRbu3z6HPhc4bGzX4Ri3JyXmgmhCv59OYW95Ab9R9gq77g2HtDpk5eleWXj8UFa5DNDHnEwqxud281hiU/wM03rTqLS4wij/9qffJ5Cb1NbLPxyPi1ab3gdsYpy2ibnGarOIsr4Gsop+ZBPrE5vNRp8EuW4iIrLLeVA7NV/fvD6T6y15PvO5B6sj5+GkOHVGN2sSUw0lU6J+mh9iKmlef3K5ZoKXQO5x4uSjjbL8+6mM3n8sDv6bKysf53Tw2GmOYJWI8zxjEf3M7eXObbOatm1JPkkiyTYdF3OGx6uvC+NiLedx8vkKSvg4u8Ol1XE4efy3E7eto4PnonhG/41WPpNUjOfGgiBfp6xEv05KiXt18Pmqgnz9WEJfS1qIz/GzVU/TcIFfqAEAAAAAAAAAgCzAhhoAAAAAAAAAAMiCIZV8F+ezNDIaKTLKhSm/dpxNyM1sQuoZs7CMoDml68hCPSwrUGn+uT8RH/wWfB6WzLg8LBWNCelpOKLL0aU8SMp87Bb+7sEsDZKv0+n0gGWVHlzyPdg1U8okVRpE8m238zOwmnRHyaQujQC5h/wbpYQ0NG3SA2U02ZnomzYh5VT6319l2HVibFmxUT5u1nSjPGmiLt92Ofnc2+t3GeXuFj5XzZxRWp1555xjlAuEe0Xj1leMssea0up4hbtHjFgC1Nqwn6/Z0aHV6eric3T2Cgm8uO1kxiGrUELYbkaU6xsajfK9v1im1fnGDTcZ5csvPYNAbiLVbxYhVXX7dBmZU0guExkxf4g6zgJ9nkpbhMxbaDFdxPOXU+l9ze7jfmwVMj27kPz5MrpddxxsNsrNwl0hLxjktqR128mIcT4pXZNs3B6baXqXp7BL2aG4n2gsqtVJxflZOYUsWNb3efRnXTOhikDuYzVLR433B38tZdVa2aqviayWj5Z8Hypj62Dya/P7Vqt0fZLnk7Ju8+9GHy35NjdNybWYXLtZ5IHmNstz87sZB5/L4dQl8Knk4M8E5AappHQL5bJHrHuIiPICYs8h/GIyYv+RiOnrNZeH+4M/n+v7vOw+tHdns1ZHpbnPeMX8I/cPkVhCq+Oy87kzYvyPJcQ+J6G3zS/6rS/AdUb7Cvg6cd3W6uqajLLDydd0WXjOGFOkryU7xVzb1t5qlNt7+blVjQ5qdZIJfX4cLvALNQAAAAAAAAAAkAXYUAMAAAAAAAAAAFkwpJLvPC//pD++gn/GTyR1uQGlWTrQ2tYmyvzzfoE/T6siAr9RPMayOKeQu1pNESS7RSTUaISlbJ0i6ng0qkvcpJTaIaXU4joWkypnMJl3SmjsLCaZ32CSb00mbpJRpcRng0XLNMuo1MAByEEOIf/+UkLWX/wl3+F+qhT3zVgsRpJJNRxx98zjJhhlZ5Ttbsfad7U6ySSfo2gC1wlMP46v6dUjXyeF9G7KdJaTRw9sMso9Ddu1OhRiyXXGyu4Zx4/lc491H6VVeXc7y5121XNU5rSU9VlMw5owAquwD4d4nrt31WlVdtY2Ech9lBb9mv/uTrcuQ/aIaMAZMY6GwzwXpB26bEzJ6PkO4VaREPZKJlmcR0ihUzxPlXi5fqZLjybedrCWy0khOxVjvNWuj/cya4WcMyyKJX8ehx4lWEZtTQv/IXnXDlM02Ig4zi0i7FeOHWeUCwJBrc6MaZMI5D7a2kBbapgi9aqBXdL05CSm2Uqc73Dl2/K11aw7P4w6A82YHx7T750BjxssWwuRSfJNA8vELYNc39wGq3XQB08WKxZsuU4iyXsGtxjv3X6TO4KIfB/r5LnA7hJzRMCUlUdItp0ukQVFyMTTGd0dVtqe28ORsBMJHu9TJkm0xcnn7o6wK5/dzm54Pl9Qq5PsEVJsISGPRHi9WFigy97HlvMc5PWwNLyoiNvZHtfb1h3mjE4W8QxTVn7u23Z2aXXGjhtLuQB+oQYAAAAAAAAAALIAG2oAAAAAAAAAACALsKEGAAAAAAAAAACyYEh9qBMZ1tUHAuwDHevWU1P1xFizL12BUwnW4jvcPlmFSkVKLksBa/GlP1xnp+6b5hf+BOEebkNC+FNbTL4/TuErZ5N5IcRhqZSu+ZdpjzLS10ac2+y1o/lKi+M0f2qT37VMmzVYfWX21cZ3JjlPRvqLWYSffNr0txRdS/pAhhX3x/EVAVmF5h9XZZR9CU5B1dnI8Qps0W5ZhVIixkBnC9vatFnzjLKrbIJWJ9rLtu/xcfohb0m1Ud6zRfehTnZwGxrbeoyyg2TqH51pY9gnJ5jH/kZbdrUY5a6w2W6E/6qFbdUiUox1m9JX1EX11yA3KfJyf3Da2GfMZ/LB9IpxMOANGmVHko2qseugVieueD5y24X/cVTEBMlEZBVyChsdI9JuOdu5f9e1HtDqhHvYLvPL2V5kPIRIXI/14QuwjVlErI3eHm5AUb4e56C0rNwopzJcR/pWF5eWanX27tpplMtKOO1ecVGhUfY4dT9AO6acEUEyJf11D+HXa5d+09Jx2jLw+0Taekn3ux44ZdVArwei/zGfLM3UYG0z34+W2lQ8H6U7i2t1BvPuHmSJ+H+n+OhnAIaX0tG8JrKKv7JcAxERZZK8hnCLeBYyHWpa6YNlLCbWJ8mBYziNHVek1bGJtIle4Z+difK4Hjb1K08JfzZazKHJDpHCNRLS6kRSfD+B0Rybx+Pje7C59DSSxaWcktWe5vksWMzXbO1s1erYReypoK/MKLsdHqNsLdTnnODEoykXwNQHAAAAAAAAAABkATbUAAAAAAAAAABAFgyp5Ht/M0vmKvJZEhZ06ek7Mhl+HSGWGEyaNNEoh6O6lO5gM6fY6RKfJYT0ubtHl676fCw7HzNqtFG2tfJty7QpRET5QiYXi3N4+miMJXfm1ERS8i1x2uXj1SUXWqqkDN9DRmqALIPXkUh5ktWif0cipeEgN3F6ONVAXPQFu0kOJDIdUH6A64wu5T57dFWxrEKeGLtBqDinI/A6WJoTSev9NyXcBuxCfp0R3785nHpaol6RRiEhdNolVWzTBWWjZRVq62Spa1pIrNt6uT2FBXr6vESknT8TbiGzp7K06L3tunS3Sbh7yLRkaSHES0Z0cfk/XzWl+AI5SWU+S58dFv4blhcXaMfFu9kOPC7uUxVCxlx0UB9vt+/fb5QzSZHqRKTK8vbqc06BYjtQcZZ5N3RymroWmy6Ls5dWGeWycSz5rtu/mw+y6nJCi+K5ya54LLBZ+dzKNOdYhTR8VClL6TIZnqeK83XJd0cB26gS7W44yC4WEdMcmkiwXZ3xheMI5CZ6JiiZxtOcelO8Hjhb55DTT0L+f/RbA8l0VJqcfGivr7nlkZSGC/l3Rr+o0lJb8vsZMa+bbyeThuQ717GIv3kiwmsVp2lcT4v0o243f5YWa5BESl+fO4RkurNdpI8SW7WKEo9Wp6KMX7eFeJ9ic7OxFgeDWp080Z5UgttgtfL9RDP6ujAp2l1ZIu5H9GeV0Ocpu4PbYHfyvq87zB3f59PXhVaXcMkV7rVhUadiXIVWx5OHtFkAAAAAAAAAAMCIBRtqAAAAAAAAAAAgC4ZU8t3UwvKwcAdLM4+tmqwdl+xlyfbWxnqjXFHBss1wSpcbuJ1Ceppguem+LpaCJ5QefdshJNtOcavjSljWli7UI+Z1hlmmF0qw9KCtu8sox9L6daR2qkTIUMcUspywsV2PZJcmGc2bzyfVVcpmkm9bpNSI37eI61uUriGyDiKdArlDsCBolCNCfmP+W1aP5b46u4bLJYr7Zm+HHkFYyqfdLu5P4VaWqnb39Gh1lI/bU1Y11SgXlI3iY6wmaZrQrknRjzWPJbn+El2OHq5nqWpJkKOTt/Tw2NEd1yVRTiFPDbex7DRYxBGMp03QrxPZxZLUFiEtz4gxQSX0KMpNH7xHIPcZ6xPyNyHFK8/Xx/WYk2XeKSFRc7tYklaZ0mVkDgufO5Hgc7u7eSwv9Ooa2PbGWqNc18X9c19niK8f0CVuBaMr+dxBbkNBgucvSuk2GhSRWfO97PJhE9HNe3pCsgrFovw6k2a77Olii41HdXemcITHlmQ3H2cV04rboUdcTWV02R/ITaRC2SJlzKaxXWYX0YJ8yzWIOTK4OJ9cg+jrEdPaRCx+lEVr3IDnNX9GmouUkKHqNXT5trwfrSlm+baQxGvybS6bveukdF7PviLWa2YFu4LkO9cJd/O47BIpDSykd4CEyCBhTfKYmBKZXMiqb8G6O8Q4L/YZARlJW+l7o7jIBuMTmU+KC3mOiCf0jnbgAI/r0myqRvFckjS5j9qETNxp4/OFwzxnROP6POWK8LxbKNZ4bi+7ZNks+jOIdfCzikR5LSizLrW0NGl1QpE3xKvLaLjAL9QAAAAAAAAAAEAWYEMNAAAAAAAAAABkwZBKvivKWUrd0dFglN9//Z/acVIi8Jc9HxjlqVNmGOWUlLsRkTPOdU6f+gWjPKaKZeK79+3U6hTklfALoW/as5+P8/l8sgpFYiwPbe5muUFXlNuTturfQ9iF/s0pFDujgyxraOtql1WoS8jeyc5SBhmFOGWS/CZTQiokJFE2G9e3muo4oSDKeRwONkNXguU8ZYV6JO3jxnN/8vVy1OCmZpZ5J+K6HCia4r5RFxLR8bs4gmS+KWqkU0QALhc26Q6wjDZmuo50ewhHRcRvIXtyuvXrKBt3Tl+Q5UkFEa7f2hrS6pT4Wapqd7BkvLeXJUxBjy73LReS+pYIPzdl4fp2pV8n3fwugdzH42Pb6erhMXpnbZ12XCzJfa29iSXbBSJ6drFHl29Pr5pklEMdHCW8q5Gjb/ttury5Lsb9cE8nS75boizfi3fWa3ViKe77rkK2vVGjOOJ3WVDPlDFxLEvD3cKOWlv5mk2tuvtHczPPyZEwu2eVlbIrx8GmNq1OuIdfJ8ScHPCxHU6aNlGrk+fR7RzkJmmRUcJilW5j+nFC3anJxG2auZgykoj5QJlPOEid/q+Ns4lzmVzatCpiHaUdZs6WIiTfYh2V1uTog0fslplYMkJua/au05Zig7jombF+0vDk4FMnLiJ7W9zcL5w+0zpKrOssop9IuwuHdYm0VfT10iIeYwP5fJ1gvj5PFZfx655ublvDXt5zeD36WnJCFe+NYhne86Ss7PpWNkbPsCI9exxWXj+W5PO8UFiqu9tNnXmUUa6eMN0otzZyJpbXXnlDq5Pv5mdSWiiy0fTyc6tvadHqdNflRlYW/EINAAAAAAAAAABkATbUAAAAAAAAAABAFmBDDQAAAAAAAAAAZMGQ+lD7fKzld3rYt7nhA90fUaVYC19QwDr9SBeHQm9o1TXyLe3sw2ZPcLMXnn2OUR4tNPpERJ3CVzvpY3/JmJXff+fdd7Q6HVH2JwiL9B8Z4b/sNKUJsYtUB14nfyYzIMQzus9pxiZ8KkS6r6QIlZ/K6P40qaRIPyGch+x2fh5Wk+9PHGkYch6v8AMNurj/HD+5XDvO0dNslJsOsK20d7FvdG9ET/8kU3LtqWO/SYdIveAty5dVqHws+44WjOKUPinh+5NKRLQ6sQj7vYQj7FOTSXJ7ejq7tDoN+/l+OkVKnoxIo5A2pc9LCUc16bKWSIlXUd0vyePk89mt7JOTJOFXpMKyClmVHsMB5Cb1Yp7YunGzUe4R8wURUXkh+4yN9nP6jkkB9k12xHXfRksH+w9bRTqp9lb2z+5O6LExGg/yZ7Yo9/25k3hu6m7XbWdP0x6jXLeJ59CCYzlWyDFfOF6rM20y+1d3tHHqyD279hrlcJeeAist4hl4XDwfTp3C9m6zObQ6nd08ZhQEgkbZIVKYFAcLtTou0/wIchPN51esNcwuvporsFhOaH7Kh3CHTso64gNzqq2ESHPqEA7aduGLSqa2Sb/nTmGvgTye01xuNx0W0n/5UOlG5RwkfcWV/vuUjHOTFu2Wp86Yn3X6ENcFOYHDJlNlcVmuz4l0X3u76FousQZx+fUOECzgvhrI5+N8QbaHfL8eT6OohGPrJNO8pmoJ8Too3qKvb6ZNFXF7hHl0dbENfmGW7kM9+2j2EQ/H+L5Hi7TIxSXVWp38Un6dH+B5d5uYN8eMKtXqTKzitJKl5Rzjau+e/UY59rqeNsuSHDwuwWcJfqEGAAAAAAAAAACyABtqAAAAAAAAAAAgC4ZU8m1J8enWPPeiUVab9ZDm40R6rdEFLBdz9HYb5XAipdWpj7Dc9MX3NvC5RIqfU6r19B0uJ8skttZyqpPeFEvhqqqqtDqdO7cZ5YzQ6TiFfCdgkrTZhPjU62CZRjzBkr9wRJdcyFQSSkqIZNosIY0nIkrLFA1ComUVEpRUWn9ug2asADlDfj7bTVUhy2KcKV26vHcXS0N7elgKbbMJzY5F/44sLVwDOkTamxKRkitQoUtuJkziVFmxXu7D7fUsuUnFTJJvIXeKKZm+hK8Z6tDv52Aj23tzG59v1BiWuptdFuJCdi6lV5EI9/tMSm9bKi3PIaXcfC6l9PRH9kOkNgG5w5aXNxplTyRklGcV+rXjpovUcMXCXBxplob3RPWxU2XYLlwVPE/VFbHkrr1BT8/lcnCfnDu6yigfO36CUY6N1aXYL2/jOWdj+z6j3LadbbRr0mStDlXyuRMxHgs8Th4/ioN6ehWfSFs3dtR4o1wQ4HurKNVdHerqWULo9bL8zikkuYmIPskUlOguJCA3kXJj6UKmTGOulCjrcmUh3zYtNJQYm9NifSRlsDbTXFUr5he7+K1n8mRe16VNGmmp0m48yK4P1tHcPw9b8k2D3Gi/owZJlWVOmyU+lM+3R7hEWa26i4XK4DeuXMdql+tt/hsnwvq47nSJVGui37rFHFFWoc9TBSXcT8pG83ibiHIftlr1VL+JOO9HWpqEi5yV1zf5RbpNO5y8rssTKbWK8jkd48QqfXs4aQrPh+4Auwm581nWnUyO1up0tPB1W/ZzusjWVr5+dfVUrU7NVL7XogJ+ppYMz8+bt+vpHdvacsNucqMVAAAAAAAAAADACAMbagAAAAAAAAAAIAuGVPKd7Oaf5Jv3sXwn2a5LPVvb+ef+fYolbqeMY/l2aVrf61vDLOE50BMyyiv/Z7VR7j1Bj4Q6+7jj+IWQiu7bucsoj6+eIKvQKCEhbxcy8TwXy/ymjKvU6riEnCfTy9LuRJzvU5miFVtEnaSIbpmUkZTTukwjLV7b7fw8VEZEDDeFwbTjK5OcZ0whR1MszWP5zoEtu7XjGhs5MqKysCzG52PJTsokiXOIqOFSeufJY6lRXp4ezXH3Fnap6EmxrWzfwRGE/Xl6pMmJ04/ia/pZQupxsjypuFyPAOnwc3TKQiEzLCxkaeqBDq0KdYTZVkb7+RlICXrapktduyMsG0pl+DgpF7Saw8dazGFrQS5ylJf796hijuQ91qcPfMEEuxekRMTuWJrHZWvSpdVJEveVDgt/5itgl4Rove7ONHUCzw1TylmqWuhlGzMpA+mECSyTc+xj2erWJp4bN36wQaszc+bRRjlPuCCNr2DJns2lS127Yxxlv3wUz3OkWHZqt+juTC4b22JRoNgoez187nhEd5fwufSxAeQmUrKtR6vWx0KrCFFst8h1h1j3mIZLmxYJmeeduLC9aFQ3hHiM148JOY+JuUGZLyTM3CX6eyLBdq1M8m3ttRbZm4tmhx+ltUdWt8gXpkpcrNvP6+H9jQeN8vTpM/U65vsDOUdSuM7ZbLyFSib1cdBh5znDI9xPvWJ4dHpII09knfA4xPqml8flgmJ9XE9GWo1ykU+sj07mNd7kabobTkC4QXjcfA/jxlcZ5aBwBSIicgV4fnXm8dxmd/P7GYs+h7YdYJeoSA/bd9V4ruOyhbQ69dt3GuX2Ql4/NjSI7arJTBqb9D3mcIHtFgAAAAAAAAAAkAXYUAMAAAAAAAAAAFkwpJJvV4blzkdXsZZhu9LlBtv3svSssZ2leN2iNQmbLhvramU5hVvoJGx2lqu9vXWzVmdcKcvfyt18vnDFGKPcfkBPEB7q4aivXjvLLMqDLH+YVjVeq5MnZLXbPuCos1IaUuDRI/O5vCy5ONDKkVStIpJdNK7LxMkupB5CBiUjCDocetTIjDn0JMg5KotZDqq6WNYd69ajVcfjIrK7i40lKiLiW00WbRdSI7uIGh9u7zXKDfV6xMTuFNvABztZgtrSHjLKxx0/W6vj9XH/zitmKbfDybbhO+4ErU5jSwtf57XnRR2h5zH1Zyn5LvPyOGAREfkDBUVanWSEbTwl7MFB/GzMQrsMzGZEUO3lMTLPzXaQSupy0uZetqWUcLexSm1njx7hurVeuFz4ORKpS0TSLrDqEmm7yCBR38b9rsXLc2A0qV8nk+Fxvbisyii7FUtD99dt1eoc3MNz3aRpHAG8KMA2YQ5U7BeS7fwA34NN9H6vyV0iHWW3pe52HicKx/EcGizS5/eifJOOEeQk8RivqZwu/rub1xBSAJ1Mso3JaOAWs8eMjCAu6kfD3J96enSZptPC1/XksXQ0JtZBTqcpi4VwkfMKLW06LTM4DC751stC9p4x15GSeBoQZVprJcSzWrv2BaNcMppdPCwme0th4sl57MIFIi2y6jgd+uJLpfgzex73bbfIvjCmSs+wEvDzOmrPXpZyFxTzXiYiJN5ERIWFfL6zZ7Hba6Sbx+v21k6tTn4Zy8HLynheiKV5LO+mGVqd8jx2dbJI1yCxZ/H69JXUmBq2SaeL14X5QT5m+9v6vu21d1jyXTKKXSVmTOd2/nV1u1anqcPkRzVM4BdqAAAAAAAAAAAgC7ChBgAAAAAAAAAAsgAbagAAAAAAAAAAIAuG1Ic6mmLf6Mrx7BvQYenWjmtwsY9VdBv7x9R2sM7f4jX7yrA2v9TNPqdHjeH0H+F9egqThrfeMMpB4TddManGKE8YO06rs7O21ii39PL9kIV9W3bv09MZlfiFD6xIw+IV4ejHjNL9Omvr6o3yjDL2qUl72Xfopfc3aXWUhf2C9OwK/KySpvRcSUoRyG1sKeErnRL+lSZ/KpuN+0Ymw34zsTj/jT2mPGlJ4cdDwjWu28rHFc/Q/aFPPvYkozxepO5qb2R/6gLhJ01E5C/m/p1fwmW7Q6Q8KdL9Ted95V+MstvD99qxn31oKhJ6Goatm/gz6W/m9QjfUZNfWjjKNmEh9le1Ct9RC6W1OpZ+XtUgF8m38N82GeHxukukiCIiSgs7SFm47ysxXFqjur0d2Mk+aAVB9jmzWbivJU321hXnOCINB3YY5YjifuctKtPqBITfdG8++9DZYuxvauttllWop4F9qiPj2b/OIuYpldB9tZVIeeRQ7EOdlimGElGtjsPKdtHRcsAoe2z8PMceO0urQ2n9HCA36RYpPg/uZl9Fp1MfP0eVc4qbUjHuxyLcv8I9ur3ZFPcPh3CojsXZ17GjI6TVkf7EhSXsL5lKSgdt3UYtYk3kFPE6esM8pyYSCVMdttmMcIiWV0mb82aJ1xmZplQsxBIxvd/Hhe/3zKNnGeVAAT/PVEK/n3QSPtS5jspI+xBjp1VfQ9hF6jinm/+uFWN57C0yzQWdYo3l8/PaZ1wl97Piwhqtjtcz1iiPGct7kWSc5wy//6BWp6SE/aGLRnHK0+4w263Pa0rbG+c9S0+YDaKomPdQFrceT2PURB4vZMyGUCuPN29u0MeOUJznysle3hM+9T+cwnXz1l6tjlXlxm/DudEKAAAAAAAAAABghIENNQAAAAAAAAAAkAVDKvlu7GUZgN1TaZRrqnWpZ5uXZZstIkWPs4GlFBmrW6tT7eBzpISExyZkS5Ms+vcDrhCnLfmgk+VqJSL1wqmnnKbVGVXC8rlekTKksYWlGNt279DqeMpYtlFcWWWUI20c2r3QG5BVKO1jmUNNIUuA4i5u2wc2XXLRbmGJVcrCfzpbip97XOkSb6dNl8yC3CPcxmkQfEqkubLrNmCxsoxNibQgUp2WNGVaSwgJWUERy2/yxnGqnYppx2t1LHnsrlE5jdswbjLX8eXpaeAKi1ii53TJlAp8/Uhcl95lClhGO/PM+Ua5dtsoo1zf+4ZWx2pl2Y8m0xZpxHYc0OVNPRF+KFYL21TSws9TptAiIrIR7GYkEI/yOBpNhPgDu0k6KVKadHfxnBGJsHTMndbHW6eYHmP7WaI2+mi2l2abbqMqw33NUcifySxee0T6OSKiVE+dUbaJ1FbhTj6uxm1KZxXmlEPtDfuMcmM3zxHxpK5bteexVD3hlDbKx4VievoRt7Dzzm5+1rv27TXKgfw8rU4swS5Mk6ZOJ5CbvLflPaP8+huvGOXesO6id+wsloSefdaZRtkjbCrUqadeJJE+LhjgPpQUWupek0tCSsxprZ28diop5vWR16vbm9XGdWxWtpGESCUZjerzjtMt0i0KF4m0WD+mTBJSa5rPkU5znZSYN5Ix/X4axJgh5e2jx1TzueL6OJVJQfKd60g3OiVcw1IpXfLtL2D7yC9if7sCP69vIuGwVidt5XMXB1mWPaGKx9SKsZO0Oi7hKpES82FMuA+WFutbPVua10itDdy3S0Zz3wyH/Vodf75wm63iPY+ycJs72/S11873eG5Kh+VaVLjwFtZqdSoreE4+eIDv4cX1wgZNc1tmsFx2nzH4hRoAAAAAAAAAAMgCbKgBAAAAAAAAAIAsGFLJd2eIpUIFPpYLeOy6PHRGGcvaAnGWrqUUS18P9ugRE6cFWWLwztvbjPKm91lWc5xHl5bnjWWpUHuYJUkt2z4wysWmaMXTJk8xymVBjlg3pfA4o2wN6dKO5qaQUS4fX2WUPR6WJzktuixu5jyWDbo9LJnofn+jUd4a1yWIIYeIVCukJrI1SfNXJGlE+c51pHy7u5dlyHaXSd5mZ3O1pKSMWUQtNUnGUgk+9wTRN71j2CUjZpJ5ykiqgQC7KthFRGOPiKpNRJSXx/3bKiKIZ4QGPRXXJXFR8ZnXx3ZYOoajWCboPa2OuB1NItgpJLBN5uixiuVWNinx0yJ565Jay9AOjeBTIpzh8S2t9Tt93EsLt5hwL/fDSFLI/l36/DGuQMivM9zX4kmWnrkLx2p1kkLylhYuOh4/98F8UxTlplYh3+7geSqa5PqVwl6JiOJRPkf7vj1GeVNTh1FuTOjX8Yu5ztYgInaLccZjdWh1EkJap9w8j0t3qN0NTVodi0sfG0Busu75p4xyKs19bfeendpxoYO1RrlzP0s4C4uCRjmeEJkqSJ/TJk1kV6GSMnapO9jaodWxCOel1npug0NEp68Yo2dl8YhIyC4n991QF9uUzeXV6jhcPN/ZhQtQxspjfjhmcp2z8rxhs0iZr3C36+nU6oQ6+P7efOtNrm/ncaa4uFSrs7+uwSgfNWM+gdwjI+aCjJhzfF597Cwv5T1QlZBsW4Q8OW1SKk+awS4yoyp4z+PNE7LulN43vU7ut3aRJSge57Vbwz7d1mpqeCy3WPk6Lj/PMw6/7vZmE+u/gwfY5ScRYXfYhu2664ctzc+gsornmeYdXGe6ySV4534+x5PPsYS9s0u6XehryYzKjaws+IUaAAAAAAAAAADIAmyoAQAAAAAAAACALBhSXWNKSDi7hHStrFD/Sb/CzlLqsZUTjPJb7SwZH1NVrtWZXH2CUX7ztQ1G+YOtHHE749WlPZ1CQmQZV2iUY2mWq23Y+LZWJxxqMcpHC/kFjZ1oFGsm6/K7kgN8fwV+vrcSIXVKm6Iv26z8RvrJl4xy5IlnjLK30BSltYKvI6MLygh3SdLrUAaS71zHXcwytuYO7s9Wu243HiFJVSJidkpE6bWYIhXHI3xcIL+Ij7NynZ5wSKtTqljS5POwTVmE1C2d1t0eJDLgomgaOdJ6tFVrN0dyVT0iKqyQjI6qGKPVeU9EPo9aWGLVJiR60Yz+DOQrh5RYWaRESx8KLfiucUQQinKU1ExSRgHVB9xIhPtXNMGfOe3cBwpdumSvwCk6r8i+0C6iBne782UVilpD3B6ZjYK47MnoOr+qEraxcIz7d0xkunD49Ot0hllia0nxNb1CQ+gwRSB3SxckB9tYSEQTV/l6NgplY7uIiyi2mQw/jy5TdOP3a/cSyH2621mqX1jE/Stgiijf1cTuAe/38BotUMJ9RZlWkj6xDvL6ee3VI6Jah03Rt/1ePonLyp+F2lge2t7Vq9VJi0woUnauhCy3apw+hyRFdPE84cbQ2cPvN5rchgI+tp10nNuQ6GFpedCvuzrs2MXy+M4Qj1OvvPJPo5wfLDTVqTXK/7YYku9cxO3heULKr70ufc0weozo91285+jqaTbKJ3xhsl6njPdDRaUsxW7t4Pkrk9bnqYCP+3osLtb7wr2toFTvZwni/hyPiba1svtQqFvfS9js3Nc7WnlMqKzkcSDg0uukhLl2NbJ7rlXI1N/e0Cir0BPP7DbKbSF+pn6RpSKme5iYPfaGDawaAQAAAAAAAACALMCGGgAAAAAAAAAAyAJsqAEAAAAAAAAAgCwYUh/qgExBFWFdvkzrQ0TktLEvpy+P0wbMOIHLG0N6CoLWJPsJnDL/dKPc08vHtR3UQ8OnD7CPkM/PIvvCMk6nZbXrbWtq5LQFLmJfO9XO/p6ji/RUB2NKOWVQqpF9sC0f7BBHdZMkFmKfiF2vcRqwV+38fqMppZfFwu1JCN+NtPDJi1v0P6kyheUHuYd3zDSjbDvI/SyT6tGO84mUCEmRtkYl+Y+cMbk29/aws0n+KPY38/jYHyWe0NNmRYVfqkuk6lKiM3m9eio8q43tyCLSnKRI+DZ3tmp1Wne8b5Rbmtl2O+PshzPGZAPTZx5tlHdteZfrx0RMAYvue24TPuE2mWKM2BdJmb5blPcAcpekCE6REqmyEiYf6t4U+2RardxX8mxsU25TOpJ4hB3ADkS4737QssUod5n89dPdPM6Xe7kPOYV/t8sU5yIu/N4K/Tw3RUUKPIdFTyOZzrCNJoVfaaWP5yJ/ge5D3ZzgOvkePs7t5XJc6c8gFOX76ergsckm2mYxObBFc8WhDRySCVUcu0OJcbqkuEg/0Mc+kpFunpOmTecYM56AHr+mu5v7ZFsrx9PZuZv9io/9wglanbFjOG5Owhkyyt489sd+b0udVicUFWkm3TyG2ywyrojucJmO8+tRxexfnSExFtj0+SCZYPtrO8i+oDaRCjLVo/u2Njfy+jMlxhmnk89dW1er1SkbNYpAbmMVa+xYjOcZh55lit55t94oB4O8JvnC8bzeKyydpNXpiXIf8vbynFFSyDZgzej7nEgPv96+ia/pdXPbCoJ+rU53O39WW8v1x4wNGuW2Lj3GQWkZz3Vjy3n8T8XZn9ob1OcPa6DaKDce4Pnovc3sJ/38/27S6nSExXrNJlKeisVtMKivPxXlxkYHv1ADAAAAAAAAAABZgA01AAAAAAAAAACQBUMq+e5OspRm+gROLdVRv18/TihM41aWmwWFtGdivp42q7aBQ6u7S1hbcfyX5hrl1F5dCpHn5ttrtnDbOoRELt+rSyFkapGG2lqjPEZ896A69NQNezazDKmpjtsZTfONBvy6HCjSxp/tFumQYqcdy+WYfj+hNn6OcSlJEqmSEmQOdQ/5Xa5jCXJfL5sywyi37tytHZeX4b9lRiSD6u5gOVraJH2JJriv2lwsk6ms4TRwYacu19P7jJSJ+0RZr0NCIp0W0pxIF7tA7Nz8jlalu47T6zTWs5x0dz1L5fInVGt1jj7xKKNc18zypngLS1PN4p+0kHlbxP1YtAPNkm9dygtyk7Tod1HhohNNmuTbIuVT0MPzh83G73cndX+J7hh3kISQUivFY7nHNIXmlfG8N34S23X9dpaJpzt09x+n6HsO4Z5QWhY0ytEu3QXKnhDpi1zcBmsoZJQzHj2NT6SMX/ck+Hx2cdsupfd7e5LHFpcYFlSK22zP6FpHj11P0QJyE38+u9MIzx5KZ/Q1RL4/aJRr97Bk2+nhtZPNqttB04FdRnl/Ha9bEiKtW8BvWnvZhFuE6HeRGLtb+D16X3M6uVN6C7h/1+3byW0RcwsRkTUlUugd5LkmY+X2TD7uOK1OaTnL4OszvJZs2ldrlLdt2qrVae/lMShYweOC3crjR0dHl1Zn6tFzCeQ2vTHuPw7R/1wOfY3fKdw6J07g+SNgZ9ebnnZd7uwvGs+f9bD8v2n/RqMcjepppmwZthuvm9dlaZEesuWAPn+Qg/cc48bxnsdi5fViQVB3mwoLd6baiJh/RIo8i0V/Bgeathvlp5/jfdLGTdyetFW/TrCI7TgdF/ORuB+PT9/X2FK6m99wgV+oAQAAAAAAAACALMCGGgAAAAAAAAAAyIIhlXx/ULfHKLsc/JP8jMrx2nH7G1mC0xJiicEx/jKjnLLpsuq8Go5I+VpIRM8by1KcceMma3WmjR1rlDc3sLx0+26uX1+7R6vjq2SZRWUFR4D0lbB8T0ahIyL635aD/JmTP3MXVRjlcK8uQewsZ5lGMI+lRgV5HFHz/cadWp3WOD8Tqwgp6BCnlpEqiYgyttyIfgcGJya6UwPx39835QvacQVN3G8p8b5RTHZzpFGy6n9vS4YlOCVl3IcrKrhvdpjksV4hY/KIstPJ57KYwsfHotw3E3Hu29FelseFe+JanY2bWBa4cztLCaMJfiCTyoq1OhOOmsrlyRwhs/kAR5JtbW3W6qSFG4SFBpZ/p0mXHdnScJUYCaTE37BHuBr0xPXI9daU6AN27sddcZaudSR0qatdRKv2jeHo294uvk5eQO+f3d0iovE27t/Ta3hu6vXqEtSWep4/Yj0cRTnfzzK2soBJ6qq4v7qFK4fNwnK5sNK/L584jmWn7rygUe5p5jb39uqZBZzEEkJHlO26I8bPrbu9RauTb4XtjAQamrgfFpewTN/i0iPodifZLmqbWX49ppvH9oBPjyhfKOTkLQ6OAtwbZolzvk+XaTY2CJe2MNvEuNHsnuQwSUpDIb6H/Qe4nBAR7Zs69PkgLF4XedmuUxnu65GEHhn8mC/MNMrvvfWqUa7dxmu0YNDk6pDh5fW2bZzJZV8du3L5gmValdKyMQRyG+kN5nZyH4706pkYxo1mmzjpJHblLMgPGuV0Wo+kXezjc4Q62U2ouYXH2LKiCVqdXjHVtYbY1ijJY3RhUB+TLQ659uH5LCYii0djYa1ORyev8SoqeD9WWs599rWXtml11r/E+65t+3idGRNrxKTSn4HDxfNWMI/ns0CQpeVHT9b3ej5bbrjo4RdqAAAAAAAAAAAgC7ChBgAAAAAAAAAAsmBIJd+vN9ca5a4US9LGl1Rqx00ZV8V1NrxtlLfVc/3ScRUkSQgp3IkzZhvl90U0x221ejTxSX6WmteUsiyh2M0yvdZRo7Q6Lc0NRjklHk9hMd9Dlyl5eXLOLKPsFXLV8f5So+yy6PKmFivLHHqjLC/asJMjRR7o0aPBRjPiuuI6XifLAd02U7TiTG5IIcDgOD0ssdsT43JPR0g77ovl3FetHpaNuT0so1NK75sWN8tkRk9i6ZzLy9dJHdQlca3tbAOlwu2hI8SRGT2mCMJeL8vlYiIKZlxEZrQ79aiuncINoktIgLz5fJw7L0+rkxHRmqvGs33XVXGb20N6dPyjZnDk9JnHzjLKNhGVc/NmXaq04309YivITWKiP3Qn2KWgJ6nLyArs3F/jYkw80MmyNgvpstWgl187hOw1IuzD5tGldNXCZeiDdS8a5VCSXSSqpk/Xb8LNtli3k6OiHmxku/RVBLUqSkTi75ZS7IyQfFv1SPxl7SKKcpjnlgoPz01ddn2e8jlYxppn489ktOW0yf3Dn4/v6UcCeeVVRjlmYTty+fK14+xiTnE4eU2UELLo407Wo2I3NnPfDcX4uO4Yj7MWk0tCb4j7p1TCRoX7RkdId5ewObiP79zJLlE1NVVGOWnRpbgdUZ4vnUJ+e+xUnifeWr9WqxNu5fn23c0bjHI8zPNb+aixWp3eCI8ZTS3sWugv4udbMnaSVsdq1SXtIPfIE5mArDJDg113y5k0frRRDvh5P6Ocwr7SumuBJ59d/gJFbHfFAXaJs1l0KXZzN7ch4eU9R56Hr9PT1abVCbey68b+PdyH20M8h8YSuoteidjHXXTJfHEPLDNvbNJtrV4sLZMJnnftYp+SSujjQKyHjT9l4/EmLdy7bEndRW9cqb5OHC4w8wEAAAAAAAAAAFmADTUAAAAAAAAAAJAF2FADAAAAAAAAAABZMKQ+1O0idc7Whjqj/Oqm97Xjzp7F6YCm1nAI+I2bNhllW7PujxAIsG9BvJevExBppsKuWq3Out1vGeVSC2vsC/ycKmFUWZVWJ55hH4BomH0IMnb21Zk8uUarkw4EjXKok/1MLcIvtKJUT68SjPB1tuxj/wifh9sZdAe0Os2N7Ach/dbsBfxndGT0lF5WB3yocx2P8GeOEvu9OE0pz8aNY/+YaCunFYlE2A8nYUp1UDGF0wvkV3K/TVjZDyhYWK7Vice431os/J1brDdklDvb9FQ5BQXsa6lEmqqOVj5u/8EDWh278EUaM5HTMNhkKoqY7pNjFX40x87mWArRKPsblRTq6UuuuGqxUa6ZPs0oO4SPbHtIj1fwh9/+jkDuE47zeBeOiPHaFDvCK3z+40mRXivNY2fc5NOpxFAaTPK53QmR0jHSSRLVyz6Qo8QU5uhuMsp7N3fJKhR289ySFGnvRGYsqmvR+2e6nH3ydjTzZ+5KHiNqKvXYJXWvvWaUe1J8P8d/kefjyVP1lCxJC8czSIrnkxTxPFRGj9vgsCJV40hg03scvyad5D6d79fjYzgs/PeNiLRwH2x8xyjbMnqa05b2kFFuDXH8m45O9oHevVtPWUpJjgtQUih8tYXt7avfq1UJ5AvfVJH1LiFS4Hm8BbIKxTNsi70Jnuu6Oniu8pj6tDstTp7h/p0RsQzMPqcJMY/meXlccPv4+Y4ao/tdZ0zrN5CDiDVRWsRGKi3WYw90R3hd9/77HOtpVDmvOyx2Pb0jxfizshLepxQUVRvlcFyfC3yK/aF9aZ6PUnHum26fnmYqQ2x7b70pUro1cB92WfU0kouu5Ngfbhe3873XNhrl9zfqcaza2nkeVmJCyxMxOLwufRtqFeveRILLc47lGEBimiMiopqamZQL4BdqAAAAAAAAAAAgC7ChBgAAAAAAAAAAsmBIJd9uK58uGmUpw6YDukxn2gSWlU0VqYCOOYp/tt+ze7dWxy6k0C6RAsUZY4nM2HJdB9DQymkUdnbz+fJTLBNKH9SlPSU2PneJkITWtrHUaeLsL2h1prunGuUPNrNs/eV3XzLK7VXjtDoFRSznyPeytHvGeJZm9MZ0GVUkj6VT9e0cjz4RF6mJXHo4eb9bfw1yj1CUZS0dIbabfzm6WjtuwmS2lbIqTme1dzL3v+4uXYJaNZn7k9tfZJSTKb5mXr6eXscnPA2ka0G+kDpFDzbIKrR96xajnJIyuk62m5Z2PT2Xq5Bt2qGEDEqksyqu0GWrhSVs414fy4bOOvNko9xzgp7CpbCMbS2ZYXtQSZHGwZT+aMG/fJlA7tMrxv9YL/e7fJ8uW/W5+XVzC/fJWJr7dHtCT7WV7GX3iTKRhssmypbGeq1O7W6Wv431cf+qKGTpdCSjS773trBbg9PKrkFxYXutCT2dldvNttxlZxeHyWIObN34qlanMsGS1qoCtvno7veNclm57maUV8Xt6c3w/K6I7SWT0ucYJ+lzKshNqkazq8/mDcIdoFGXlNqswkVCpPJMxbhPr39JH9sjIpWbx8vjvE24Ax04UKfVKS/iNEO9Ea7f1NjI73eHtDpuB587nWA7aj7AdilTOhIRZcRxyRhL0FvauR+XjinR6vjyWc6bF2DbCzh5XEmmdPluLMrPyuPkccYvUiONr9FdLJQFLnq5zqhR3O9b20JGubFVd7dr7WK3vB17eUw8+QTeC0ybrLunRXp5/dYQ5b4ZT3Ff6urRfwctruBzyBS6vd18LntGH6NHVZxolLt7uM/t/DOnhHPm6XPBUUdVcRtaWcLe2sJpSh15untFZQ3bR8Nefh6ZNI8pboe+DVXEtn/sTB4TTp/L6+ECl/4Mok6kzQIAAAAAAAAAAEYs2FADAAAAAAAAAABZMKSS76CfJQIpJ/9sX9vTph23bsu7RtkpJEDVlVVGebRJRla3h2Xj08fxcdOLWT6hQrrUrLSaZaSbm7j+jjjLk0JJPYrwuDyWQW1prDXKeWNYbhtL63WcQqVTUVLG55rAEoW4KWpkr5DEqzRL+8LtLO1w6UEj6biaGUa5vZ3lHFIelfHqkfniCVMUQZBz1AupULGHpZ3TJuguDDYhXcvPZ4nL0aefYZSTSd1upDtAMsl9wyoiOGYypj4T546XErLTtIiwXVCkR623CxtoPiCkPT6WyllG63K2dJztqFdICZ0+jo45esJ4rU5RGT8Tu42/D0yIaOCxpD6sOUVESaeT5eQWK7fHmtafgUe4e4DcJRIRbjHiT+h06pLvRiHN29/KErWmKPf1tEv/m48rKRSfcZ9qEdcstOky8XLhOuAV0UpTYbZxC+k2WiEiBedl+Hwdfm5PyO7Q6oR6eU4dm89zTtvL64xysa1HqxMYzbboDbLtWFPcto733tLqFDvZFj1FPAdGM9yeZFqP6p224Hv6kcCUWScY5bFV7Fqz7YO3teMa67Yb5Wgvj9OFQV7v5eX5tDpNB3mNFevlfhjI5+PCXe1andYM20EqyfZrF7LuXpNL076dnCHFI7JGpOM85vtcFVodv5gPbG7uuyHFdtAd1/v0ps0sIW/rZPsvyec2R6y6VL69naXqCWFHx02dYpSDBbpE1jQNgRwk4OO5ICWyIFh69AV7Xh6PkR479822Hu4zBzv0NVF5gF/HRTaJ1mZ2WU3G9TmHEmwrPi+3LSnsqa5Ft7USEXm/vJDteHQ5rzE7uvR5qqeL91BlRSJDi9iPTZvaIavQ7n3s3tTVKiL3J/jcTqfe6Y+ezmPR2Weezm0u5vln0/vvkkaAo4sfRcMHZj4AAAAAAAAAACALsKEGAAAAAAAAAACyYEgl32limYxFyDFTpsiF7+1n+UJra5NRnjllmlGeMEaPiu2tFJG581jiUGRnKc0sjy6LywjVX/UYjqb47B6Wtb1+cI+sQjvSLFXyjOJ2b49zm+uat2p1phSztLtUSHjGjakyyrUH9GiwkTBLVBvqWSK77QOWVx1s0pOknyQiGZeJiM11IU7sblIgUtyGiKu5zu79LMepyWfJty9P78/KJiJRCym2VGwr0m3NYuU6Fjubu1XUT8VNvgUiWn8qwZ8lRXTjhKlOQsiQrOKaThF10uvRZYEpcZwSWjdfQEiQRo/W6gRFlG8ZKTLUwWVK69HxXXYei5w2fj4pxXVsSpf42QnRVkcCsh/6PSy/s5JuOw2dHOG6WyjZRlXWGOV5552t1Tnl9FONcnMjzwvxGPf1bW+/rtVJEfddVyFH4m/q4OvH4vqYHBTR6r0iGnBriu+tO2GSEwr3D2uI549CC88rbtPs3iv6e5fo7z7R15MduqQ2XcuS2tF+dvOw2mTEb91WUropgRwlJdzqyseya42/WI9wvWMDr2k2vfWyUW5pYreDsEN364v2sHxaZnyJdPNxdqc+H/R0c99tYrU0HTgg5gmTK2Cil8d6m+LPouFOUcc0Vwlb6ooJlygL26WN9KwPURG1XBxGvZ289upo1l0skiJjTFklZ9tIpPgEoW494r/diXkn19l/kPtcQZFww7Pr43pXuzhuQtAo5xXy3HSgU5dik5CGH1PDfcaSEu5xkSatSjrNfTjULdZE3dwfnRY90n2+jd2ZOoXrhVWM3R0hfR21bx/39Sk1PF7YpKtEywGtTt0u/szu5DkjWMC2P6EwX6vzhRm8D1TCTdEm6lTP1DPgWPL0bDDDBX6hBgAAAAAAAAAAsgAbagAAAAAAAAAAIAuwoQYAAAAAAAAAALJgSH2owyINjkVo31Mp3bcgItLVxERan/2b3jDKBbs2a3XGiHRUZfmsuffF+TqzqyZpdbzCh2Wcjf0WvjxqllG22nVfmf+p5XDsvS72R9jcttEov7LBqdVxV59mlEuKuQ3RXn4eHS26j1Gok1MsvPIK33d9A/vDOXQ3QGoToe9LC9ifrTUUMsqJkJ7SK5XR08eA3KMzxn1wwRT2E3FYdLvJiFgEFvFdWDLD/TRlcmBMpNg+kuKzRJLPbfaHTgnf5ITwmw4Lf7U26eRGRB3N7NeTESkRElEud4V0/8xENGKUoyK1ytHlnLquQpSJiJx5bPu9vSIVkXg2Lqc+rFlFPiWriPOQToqUSQn9Wbvsuo2D3EQp/tu6Hfw3SyZ1O+gWfsvjJ003ytdc+02jPOPoKVodixh/K4p5/ikIsh//1i8cp9XZsonniaZevmbxxLFGOd3VqtVp7RQ+cTGu4y7muCHekJ6Sp6ehgc9XLMaMMTwvJOwurU5CxDDosvO8UB9hu+zs0a9TVM9tC04Rz1Q4aGdMfq1EiNsxEqj/gP3/2wo4JsvYifo66oSTzzTKlaOrjPLGV9ca5drNeqqtdJTnikya+0NSyTkordXJRLgfSU/izg5e09hIr+OyspHGo2I+EGvMbpOfqpwrHGKcT8u4JBY9lY8S80aeGGc8+WxHheWFWh1rAcf/CIu16LadO42yL6DHCKkYNZFAbhMW65uKAo6ZcdRReopPS4zXNwkl0mFZxPrKNHbGRfdu6xbrrUY+Vyyjp1oryOdzu8W5eyPsj+3y6/EKQlG2yfpGrhMW82QgoO+Ndu/k9nQczcf1ijRy8V49Ta9MK+ctCBplGQ6ookq3gapZHLsk4ON7aK5/xygn0xGtzowpsygXwC/UAAAAAAAAAABAFmBDDQAAAAAAAAAAZMGQSr4jMZbmSNmnWfJtE5LMqIX39NYMy2oOhHV56MYDnN7KZWeJQ7GTpTQtYT0FwXg/S/MmlgoZaQHL984ereuquyIsefvngQ1GeVeM339h3ytaHUs7y+JOrzrJKCfquT3vv/+WVqexltOwtAn5d5cIQV+ar4eTb2rlOlMnsjzRImTzm5qatTqxHsjvch27lW1grJDIZEzpZ2Rmp7SwqZSQdZsy8lBcul4Im4yL1CGppCkVifiso43lqc0HWGbabZJvS/l0RKRMqd/Hqd8a9uspFWxCenfUzKlGuXoiy96sFv07P5meKyyu09UZMsrS1YJI/9ZQlu0ybZcy5ZsDIwK7Q6RvEgbT3qX3T3Kw/HneuecZ5aOPmmmUE3E9TYgSbhFWG8s8qyo5RUfV+AqtznHHHW2U/7mWUwzt2bHDKI+p0Ot4q/l8O/dxekWXjyWkmQMdWp10hF0kujzcTjWKpeV2v34d2cXbwyzza+rh57a3QZfHBppZwlf9BXZtGl0oUmhldNuxmuSyIDfZ/P6bRtmdz32teNQo7bi8AP+tq6cda5THjWKp5jsVeqqtDW/80yhXeNh2IgnuK90meagSy1HNWUFOhBld8i2yIJJdzCdOscaU6Vw/vA5jtXDblJgP0ha9jkOkfwzkcXo+h4PrxKx6v+/qYBvtiPHY4guwZLe5uUWrExSp9kBuEvBzX0hnuM8d7NbHQbf4zJHmtYrKcJ/xe/Q1fqaN9wIHe3nO2N/K12zTtznkcvOq5pgp7LqRdvC5gyW6HN3tFW1t5DVe9eQg1wno7nYy3eOLr24zyuUBbtvUmrFanZNP4LGkNcY21Rvh51FQYEq7mGG7sWZEWkyRqrHTNL/3NPH+0D/xTBou8As1AAAAAAAAAACQBdhQAwAAAAAAAAAAWTCkku+MjOAopDnxpC6FsItIdCmxp1eiftIkQ42JCOLWGJ+vw8b1Q5v0CKVfmn68UXZ7WZbQ2MYRt0vy3Vqdf5t2llH22VkO/qd3nzfK/9uzRasTbmT5Q1fzLqPs7crj6zfrUb5dUb4fv5/vIRpg+cNl539RqxO0sQTDKqLYtji5nRZTdGKLWTcMco6x4u/vVdzv00qXwtiFfaTiLJeTkfKTpu/IkuLvnxY2KSOvRnt1u2lvYxlaexO7MyR6ObJiJqbL9Vpbuc7OnUKqVMeS7zGjK7U6l116iVGeMIH7do+INNy4f79Wx+Jmm+ruZu1TT1eIDzJFN7aLqKwyqr9V8fOwmL9atEK2OhJwuHnsiwmXhpgpeuqcU04xysfN4cjcvSmWnpHF7GPBncKS4f6gRITRtEmCWlbI/XjhV7h/7xf9eO+e3VqdllaWWecXsUQuJVyoCgr9Wp2w4ja094q+2s5lp9L7cMTJ9xMREtRwjGV14bD+3Bo72U2j4SDb+NjxE4yyI2M2HkTIHwl0R3kMj5IYSyN61ocCMe/ExXziFtHurQWlWp0uYS8VpSxDPX4aR9hv7QhpdcJh7pMeEaVbLPFImaJ8W4R7gS0t/Z24neaxQGbF6BKRlLvD4nlE9TVrOMmftXVIdyk+JmLKFJGUmSe8HA06keZld3unLl1Nps0R80Gu4XDw37W9lbOdhLpM2X9cvNYYExCfifQR1aV6hGuncIlICscHv4/7lsOuz1PJCNtuR6uwBz/PGYmeOq1OxsL7Hm8+983qYq9RLhKuHkREe/dzBqIWEVHfK1xoG3t0l6EDItJ5USG753a3sz0VBHS32z073jPK8QDXOXruhUa5zGLaH5oi+Q8X+IUaAAAAAAAAAADIAmyoAQAAAAAAAACALBhiybeIKJwaPLp0Ji3kcyJidzqdHrD84YGiKKSwEXGdfV1Nsgb9c+vbRjmWYpnO8aOq+TqmsMjRbSyfOK+cJeNqOrd59bt/1+q8l2ApXEPXZqM8Ls2RM0eP0qP5VflYWjFGZHPvdYj3M7qsoVQkkd+8Y7tRjvSy3MHh0OUg4SgkRLnOOA//jRIJlgk54nq0auXkvpESNpROsUxImVSrVmE4vVERGVhIZDpa9Mjw3Z0cUTglZIGtIoL87t17tDoNDSwN7RHRt/3+oFFecN65Wp1Z02qM8q7t7xjliJCwJ6w+rU5ISvHEzcaiLC0qNknLU0LanRJyP6eH5URSakVEFBXydpC7SK+IkIh8XT11snbcoq/+q1EOBoNGOSNciywW3cVCuiBJybdmZCZ7k65KVhG9v1JEBp8wYYJWZ/eevUZ57QsvGuUpR3Hk++mTL9PqtB7gaOBbN39glPcdYAlpR6tu1zYvS+tsDm6bjJxPaf2G3G6WHXp9bC9K2JEyyd6tVv05gtwkKiLtJsXfPWUaC1WG10ixKK+jduziNcg/n39Oq9MhMpe8E+brdIpIv2OrqrU6Bzs52nCvkJQ6hHTWZiMdMbZnRHYKaYe9JvekmJgvMxERIT/ObctY9QulhfsHCbu2CRciu1efq6wW/sxiY9uTkvOY6VnHU1iv5Topkf3B6Rbrq54e7bgSP6/XS0p5/R8TfTOe1OukhZtpfpDdh6q8Yo/QrUeG94q+2tTO7bEKu92xVc+wMvtodi1qaeB9UzDIMvFZM/TI/cFikQ2ill1Yd+7m9pSX65HBd+3m69ZUsbuHq3KcUe7o0Ocpv5vHgUAlZ01qrd9plEsmH6fVcRXqbn7DBX6hBgAAAAAAAAAAsgAbagAAAAAAAAAAIAuwoQYAAAAAAAAAALJgSH2oleZbJrT8Vn3fLn2spK+19GEz+7NZpN+KSMuRFH7GSZd+O3t7WJvf/jb7prWOZ5+Bc4+dq9Xx24QWv4l9ck4OTjHKm71jtDrvpdhfqN7G7emOsp9qU7vukxnbz/6xTuHnPK6YfRjWvbBGq5NSHE5+7CgOtz/ayn4XtSE9BVKTyX8I5B6jLey3393N9uDzhbTjfF6ROkfYR1L4jvX26j45oS72qezsYN/o3hCfO9yupxxoFSl+duxi/866g2xP8ageeyCdEj6ZSfY3zaS5/23atFOr0yLO57KzDeT52Ve8rVu/n9YutqNohMu9IvXXedVTtTo24eKpRGoT6Yce7e2VVSgWgd2MBHpEH7C6eV444+wvacdVjGKfscQgfs6Hi/QyVqagBXLeygi/axkTxHzNqir2r1608FKj7BLpEL0ePSXL2LE8/o8dP94o//XxfxjlA9t1e4t0ct/3ihgeaZE2K5XQfTjz8jhNXWEh+wHq6Yv09FwW+FCPCCxKDozSTzqsHRcJ8/zUdIDT77z/9mtGOR7T431YxTpKegnv2c9jfmOXnp4rIvqhnu6T+5fFlM4wnZb+//IzscY0pY9Li88cJOICCLdpZTUtjYUPtMXG9a3Cv9vl9mpVkinZbq6vnGzLIXPKym49jRbIPYJ+4Rsv4trEkl3acTaxJsrzsX99sUj16LHpc8GOOl7vdIbZN7lmMu8/XHl6f26pDxllh4ttelRJ0Cj7rR0kaWjmdF+VozjtVTDI9dtM68J0mu/bI1JMlgQ5BVdenm4DE8by/OH3sa1Gxfoq2q1f5/ipE41yKMrPp6NT+HqPbtDqeMumUS6AX6gBAAAAAAAAAIAswIYaAAAAAAAAAADIgiGVfGuSbSFrczoc2nGpNMvKTFlHDA6VNssu5DdKfuDSZXFOK38WEel/Xq3fYpTbkrrU89hxnG5lWnkVnzrKMosvVuoh29P1fJ2OGId8d+VxO9sP6JKoTpFaKM/K7S4V0kTl0dMwJDv5OIuD5ReqkWUiid16ePyEV3/2IPfIt7MUpifM/T5cV6sdVyrScsRtLFULdbBkprVJ//t3tXN6g1AjS2aa6jntTrOQeBMR9XaG+Lgu7rddYZYF9vTokuguIcWOxVm6lxZSwg8+2K3VkWNEIJ/vp3J0sVEuKirW6jS2siQuJNppE7ZeWKDXSR3Pba2ZItIp2Xn4a2lqlVXo1VfeNMrnzjuNQG4SiXG/m3PmPKM88wuzteOSwrVIybSNYv4wy7cHk4Nr6bQOlWpLfGYT+X7M10kl2f79frYDq6ifSusyv7hI3eIOBI3y2HEsBd+8fYusQjGRVqwrxBJAq1B5p6J6Gp8ZR7EcPVggJN9CLmyx6G1LJgdPmQlyByXWYUkh2Y6GdTeb+loet997+xWj3NbIc0gqqcu3ycJjq0O4YtiFLLo3pve1TJr7u0vIZTNC/q1MK0abuI5FSLltdr6m3+vW6iREaipxSXK4+DiLXV9LSsl3Wrg72Bx8AqddT90TD/Eazyraqex8b8qhL8HjGd2WQO5RlM99oVe4kM2coK87xohUTmVO/jv78zmdbnPbQa1Ovpf//nl5fO6WRk5TOnrMWK1OzMZrPGc+14/beG5MufR+tW8Pu14Ue7mvB4/itnV36GvJohJOddWc5vvZsHmXUR41VrfpSRP5mVgdIXFcqVF2ZfQ9Sm19rVGub+LUfL78GUb5qBOO0uqohO6mMlzgF2oAAAAAAAAAACALsKEGAAAAAAAAAACyYEgl3zKqqZS7yUjeREQJIXGTwRRl/YxJ+iLPZxU6HbeF5QIZmy4HcimW9tiFHNzq4PKWtlqtzo5Gjmo8a2y1Uf7i1KON8uyJx2p1JldyBL5ERkTzFjK/2qP0CIANe1hOUVNUYpTnTuJrukxRy1/awLKP5/76pFFu+mCHUW6L6t+RpAsCBHKbkIg67FUicnWnHgE0KaKQ5pWUG2VLiCU/qYZ6WYWaNrPss7W21ih7nHyyaeVFWh3XpBqj/NoWrrPl1Q3c5m49an0qwzaeJunSwX3YmjF9fydMvKU9xG1uZzmSlPF9WIVt3EZ8DzJY5voXX5RV6LgvfMEou4QbxR4he3/zjbe0Ov/zONvXvXf/lEBuMnkqy8DOu/BCo+zyerTjMjLirnxfyK/N89Rgkm05N5nl2/I4WZbn6ufOJPp0Ji3aICTnyvTdt5J3YeHPjjqapXCptC6/e2fTB0a5qYnHjNIgzz9VY8dpdU4/63Sj7Pez7cTiLBFOZ8wSb8hWRwJpEdE9LaJndwo3ISKiplZ2FWpr43VLLMruN+m43qetYmGnRJ+ORliambHo6xu7kEynhSzaKiJkp1J638qIviddAT0Bji7sC/i1Olax/rS7RB0Ridnu0seP/EK2kYTILBMRUnmXVZeJZxQ/t7Qcf4QbXsJkO7GUbrMg9ygMBo1yhYP/XmMDunQ5T/ydNx5kafcEJ7sW1Dfqsuq2LuF/I9w6CwsKjHJK6fJmubfpTbALayzCfbO7R1+vtbdxu0vK+XxNDXyucVN0aXlG2LiKiv1YiutEIvo8le9nabfDIsaBFLfzqNNO1upsfft9o3zMWLYbt5ev2VKvr3Mzwj3yqHOm03CBX6gBAAAAAAAAAIAswIYaAAAAAAAAAADIgiGVfEtkNMZ0Wpe1ZESE0JSIkiclcna7Ta+TlpI9EUlVysuSuuwoIz+T0j4lJT/6I0haOCLw+w0cYa6xhROJ1xSN1urMnsSyw0CAZUMWxdef5MzX6nzhWI6e6nWKKHuFXL+lTZde/c/fnzLKb77D8lurkCCmnHpidUsGEqJcZ/Xf1hjlfzn/TKPscep9M1zPkn9rB0elDvr4b27z69+RuSeUGeWuIPctt5tlR96gLvl+XbgQrHvtDaPcFmKZjjLJ9aQUW7M7iov3dfuUslVpxzYrS/+sdIgo9UJGK6WyO02R7n/z298b5aOPe4evI2z/uTXPanUO7q8b/LogZ/jS+Zca5ZICHpcTYX3cs1kHll8PVibSo3xrLkeDvG/+TMrBBysTEVkt3DarnLKEuVhtul3bhO2kxfhfIlxBzvrS2VqdWbOPN8pxEYk/mB80ym6XHhHZJmS0iYSI3i/k8Zl+snd8Tz8SUBb+u8mI8tGYLg/t6eVx3yncC1LSX8+q24F0V7CIz2yijpRyExFZ7DISNpfTcm4wSbGdQhZrFZG5M2JNZRHybyKifBfPLx43l0OhENcx2bWMDN7dyxLZlHDfsJjma5uQ9pKN78Hp4feV0q8TFs8a5CZB0QXDnSKSu1PPyuP38LqqzMm2Fu3hrCwOU59JC3eC7mZ2+YvFuA/H4+1aHbLxnsXhFPukCJ/7YIPer8aN43nCL6TUtTt53TPz2Mlanc5udluNdPH4/6V5LNnetP0DrU55Kbfh3XdY9t7cxO4ilaNbtDpzvshZVTpb9hllh5P3Q7akPkbZlO7WMVxg5gMAAAAAAAAAALIAG2oAAAAAAAAAACALsKEGAAAAAAAAAACyYEh9qBNJ1tWnhM9JRqSvItL9BGTKEOmKpXtl6T7Zyi4dzbicVnpKhVSa64TT4po29nuxJ3VfbZvwEUpa+HyNUfYfaK/XU2C9d2CnUZYeMfG4CE3vLNTqnHfMGUa50Mn6/91vsc/Aho0btDrvb+UUSNJnVeWJdBNu/U9qdeI7k1ynNcr9JOPnfuKy6f5VlhT76/RE2AfF5uD+7MzXfSAr8tivtLhMpD1Qwr+mQ/dHWfO/7GfcrPlNc3uUOZ2VRfpQizYLR1BF5vQ6sm8Kv2klfOtMvto0iC+qVaQsSZou8+rrbxvljSKNWGExp6Joa2vV6vjcueGTAw5NzUROWShT00ifaaL+PpF9SJ9nMzKmx2C+0eb6MqWWTI8l/Yrt9sH7tFX6VMommyZEeT8OG58vI+/Tql9nVEXFgO0cbA7+v5ZzKSPPxzZqTullNfvTgtxE9mnRP7sjur+lQ3xmSYn0cUmZitSUrlOkyEmLucEuYry4PXpcGS0lloxz45DpqPQO6nazQ6sryH6mLpECq7SkQqsjfbedDu7T+QUcb8Ri0e8nkeD2JOJinSvigsTj+sSjHCKlqxJ1ksLe7fr9JGNxArlNsJD7U0mQ1wn5pM85XtG/S0RKrR4xL1SVlWh12kKcai3u5r4xpoD3L2Wletqs9m62m/FjuD0HG9gHu8ivty2Qx23r7uLzNXZz/4uldRuIiXFhby3HqRk9YbxRPvX4KVqd3h7eK+0/wHVSbWwPB9/eotUJnMa+57EI1y8sncAHmVLU9Tbpz2S4wG4LAAAAAAAAAADIAmyoAQAAAAAAAACALLAocw4PAAAAAAAAAAAAfCT4hRoAAAAAAAAAAMgCbKgBAAAAAAAAAIAswIYaAAAAAAAAAADIAmyoAQAAAAAAAACALMCGGgAAAAAAAAAAyAJsqAEAAAAAAAAAgCzAhhoAAAAAAAAAAMgCbKgBAAAAAAAAAIAswIYaAAAAAAAAAADIAmyoAQAAAAAAAACALMCGGgAAAAAAAAAAyAJsqAEAAAAAAAAAgCzAhhoAAAAAAAAAAMgCbKgBAAAAAAAAAIAswIYaAAAAAAAAAADIAmyoAQAAAAAAAACALMCGGgAAAAAAAAAAyAJsqAEAAAAAAAAAgCzAhhoAAAAAAAAAAMgCbKgBAAAAAAAAAIAswIYaAAAAAAAAAADIAmyoAQAAAAAAAACALMCGGgAAAAAAAAAAyAJsqAEAAAAAAAAAgCzAhhoAAAAAAAAAAMgCbKgBAAAAAAAAAIAswIYaAAAAAAAAAADIAmyoAQAAAAAAAACALMCGGgAAAAAAAAAAyAJsqAEAAAAAAAAAgCzAhhoAAAAAAAAAAMgCbKgBAAAAAAAAAIAswIYaAAAAAAAAAADIAmyoAQAAAAAAAACALMCGGgAAAAAAAAAAyAJsqAEAAAAAAAAAgCzAhhoAAAAAAAAAAMgCbKgBAAAAAAAAAIAswIYaAAAAAAAAAADIAmyoAQAAAAAAAACALMCGGgAAAAAAAAAAyAJsqAEAAAAAAAAAgCzAhhoAAAAAAAAAAMgCbKgBAAAAAAAAAIAswIYaADBkLFmyhKqqqkbMeQEAAIChoKqqis4///zhbgYAYBgY8g21xWI5rH/r168f6ksPCRaLhW644YYBP3v44YfJYrHQO++88xm3CoxkRrpN9BEKhcjtdpPFYqFt27YNd3MAGJSRbnOyjXa7nQoLC2n27Nm0dOlS2rp163A3DxxhjFR7WbJkyWG1e8mSJcPdVPA5YqTaUx+Yf7LDPtQnfOSRR7TXf/zjH2nt2rX93p86depQXxqAnORIsYnHHnuMLBYLlZeX06pVq+hnP/tZv2N+97vfUSaTGYbWAcAcCTY3b948uvLKK0kpRV1dXbRx40ZasWIF/fa3v6W77rqL/v3f/324mwiOEEaqvVx33XV01llnGa/37dtHP/rRj+jaa6+lU045xXi/urp6OJoHPqeMVHuSYP7JAvUpc/3116vDuUxvb++n3ZTDgojU9ddfP+BnDz30kCIi9fbbbw/JtcLh8JCcB4wsRppN9HHqqaeqL3/5y+pb3/qWGj9+fNbnSSaTKh6Pf6w6ixcvVpWVlVlfE3y+GWk2N9g81NbWpubMmaOISD399NOfebty5fmAT5eRZi99vP3224qI1EMPPXTI4z6ttVdlZaU677zzPpVzg5HLSLOnXJ1/cp1h8aE+/fTTacaMGfTuu+/SqaeeSl6vl77//e8T0YdSg9tvv71fnaqqqn6ynVAoRDfffDONHTuWXC4X1dTU0F133dXvF7LGxkbavn07JZPJT+V+XnzxRTrllFPI5/NRMBikCy+8sJ8k9vbbbyeLxUJbt26lyy+/nAoKCujkk08mIqKmpia66qqraMyYMeRyuaiiooIuvPBCqq2t1c7x7LPPGtfx+/103nnn0ZYtWz6VewKfLbluE/X19fTyyy/TwoULaeHChbRv3z567bXX+h1n9nWura0li8VC99xzDy1btoyqq6vJ5XLR1q1baf369WSxWOgvf/kLff/736fy8nLy+Xy0YMEC2r9//0e26Z577qGTTjqJioqKyOPx0OzZs+nxxx/vd1yfG8fq1atpxowZ5HK5aPr06fTcc8/1O/bAgQP0b//2b1RWVmYc94c//OGwnhEYWeS6zQ1EUVERPfroo2S32+nnP/+59lk8HqfbbruNampqyOVy0dixY+k73/kOxePxfudZuXIlzZ49mzweDxUWFtLChQv72dyhng/4/DES7YWIXfVeeukl+uY3v0mlpaU0ZswYIho8Nkffes3MypUr6fjjjyev10sFBQV06qmn0vPPP3/I669YsYLsdjt9+9vf/kT3AY4sRqI9HWr+aWlpoauvvprKysrI7XbT0UcfTStWrOh3jvb2drriiisoEAhQMBikxYsX08aNG8lisdDDDz+cddtygSGXfB8u7e3tdM4559DChQvpq1/9KpWVlX2s+pFIhE477TQ6cOAAXXfddTRu3Dh67bXX6NZbb6XGxkZatmyZceytt95KK1asoH379h1WYKNYLEZtbW393g+Hw/3ee+GFF+icc86hCRMm0O23307RaJSWL19Oc+fOpffee6/f9b7yla/QxIkT6Y477iClFBERXXLJJbRlyxa68cYbqaqqilpaWmjt2rVUX19v1H/kkUdo8eLFNH/+fLrrrrsoEonQ/fffTyeffDJt2LABAZuOAHLZJv785z+Tz+ej888/nzweD1VXV9OqVavopJNOOqy2PfTQQxSLxejaa68ll8tFhYWFFAqFiIjo5z//OVksFvrud79LLS0ttGzZMjrrrLPo/fffJ4/HM+g5f/3rX9OCBQvoX//1XymRSNCjjz5KX/nKV+ipp56i8847Tzv2lVdeob/97W/0zW9+k/x+P/3Xf/0XXXLJJVRfX09FRUVERNTc3EwnnniisQEvKSmhZ599lq6++mrq7u6mm2+++bDuFYwcctnmBmPcuHF02mmn0bp166i7u5sCgQBlMhlasGABvfLKK3TttdfS1KlT6YMPPqD/7//7/2jnzp20evVqo/7Pf/5z+uEPf0iXXXYZfe1rX6PW1lZavnw5nXrqqbRhwwYKBoND9nzAkcVItJc+vvnNb1JJSQn96Ec/ot7e3o9d/8c//jHdfvvtdNJJJ9FPfvITcjqd9Oabb9KLL75IX/rSlwas8+CDD9LXv/51+v73vz+gixT4fDMS7Wmg+ScajdLpp59Ou3fvphtuuIHGjx9Pjz32GC1ZsoRCoRAtXbqUiIgymQxdcMEF9NZbb9E3vvENmjJlCv3jH/+gxYsXZ92enOLT/gl8IKnDaaedpohI/fd//3e/44lI3Xbbbf3er6ysVIsXLzZe//SnP1U+n0/t3LlTO+573/uestlsqr6+3nhv8eLFiojUvn37PrK9RPSR/6Tke9asWaq0tFS1t7cb723cuFFZrVZ15ZVXGu/ddtttiojUokWLtOt1dnYqIlJ33333oG3q6elRwWBQXXPNNdr7TU1NKj8/v9/7ILcZaTahlFJHHXWU+td//Vfj9fe//31VXFysksmkdpxZmr1v3z5FRCoQCKiWlhbt2HXr1ikiUqNHj1bd3d3G+3/9618VEalf//rXg55XKaUikYj2OpFIqBkzZqgzzjhDe5+IlNPpVLt37zbe27hxoyIitXz5cuO9q6++WlVUVKi2tjat/sKFC1V+fn6/64GRw0izOTqE65FSSi1dulQRkdq4caNSSqlHHnlEWa1W9fLLL2vH/fd//7ciIvXqq68qpZSqra1VNptN/fznP9eO++CDD5TdbtfeP9TzAUc2I81e+hhI8t3nqnfyySerVCqlHT+YK1Hfeq2PXbt2KavVqi6++GKVTqe1YzOZjHa/fZLvX//618pisaif/vSnh91+cGQy0uzp484/y5YtU0SkVq5caRyTSCTUnDlzVF5enrG+e+KJJxQRqWXLlhnHpdNpdcYZZxyWq0auM2xps1wuF1111VVZ13/sscfolFNOoYKCAmprazP+nXXWWZROp+l///d/jWMffvhhUkod9rcyF154Ia1du7bfP7Nkp7Gxkd5//31asmQJFRYWGu/PnDmT5s2bR88880y/c3/961/XXns8HnI6nbR+/Xrq7OwcsD1r166lUChEixYt0u7VZrPRCSecQOvWrTus+wK5Ta7axKZNm+iDDz6gRYsWGe/19cU1a9YcVtsuueQSKikpGfCzK6+8kvx+v/H60ksvpYqKigHtRyJ/ve7s7KSuri465ZRT6L333ut37FlnnaUFppk5cyYFAgHau3cvEREppeiJJ56gCy64gJRS2vObP38+dXV1DXheMLLJVZv7KPLy8oiIqKenx2jH1KlTacqUKVo7zjjjDCIiY47429/+RplMhi677DLtuPLycpo4cWK/ueSTPh9wZDFS7YWI6JprriGbzZZV3dWrV1Mmk6Ef/ehHZLXqy+aBpOG//OUvaenSpXTXXXfRf/7nf2Z1TXDkM1LtyTz/PPPMM1ReXq6tER0OB910000UDofppZdeIiKi5557jhwOB11zzTXGcVarla6//vpP3KZcYNgk36NHjyan05l1/V27dtGmTZsGXaS3tLRkfe4xY8ZokSP7aGho0F7X1dUREdHkyZP7HTt16lRas2YN9fb2ks/nM94fP368dpzL5aK77rqLbrnlFiorK6MTTzyRzj//fLryyiupvLyciD68VyIyFkdmAoHAx7g7kKvkqk2sXLmSfD4fTZgwgXbv3k1ERG63m6qqqmjVqlX95NUDYe73kokTJ2qvLRYL1dTU9IshYOapp56in/3sZ/T+++9rfqIDLXDGjRvX772CggLjS6zW1lYKhUL04IMP0oMPPjjg9T7JmAJyk1y1uY+iz/2o74uoXbt20bZt2z6yHbt27SKlVD+b68PhcGivP+nzAUcWI9VeiA49B30Ue/bsIavVStOmTfvIY1966SV6+umn6bvf/S78psEhGan2ZJ5/6urqaOLEif2+bOqLYt63V6qrq6OKigryer3acTU1NZ9KOz9rhm1DfSjfyIFIp9Pa60wmQ/PmzaPvfOc7Ax4/adKkrNv2aTLQfd988810wQUX0OrVq2nNmjX0wx/+kO6880568cUX6ZhjjjGCCzzyyCPGJltitw/bnxEMIbloE0op+vOf/0y9vb0DLiZaWlooHA4b31gOxse9t4/i5ZdfpgULFtCpp55Kv/3tb6miooIcDgc99NBD9Kc//anf8YP9MqH+L45Bn4199atfHdSfZ+bMmUPUepAr5KLNHQ6bN28mm81mbBIymQwdddRR9Ktf/WrA48eOHWscZ7FY6Nlnnx3QJsx2PNR2C0Y2I9VeiAZu+0BfvhL1b/fHYfr06RQKheiRRx6h66677hNt5MGRzUi1J/P8Az4k53ZiBQUFRrCiPhKJBDU2NmrvVVdXUzgcHvCX5M+KyspKIiLasWNHv8+2b99OxcXF2q/Th6K6uppuueUWuuWWW2jXrl00a9Ysuvfee2nlypWGVLW0tHRY7xcMD8NpEy+99BI1NDTQT37yk345Ezs7O+naa6+l1atX01e/+tWsr9GnwOhDKUW7d+8+5Ab2iSeeILfbTWvWrCGXy2W8/9BDD2XVhpKSEvL7/ZROp2FjIKfnofr6enrppZdozpw5xi8E1dXVtHHjRjrzzDMH3ST0HaeUovHjx+fsl85g5JHL9nIoBmo3Ef+i1kd1dTVlMhnaunUrzZo165DnLC4upscff5xOPvlkOvPMM+mVV16hUaNGDWGrwZFOLtvTQPNPZWUlbdq0iTKZjPYr9fbt243P+/5ft24dRSIR7VfqPuXjSGfYfKgHo7q6WtP9E30YKdH8zcxll11Gr7/++oA+nKFQiFKplPH600qbVVFRQbNmzaIVK1ZonX/z5s30/PPP07nnnvuR54hEIhSLxbT3qqurye/3GzLW+fPnUyAQoDvuuGPAe2htbf1kNwJymuG0iT6597e//W269NJLtX/XXHMNTZw4kVatWvUJ7o7oj3/8o+GLQ0T0+OOPU2NjI51zzjmD1rHZbGSxWLRnUFtbq0Uz/jjYbDa65JJL6IknnqDNmzf3+xw29vkiV+ehjo4OWrRoEaXTafrBD36gtePAgQP0u9/9rl+daDRqRDX+8pe/TDabjX784x8b6ow+lFLU3t6eddvA55dctZePorq6mrq6umjTpk3adf/+979rx1100UVktVrpJz/5Sb90RGY7IvrQbfCFF16gaDRK8+bNg12Bj0Wu2tNg88+5555LTU1N9Je//MV4L5VK0fLlyykvL49OO+00IvpwL5NMJrV5KpPJ0G9+85us25RL5Nwv1F/72tfo61//Ol1yySU0b9482rhxI61Zs4aKi4u147797W/Tk08+Seeffz4tWbKEZs+eTb29vfTBBx/Q448/TrW1tUadoU6/ILn77rvpnHPOoTlz5tDVV19tpM3Kz88fMI+cmZ07d9KZZ55Jl112GU2bNo3sdjv9/e9/p+bmZlq4cCERfegjff/999MVV1xBxx57LC1cuJBKSkqovr6enn76aZo7dy7dd999Q3pfIHcYLpuIx+P0xBNP0Lx588jtdg94zIIFC+jXv/41tbS0UGlpaVb3V1hYSCeffDJdddVV1NzcTMuWLaOamhotcIWZ8847j371q1/R2WefTZdffjm1tLTQb37zG6qpqdEWRx+HX/ziF7Ru3To64YQT6JprrqFp06ZRR0cHvffee/TCCy9QR0dHVucFI49cmId27txJK1euJKUUdXd308aNG+mxxx6jcDhs9P0+rrjiCvrrX/9KX//612ndunU0d+5cSqfTtH37dvrrX/9Ka9asoeOOO46qq6vpZz/7Gd16661UW1tLF110Efn9ftq3bx/9/e9/p2uvvZb+4z/+Y0ifJTjyyQV7yYaFCxfSd7/7Xbr44ovppptuMtKRTpo0SQtCWVNTQz/4wQ/opz/9KZ1yyin05S9/mVwuF7399ts0atQouvPOO/udu6amhp5//nk6/fTTaf78+fTiiy8i3g04LHLBnj7O/HPttdfSAw88QEuWLKF3332Xqqqq6PHHH6dXX32Vli1bZvySfdFFF9Hxxx9Pt9xyC+3evZumTJlCTz75pLG2OpS6akTwaYcRHyxc/PTp0wc8Pp1Oq+9+97uquLhYeb1eNX/+fLV79+5+4eKV+jCd1K233qpqamqU0+lUxcXF6qSTTlL33HOPSiQSxnFDFS6+L/2CTJullFIvvPCCmjt3rvJ4PCoQCKgLLrhAbd26VTumLw1Da2ur9n5bW5u6/vrr1ZQpU5TP51P5+fnqhBNOUH/961/7XX/dunVq/vz5Kj8/X7ndblVdXa2WLFmi3nnnnY+8L5A7jBSb6Etx8Pvf/37QY9avX6+luBosbdZAaeH60mb9+c9/VrfeeqsqLS1VHo9HnXfeeaqurk47dqD0Jr///e/VxIkTlcvlUlOmTFEPPfRQv3QnSg1u0wM9v+bmZnX99dersWPHKofDocrLy9WZZ56pHnzwwUGfAch9RorN9UEiTaPValXBYFAdc8wxaunSpWrLli0D1kkkEuquu+5S06dPVy6XSxUUFKjZs2erH//4x6qrq0s79oknnlAnn3yy8vl8yufzqSlTpqjrr79e7dix47CeDziyGWn20seh0maZ1219PP/882rGjBnK6XSqyZMnq5UrVw44jyil1B/+8Ad1zDHHGPZ12mmnqbVr1xqfy7RZfbz55pvK7/erU089FakXP6eMNHvKZv5pbm5WV111lSouLlZOp1MdddRRA6bBam1tVZdffrny+/0qPz9fLVmyRL366quKiNSjjz76kW3LZSxKDaBXAQCAT5n169fTF7/4RXrsscfo0ksvHe7mAAAAAACAz5DVq1fTxRdfTK+88grNnTt3uJuTNTnnQw0AAAAAAAAA4MghGo1qr9PpNC1fvpwCgQAde+yxw9SqoSHnfKgBAAAAAAAAABw53HjjjRSNRmnOnDkUj8fpb3/7G7322mt0xx13jPg0jdhQAwAAAAAAAAD41DjjjDPo3nvvpaeeeopisRjV1NTQ8uXL6YYbbhjupn1i4EMNAAAAAAAAAABkAXyoAQAAAAAAAACALBixG+qqqipasmSJ8Xr9+vVksVho/fr1w9YmAIaLkWwPS5Ys+VTyjH5a5wWAaGTbHADDAWxmYKqqquj8888f7maAEQBsKHfJakP98MMPk8ViMf653W6aNGkS3XDDDdTc3DzUbfxUeeaZZ+j222//xOexWCyD+gD0Pa933nnnE18H5B6wh8EJhULkdrvJYrHQtm3bhuy84PMNbK4/8nnY7XYqLCyk2bNn09KlS2nr1q2fvKFgRAObYZYsWaI9i8H+yY0LALCh/mDeYT5RULKf/OQnNH78eIrFYvTKK6/Q/fffT8888wxt3ryZvF7vULXxsDj11FMp+v+39+ZxdtRV3v+pqlt37dv7kn3rhAQCMYCIkBBQwMiuiPyCIsgo4MhPcUYdH/ERN5BhxkdhkMEHH0UewIV9nlGRRQICM8MDQwhLAlnIvnR30vvtu1XV9/mDSZ1zqvs2zaUhHfi8X69+vU7fW6eWe79b3fqcc/J5isfjb8rvj3/8I914443jehMB3pugPwznrrvuIsuyaNKkSXTHHXfQVVddNWybn//85xQEwbgcD7y3QJ/TnHzyyXTBBReQMYb6+vpo9erVdOutt9I///M/07XXXkt/+7d/+5aPAQ5s0GeILr30UjrppJPC/zdt2kRXXnklXXLJJXTccceFr7e3t1e1f/DuBn1Ig3nndd7SDfUpp5xC73//+4mI6POf/zw1NTXRj3/8Y/qXf/kXOu+880b0yeVylMlk3sphR8S2bUomk+O+34nI2/UZgrcG+sNwbr/9djr11FNp5syZ9Otf/3rEG2rXdd9wP57nURAEb3rSAO9u0Oc0Bx10EJ1//vnqtb//+7+nM844g7761a/SggUL6NRTT31Hz2loaOgdX2SCyqDPEB1zzDF0zDHHhP8/++yzdOWVV9IxxxwzrP9IsPYCROhDUTDvvM64xlB/+MMfJqLXf+0jel1WU1NTQxs3bqRTTz2VstksffrTnyYioiAI6LrrrqOFCxdSMpmktrY2uvTSS6mnp0ft0xhDV111FU2bNo3S6TR96EMfopdffnnYsSvFETz99NN06qmnUkNDA2UyGVq0aBFdf/314fndeOONRKRlC/vYtWsXvfLKK1Qul8fnA4rw6KOP0nHHHUeZTIbq6+vprLPOGiaL/e53v0uWZdGaNWvoU5/6FDU0NNDSpUuJiGj37t100UUX0bRp0yiRSNDkyZPprLPOos2bN6t9PPDAA+FxstksnXbaaSN+hmB8ea/3h61bt9ITTzxBK1asoBUrVtCmTZvo3/7t34ZtF4113rx5M1mWRT/60Y/ouuuuo/b2dkokErRmzZrwun73u9/RFVdcQZMmTaJMJkNnnnkmbdu27Q3P6Uc/+hEde+yx1NTURKlUio488ki6++67h223L4Tj/vvvp0MPPZQSiQQtXLiQ/vSnPw3bdseOHfRXf/VX1NbWFm73y1/+ckyfERhf3ut9biSamprot7/9LcViMbr66qvVe8Vikb7zne/Q3LlzKZFI0PTp0+nv/u7vqFgsDtvP7bffTkceeSSlUilqbGykFStWDOtzJ5xwAh166KH0n//5n7Rs2TJKp9N0xRVXVH3u4O0HfWZk9sl7H3/8cfriF79Ira2tNG3atPAcRsrPsW+9FuX222+nD3zgA5ROp6mhoYGWLVtGDz300KjHv/XWWykWi9HXv/71t3Qd4O0HfWg478V5Z1zrUG/cuJGIXv8g9+F5Hi1fvpyWLl1KP/rRj8JfDC699FL61a9+RRdddBF9+ctfpk2bNtFPf/pTWrVqFT311FPhU6srr7ySrrrqKjr11FPp1FNPpeeee44+8pGPUKlUesPzefjhh+n000+nyZMn0+WXX06TJk2itWvX0u9//3u6/PLL6dJLL6WdO3fSww8/TLfddtsw/29+85t066230qZNm8aU3KhQKNCePXuGvT44ODjstUceeYROOeUUmjNnDn33u9+lfD5PN9xwAy1ZsoSee+65Ycf75Cc/SfPmzaMf/vCHtK/S2Sc+8Ql6+eWX6Utf+hLNmjWLOjs76eGHH6atW7eG/rfddhtdeOGFtHz5crr22mtpaGiIbrrpJlq6dCmtWrUKSZveRt7r/eE3v/kNZTIZOv300ymVSlF7ezvdcccddOyxx47l46NbbrmFCoUCXXLJJZRIJKixsZF6e3uJiOjqq68my7LoG9/4BnV2dtJ1111HJ510Ej3//POUSqUq7vP666+nM888kz796U9TqVSi3/72t/TJT36Sfv/739Npp52mtn3yySfp3nvvpS9+8YuUzWbpn/7pn+gTn/gEbd26NfxOOzo66IMf/GB4A97S0kIPPPAAfe5zn6P+/n76yle+MqZrBePDe73PVWLGjBl0/PHH08qVK6m/v59qa2spCAI688wz6cknn6RLLrmEDj74YHrxxRfpJz/5Ca1bt47uv//+0P/qq6+mb3/723TuuefS5z//eerq6qIbbriBli1bRqtWraL6+vpw271799Ipp5xCK1asoPPPP5/a2tqqPm/w9oM+Mzpf/OIXqaWlha688krK5XJv2v973/seffe736Vjjz2Wvv/971M8Hqenn36aHn30UfrIRz4yos/NN99MX/jCF+iKK64YUdUFJhboQyPznpt3TBXccssthojMI488Yrq6usy2bdvMb3/7W9PU1GRSqZTZvn27McaYCy+80BCR+W//7b8p/yeeeMIQkbnjjjvU63/605/U652dnSYej5vTTjvNBEEQbnfFFVcYIjIXXnhh+NrKlSsNEZmVK1caY4zxPM/Mnj3bzJw50/T09KjjyH1ddtllptLHsO/8N23a9IafCRG94d8zzzwTbr948WLT2tpq9u7dG762evVqY9u2ueCCC8LXvvOd7xgiMuedd546Xk9PjyEi84//+I8Vz2lgYMDU19ebiy++WL2+e/duU1dXN+x1UB3oDyNz2GGHmU9/+tPqPJubm025XB6235kzZ4b/b9q0yRCRqa2tNZ2dnWrbfdc1depU09/fH75+5513GiIy119/fcX9GmPM0NCQ+r9UKplDDz3UfPjDH1avE5GJx+Nmw4YN4WurV682RGRuuOGG8LXPfe5zZvLkyWbPnj3Kf8WKFaaurm7Y8cD4gD43HCIyl112WcX3L7/8ckNEZvXq1cYYY2677TZj27Z54okn1HY/+9nPDBGZp556yhhjzObNm43jOObqq69W27344osmFoup148//nhDROZnP/vZG54veGdBn6nMM888Y4jI3HLLLeFr+z6vpUuXGs/zhh0jOrcYw+u1faxfv97Ytm0+/vGPG9/3K17PzJkzzWmnnWaMMeb66683lmWZH/zgB2M+f/DOgD40HMw7zFuSfJ900knU0tJC06dPpxUrVlBNTQ3dd999NHXqVLXdX//1X6v/77rrLqqrq6OTTz6Z9uzZE/4deeSRVFNTQytXriSi15/ilkol+tKXvqTkCGN56rNq1SratGkTfeUrX1G/YhDRiJKckfjVr35Fxpgx/0Jz1lln0cMPPzzsLyrZ2bVrFz3//PP02c9+lhobG8PXFy1aRCeffDL98Y9/HLbvL3zhC+r/VCpF8XicHnvssWFSkX08/PDD1NvbS+edd576nB3HoaOPPjr8nMH4gP7AvPDCC/Tiiy+qeKJ97fDBBx8c0/E+8YlPUEtLy4jvXXDBBZTNZsP/zznnHJo8efKIfUcin1739PRQX18fHXfccfTcc88N2/akk05SSWkWLVpEtbW19NprrxHR65Kse+65h8444wwyxqjvbvny5dTX1zfifsH4gT43dmpqaoiIaGBggIhe/wwOPvhgWrBggfoM9skX930G9957LwVBQOeee67abtKkSTRv3rxh80gikaCLLrroLZ8veHtAn3lzXHzxxeQ4TlW+999/PwVBQFdeeSXZtl5uj3Q9//AP/0CXX345XXvttfTf//t/r+qY4O0HfWjsvJfmnbck+b7xxhvpoIMOolgsRm1tbTR//vxhg0YsFgvjTvaxfv166uvro9bW1hH329nZSUREW7ZsISKiefPmqfdbWlqooaFh1HPbJ8E49NBDx35Bb5Fp06apzJH72L59u/p/33XNnz9/2LYHH3wwPfjgg8MSGMyePVttl0gk6Nprr6WvfvWr1NbWRh/84Afp9NNPpwsuuIAmTZpERK9/zkQc3xGltrb2TVwdeCPQH5jbb7+dMpkMzZkzhzZs2EBERMlkkmbNmkV33HHHMHn1SETbvCT6GViWRXPnzh2WPyDK73//e7rqqqvo+eefV/E6I000M2bMGPZaQ0ND+ANWV1cX9WZbckIAAFHkSURBVPb20s0330w333zziMfb992Btwf0ubGzL/Ro3w9R69evp7Vr11b80WrfZ7B+/Xoyxgz7DPYRTSo4depUJA+cwKDPvDlGm4feiI0bN5Jt23TIIYe84baPP/44/eEPf6BvfOMbiJue4KAPjZ330rzzlm6oP/CBD4SZ7iqRSCSGNbQgCKi1tZXuuOOOEX0qfdDvZUaKC/3KV75CZ5xxBt1///304IMP0re//W265ppr6NFHH6XDDz88LEV02223hTfZklhsXEPo3/OgP7yOMYZ+85vfUC6XG3Eh0dnZSYODg+Evl5UYLRa6Gp544gk688wzadmyZfTP//zPNHnyZHJdl2655Rb69a9/PWz7Sk8lzH/lMNjXv84//3y68MILR9x20aJF43T2YCTQ58bOSy+9RI7jhDcIQRDQYYcdRj/+8Y9H3H769OnhdpZl0QMPPDBin4j24/Hut2B8QZ95c4zUnis96fN9v+rjLFy4kHp7e+m2226jSy+99C3dyIO3F/ShsfNemnf2yx1Ve3s7PfLII7RkyZJRP4SZM2cS0eu/VMyZMyd8vaurq6LMWR6D6PUvc6SnxvsYqwRiPNl3Xa+++uqw91555RVqbm4ec3r99vZ2+upXv0pf/epXaf369bR48WL6H//jf9Dtt98efgatra2jfgZg//Ju6w+PP/44bd++nb7//e/TwQcfrN7r6emhSy65hO6///5Ry5O8EfvUF/swxtCGDRtGvYG95557KJlM0oMPPkiJRCJ8/ZZbbqnqHFpaWiibzZLv++hfBxjvtj73RmzdupUef/xxOuaYY8InBe3t7bR69Wo68cQTRz2H9vZ2MsbQ7Nmz6aCDDnrbzxVMTN5rfWY0GhoawgSZkn1PFvfR3t5OQRDQmjVraPHixaPus7m5me6++25aunQpnXjiifTkk0/SlClTxvGswf7mvdaH3mvzzriWzRor5557Lvm+Tz/4wQ+Gved5XjhQnXTSSeS6Lt1www3hUyEiouuuu+4Nj3HEEUfQ7Nmz6brrrhs28Ml97btxHWlwfLvKZk2ePJkWL15Mt956qzruSy+9RA899NCY6rUNDQ1RoVBQr7W3t1M2mw2lrMuXL6fa2lr64Q9/OOI1dHV1vbULAePCu60/7JN7f/3rX6dzzjlH/V188cU0b968ir/QjpX//b//dxiTQ0R09913065du+iUU06p6OM4DlmWpZ4ibN68WWWVfDM4jkOf+MQn6J577qGXXnpp2PvoXxOXd1ufG43u7m4677zzyPd9+ta3vhW+fu6559KOHTvo5z//+TCffD4fZjQ+++yzyXEc+t73vqfOe9917N27t+pzAwcO76U+80a0t7dTX18fvfDCC+q49913n9ruYx/7GNm2Td///vdDRdM+on2J6PWwwUceeYTy+TydfPLJ6FvvMt5Lfei9OO/slyfUxx9/PF166aV0zTXX0PPPP08f+chHyHVdWr9+Pd111110/fXX0znnnEMtLS30ta99ja655ho6/fTT6dRTT6VVq1bRAw88QM3NzaMew7Ztuummm+iMM86gxYsX00UXXUSTJ0+mV155hV5++eUwMdKRRx5JRERf/vKXafny5eQ4Dq1YsYKIxr/8guQf//Ef6ZRTTqFjjjmGPve5z4Vls+rq6ui73/3uG/qvW7eOTjzxRDr33HPpkEMOoVgsRvfddx91dHSE519bW0s33XQTfeYzn6EjjjiCVqxYQS0tLbR161b6wx/+QEuWLKGf/vSn43pd4M3zbuoPxWKR7rnnHjr55JMpmUyOuM2ZZ55J119/PXV2dlaMJXojGhsbaenSpXTRRRdRR0cHXXfddTR37ly6+OKLK/qcdtpp9OMf/5g++tGP0qc+9Snq7OykG2+8kebOnasWRm+Gv//7v6eVK1fS0UcfTRdffDEdcsgh1N3dTc899xw98sgj1N3dXdV+wdvLu6nPSdatW0e33347GWOov7+fVq9eTXfddRcNDg6GbX8fn/nMZ+jOO++kL3zhC7Ry5UpasmQJ+b5Pr7zyCt1555304IMP0vvf/35qb2+nq666ir75zW/S5s2b6WMf+xhls1natGkT3XfffXTJJZfQ1772tSq/CXCg8G7tM9WwYsUK+sY3vkEf//jH6ctf/nJYjvSggw5SiSjnzp1L3/rWt+gHP/gBHXfccXT22WdTIpGgZ555hqZMmULXXHPNsH3PnTuXHnroITrhhBNo+fLl9OijjyLfzbuEd2sfwrzzX1STGnxf6nhZBmokLrzwQpPJZCq+f/PNN5sjjzzSpFIpk81mzWGHHWb+7u/+zuzcuTPcxvd9873vfc9MnjzZpFIpc8IJJ5iXXnrJzJw5c9TU8ft48sknzcknn2yy2azJZDJm0aJFquyN53nmS1/6kmlpaTGWZak08uOVOr7S5/XII4+YJUuWmFQqZWpra80ZZ5xh1qxZo7bZV4ahq6tLvb5nzx5z2WWXmQULFphMJmPq6urM0Ucfbe68885hx1+5cqVZvny5qaurM8lk0rS3t5vPfvaz5tlnn33D6wJvDPoDc8899xgiMr/4xS8qbvPYY4+pEleVymaNVBJu33X95je/Md/85jdNa2urSaVS5rTTTjNbtmxR245U2uQXv/iFmTdvnkkkEmbBggXmlltuGVbqxJjK/Tn6ORtjTEdHh7nsssvM9OnTjeu6ZtKkSebEE080N998c8XPALw10OeGQ6JEo23bpr6+3hx++OHm8ssvNy+//PKIPqVSyVx77bVm4cKFJpFImIaGBnPkkUea733ve6avr09te88995ilS5eaTCZjMpmMWbBggbnsssvMq6++Gm5z/PHHm4ULF77huYJ3HvSZyoxWNqvS5/XQQw+ZQw891MTjcTN//nxz++23jziXGGPML3/5S3P44YeHfez44483Dz/8cPi+LJu1j6efftpks1mzbNkylF+cIKAPDQfzDmMZM4LuBAAAJiCPPfYYfehDH6K77rqLzjnnnP19OgAAAAAA4D3OfomhBgAAAAAAAAAADnRwQw0AAAAAAAAAAFQBbqgBAAAAAAAAAIAqQAw1AAAAAAAAAABQBXhCDQAAAAAAAAAAVAFuqAEAAAAAAAAAgCrADTUAAAAAAAAAAFAFuKEGAAAAAAAAAACqIDaeOzv8iMNDu6GpKbSbWprVdsm6ZGjbrh/ajXUNoV1f06p8Tl9+emgvOGRBaMuMalag86sNDA6E9uDQEPsEAb+eyymfwSH+P5dnnwGxXU9vr/JpaWgM7VmTpoa2X/ZC23Yd5eOLcyiWSqEdj8dDO+ZoHzfGX9ezzz4T2rfc8gs+/4EB5eOJc3jhhZcJTDwKPrczz/MqbmeRFdq2sFUvsHySyJyDgfj9zJgK/kRkWZbYbjxzFlqR/9/8vuVnoL3Hti95bco7cp2u64Z20kmP9fTAO8zcZZ8Kbdvl8dGO6aktEU+EdiqVDe1knO10qkH5ZNKZ0DaG+5Xne+J13W4CMQeVxXZDYl4ZzPVqHyP2Z9nidZ4jgqAU8RH9XE0T7GMb3dYDMbZYYv6RW1l2pH+IywsCcUyfbeNHxhyPz/WVJ+4iMDH52KcuDm0z0BnadjyptnNiPBbGxCOYgs+Nw7e0T6nMG8Yc9g/KPNeVioPKx86kQru2pia0kxa31basq3w2rv730C7394R2XfP80N7VNlsfZ9Ks0LZ6eb2UFuut7qG88nFEPy/l+kO7tYHHiGw8MhaI6xvs6w5tI9Zkc+fPVz6tYv14xde+TGDice013wjteILbfSIVV9vVZnluGRzidlYQc0EiXqN8YmKeytTwHDapZU5ob3r1VeWzaQv//4Fjl4R2Uwvfl0RXR0nRx/tEv9m0eTP7+Pr+I53htt5YXx/acYfPszfXoXwKBW73qURdaOfFZzC5bZrySYnrXrt+S2jXpHl+7tq7Q/n8+bGnQvve3z5K+ws8oQYAAAAAAAAAAKpgXJ9Qv7ZhY2jbr7HtxPR9e00z/yrTPIV/tTh4wSGh3dYwRfls38m/SOzcy7+m9oun0H65rHx6+vtCOyeeUMsnv4V8Qfnk8/zLZCB+17FscQ2RX/Ez4leqSZPaQjsuftl14vqXVbk/uTdbnJtt689NPqFevfr50N6yhX/FkU9CiIgcS//KBA5c1NNm+WTMEu10uJfcwZs+zvjy1vdr3uI+AvFkbtTjoJrgAUF97eTQToonXJajx04nxk8PXGHL5mBIP2kNxJMx+eTYBMKOdDhfPMWVihDH5ScPxtJPMjyP25otZmTfH/mpOBGR4/CBLTHGBz6/HhFskWPzOQSBJ2w+TnS+kHOQ7/OTZ/WEPNInx9bDwP7G8nhNZNv8rXmBbmvFIn/XmSSvY/oHuvj1ujblQ+KpdF60m3SaXzcm8jxHqodUv+JzKwzpp9q1ae7zRfH0O+fzU+RkWve3gZxY8w3yudXUsBKpNpmSLmQTfyZ9OaHOKBdD24nrvtNQx0/03n/Y3NCePYPHrDntc5SPVAOAiYkrnu4WhRrH8fRkUCqJ+xHRv2IJoaRy9C2YI5SsMaG4kmrXkmhzr2/HbSYh2m3M5XYfXc84on9K/5hof35kNekK9ax8Mu+KOSJptFLFN+zjxHh/iYS8Tt1vYnG+bjchFLuumPMcPcvYE+Q2B0+oAQAAAAAAAACAKsANNQAAAAAAAAAAUAXjKvmun8ISl7jIlOKVdEKVmdNaQrt94XT2r2PJjV/QybVefvHF0E7Ui2D/Ast8rIj+TiZYkYnIGus5uP2Yo45WPtkkn0NCSBySaX593Yb1ymfXrl2hXVvLEva4kGibiEzcsWWCKJZjGKnTi8gJpfxOJq+S/lGZ+HjIbMHbi0yUVSlp1uvvCbtCUrGobFU2Itk2DFU+pmqPwh7t3CrxVqXTY/Uf7dwqXcPbl3wNvFOk07WhbYlwGTcSYhMTMj3f57nANyyfK/k6/MfPc18qlyuEW0QRbzlSzifG/5iQfxMR+UqbzTJB2V9jlp6qLUv2UdGmhfbNHib5Hvm9YJR+kBaJ2UolPoe+Pg6Nskw0ESJE3wcCDnF7l3LKXCQMjkSIRC7P/SVf4jWaG9Qql4IIIyiJ5lCT4XC/os77RY21vC6zhDx0sJ+PE5S15DsmmmtCrN28GiHZdrXkO2lx/4sl+TyLg718fN1FVYjF3FmTQvuIwzipWPs0nUh3cgt/JnFxouUSX0NXxxblkxOS9sMO+wCBiYctxvJ8TrRHS4ecJmXYgMudIB7jcdjyKq9bbBFm5AgfP5IE0pHJOMUYL+8lovcFldZL8p4puo18zxEhVXIzKdcmInJL3PcsI0OgRDhsTOu1ZTJOKeW2xTHdSJ+2J4jmG0+oAQAAAAAAAACAKsANNQAAAAAAAAAAUAW4oQYAAAAAAAAAAKpgXGOo2xdzUfokccxavk8HyzS1cZxxKc4x0F0iPqcm3aJ8PvbRc0LbyXCszF333xvae7r2KJ+cKKmVE3E4RyxaHNoLTz9L+dSmOcZHluiRZVjuu+ce5dOxh8tHmDM/FtqBiNUzkYBoS8awUgWioXoivk3GUUi7UNDxT86wmGowoZHf+VhDlkcOpx72goqNloEvo8SEjjXmeH/HIyMG+r2JLOWUF/NHLBpDnRBBkbKtyiJPZR37G4jqJCVPjOWj5BWQpQ3jJiG2k6VAKpdQNKYgbFEOy+gYsbIonZKq4ThnWfbRL+mYPtlFbBGjaosyYEEk/rm+nuNAB8R8OjjE5zOsNGMwMeLZwOjEHVHiLeC24kdKCxpPxD4KH1dU18pEYvwTcV6jOXFun4EowZV0dIkdO5kR/3Bj9USJHzdZJ13IFudtxzlmtW+I+0dap/ChmLiGuM1vTp7Ga785c6crn4PmcdmrtmaO9Y6JnAd7d29VPp0dvB61RG4TI/p7XYO+nqaWRgITG5XxoszjtRPXsc2ZGh47fRknLGKb/aKOBZYl4nyf25YnxnIrstaJixhqWXZLxWBHykjaYp6S84/jyBjsynmfYmJ/Ir0AJSJl3wKP+2RQ4g1leclkQo8DJPqnLDcWiL5qDcsp8ubz+7wd4G4LAAAAAAAAAACoAtxQAwAAAAAAAAAAVTCuku9kineXcljKUAq09CwQT/gtkT49N8Db5cuedKHGBpbZ7BbS7nUvrw3tsqd9vALLfnxRuqutqTm0E5H062Wf9yFTzff39Ib22jVrlE+2lst45fMsYZfSdONrmYZXFMcRIpK4kCoGkVTwFslU9WzbQnIXs7XkIpWKSkrAREaFGYxR8z262lnW2hpDmMGwfb95KXVFn+hBK+1annLESe27gjx+tDJgY2ViCIjAG5Eb6g3tkpDIkRcpE1IWY6SYc2S5Dd+LlHuKifFW6trErqMltIyQO3tFnnNiovSQbekxObD4uKrdqdJ4ukUmkzyJNjXVh3ZHJ895duT38liFMCOp8rYiH0EqzZ/VQI6leFJS70bCioyP3+kPBBzxZRdK3G5MpN1YQn7tl1jiWuuynNPKR8o1Wvx/i1i7DYoyQwVvSLnk80Li6vIx3ZQop0pavx24sswpS8azMb62WVOnKZ+Z8w4J7fbpLLmeMZn7ZV6MK0REMSFl7dy9kV8X5evq63W/TomySXJsGRJjUVd3n/LZto1l40cc+VECEw8ZEhEIyX9ARbVdIskhP77N/WFI9AHHikqx+X9flHHs39MZ2p5fjviIMKO4CDMaJdxTrpFsZ+TtnFh0HBA+YgJxhczcJ33PIksPe7JUowzViBzXdmQZMCEtFwcNjL7XM6T/319g5gMAAAAAAAAAAKoAN9QAAAAAAAAAAEAVjKvkW8rqkimWu5Sy+r69pXlKaB991DGh/crLLKWhfEQiLSTgaSFreP/iw/n4MS03sIXM2hXZ64466qjQdlz9EfjiOFIqKjPcnX7qacpHSgiVFkL4vPrKK8rnlfV8rYcefFBoHzx/Ph+fNFLBUSyKbK5Cs5eMa9lRPA7J97sF2R4CCkbcxrIq/0Ym1amjJUVU2cAr2HZU5llR5i0POuxII1hERmTBdCJDVFxI72R2+0Bmpo0cRynDK2QtjwLJ94HBYDEX2kbITF1HtxvH5jnDI9m+RFZTW3/rlmi7lj1y5mpjtNRVtikp5TZClmdHMmkHMXEc8ZZst35EUZsU85br8jEdkRXVicyHrsoazjssC/mclO8RERmRjTUoCwm7DLFwtI8f+UzAxCQQax1LhBeUI9nhHZHtNxXndlcWsux8JKwvV2Ipcypg6WrBYllsydI+qYDPx89zWzPEa52ajF7PtM2cFdrvO5il3FNmzg7t1qmzSGLEHLJ9+4uh3bGTs9jXiXA9IiJLhDG89srq0F6wgNdrXV09ymftKxwauGHjZt6um6+7v29Quqg57bJLvkFg4iHHTkcNhHrck9+lJcb4YonbWcJKKJ/mJLfvuAgT6sxz3+jr2at8MnyrRaliN59noo3PJbo+07FF/LJY1kVDhmwxP8qs4ckEn6fvR+YPEVIrIkfIL3OfjkUWW4HIiJ+ICdm8COPwbS2vj57r/mJinAUAAAAAAAAAAHCAgRtqAAAAAAAAAACgCsY3y3eMszk21k0O7YZIJu22Js666PqtoT29hU+nu2Or8pES55mzZoX2BZ8+P7SDqE7TZ4mAlADKDKlBVEsn3cV7suD58ccfr7YbLLCk6T9XsRxo187doT0wOKB9ivz/UJHlUVu3bQ7t5sZm6aLk3Lt37wjtRJIlTKasPwTbhnj1QGWs2an1dmPNDF5F5mshZx27v5BYR1xkhmQp804kWOZjPO20YcOG0M5kOKtrWxvLm7wgmnF25DPTGcPf/OcB9j8l8V3H4yIjqBuRq4ks3Z6QXNtS4+ZEMnbLf4KRf3u2jG5cMTFP+DI7sshCGjOR7KlCvm0HUoLO2wXD5Oh8DfkczyVSom1Hztkv8XvyFIz4x3W1BLGYE5mXRRbmGpHlu2RpmV/Jw5xzIDA0xOsWWSHFdSJhY6J9WkbIt0WogJ3Q7Saf41AMnzibdyrDfWIgIneuDWpCe+p0Xj/OnsvrxalTWpVPS30j/+PJ9Rrb/V2blE88ze31/9z7y9Au5niNeeG5FyqfSW2cDXzm5KmhXZ/l47+6frPyGSrxcRYuOjq0J7fMEPudrHyydQ0EJjZyXkjE+V4iHtfjYD7P7TsZ47FTts1ohJ6/8zU+TsD+qdYjQ7t18iTlU9+/jv23vcRvLOC2ZEfGdXlfIMP3XBGaZCIZu2PiPVdcqyvm2sgUqp7YlsXcZIlP0Y7p8cYXIR4y0ipvRJgr6TVeqayz/+8v8IQaAAAAAAAAAACoAtxQAwAAAAAAAAAAVYAbagAAAAAAAAAAoArGNYa6r4fjBKa2cS73moyOC7FEnFh+iHXxRpRNCHydFr1U4v+lzj/mctxNNAwyEHFBMk5AlfwZlk5+5NgCGW8ZLbezbRvHe//L/feH9vbtu0K7saFRutC8edNDuzbBJRpaanm7HRtfUz5Fjz9fW5xDXMSzGSda9mTk8kpg4lCpNFWU0co8jZf/aD6qJFCkXVXaTra/6KnFRF4DX5SceGUNl5i783d3KZ+nnnoqtL/85S+F9plnnhna5aKnfCpddzVx5GBi4Yr4zlhMjuv6Oy+XuX35MnRexnVF2okRpel8WQJLtBsZVxZ9Twbvy7aejIzRni/nPT6fmCXilD3dpkmULSkWeF4oibYfC/Rx6ms4DrQsSiaVh8S+Hf0ZlET5Iq/I59bUxHP6noEh5VOhoh+YYAzleU0lm76bcNV2sk36BY6NnpPhtVcmnlI+HTa3ySmD7NPf0xnax0zW8dBHLOESqnMPnRfansP7Kge6H6x/5eXQfuEFzl/zmfNPD+10JEbTSXAfXbiA45n/5e5HQ/vq7/xY+bQ28z6aWltCe9IMUZ5LlOoiIlq6bEloT57EpWIbRZnVWKS8n3H0Zw8mHvL2oSbNa/dsVn93iSR/twFxX0smuK84FIkfFu3b7N0e2rMXcVs6/PAPK5+Bf+8N7b0iV1PC536TSGekS6QElswvxddjInOoLJUl50pbvB5ESiaWRXmskpiDS2URUx7T8d2BI8r5iTKQzaIMWN7qUz5lN08TATyhBgAAAAAAAAAAqgA31AAAAAAAAAAAQBWMq+S7p2dnaHd18WP8vYO71XYlUWZq9hwuQZAR5awKJf0Iv1RiiYCqdhPIEigRyZ7aTspqR5bv/ddO2BQ523OiDMS//fu/KZd772VZ6sYNLNN2XZZ29O/pVj5xUUbl2KNY6jRv3iGh3bFjF2n494+YzfKSZIrlHLGInLBcmBhSCPDmGatEe6zlrCq9Fz3OWI47TB5bQbbuCgmbHalftXnzltD+19//a2j/+o5fh3Zvb6/y+crfXB7aRx11VGiXSixNHe38IfN+dyG/at+v/N0GooSVmArIFq/bkRomqq1UaFLR0AcljxVv1dey3Lo5ruV3fi/PDWVxIFmSRYZGEWk5uFdmOWGpVFlv3dbKEtuOjo7QtuTnFvkM80LOLbdLCJmeX9IlIe1IuRUwQRHqaRnS4IgSP0REcVHipjFTH9qZQfYpdXZIF1rQzKV9Ev3chkrbuNxnQ1JLZHOvrgntoVxvaNfOYYl100EzpAvtaeE11kGivFZDltunXY70HVHu6wOHLwjtnj7ue9vW9CiffA+H9W3Zwuuyl1/dxufvPa58ApvPISbC8ibX8jnPmq6v55K/+ZvQ1sWRwEQhLkIibJvbUk26Vm2XyWRDO+dxH5BlomIRyXe6iUMD6uz+0G6fzWO3m9IS6e4y35sMDnLfTco6pZFHp1LyLcOmUilumyZS3lGV1FJrTt5GzkVEWvJNgQjxE/NkoahDhmKitF4QCGk4SZm5/tyy9foz2V/gCTUAAAAAAAAAAFAFuKEGAAAAAAAAAACqYFwl3wsP4czVdY0sVxvwtOTGSoosbkmWNeQ9lo6VPH2vXxQScCnzk5LvQr4gXcgTmrtEQshvhG0iWj5LyMHXrVsb2v/6f34f2itXrlQ+Pd0saXdiLAcpCJleoJPfUV9fPZ+nkFb8+t57Q3ugd4/yySZZKrh6NWe3rK3hfTmRLK0DPlKugjfARP8dOaO9tP1Ig7ZEP0olWTbU18PZGB9+8GHlc9NNN4X2X/7yZGjPnMkyuJv/18+Uz7Jly0Jbym2lbcf02BGMReYd2QbS8AMD3/dGfN2KSOnkb8dS7mYJeXI0q2mlNiAze0cl3+kMj9ElcW4DvdwP2pp1RuS4lNvG+XwCkfE1Gi7hiPMuevJ6+NzcSAZyT1SJKAyxTDAuPo8gItnzRahVUmQnLhU4xKI4pH0sF5LvAwFPNF0jsumavJbwD3bzGm1HnttDx5AI84lkoT9lFo/h3ds3hXaqhvvl6q6dyqdBhAANdPLayV3QHNpzz/6Q8vFruC9Na6gP7c2vcDbxrOlVPtaujaH9jMgMvmozb+fl66QLxQ1fd32Wpb1z57AwOx5PK59CkX22d/H5OCnuR0ce9UHlY5qyBCY2UvItqxH5Rs8FMXEvYPlyHcXbuJEs75lablv16Vm8713ch/pzLymfomhnGVF9wRVziWXpucwRoaGySlAiwfdtQST8Jy6z04u5pSz6fnRdKOdHV0jd8zTIdkGPN6nkyPJt3/CcE0Sy/ZvCxJhz8IQaAAAAAAAAAACoAtxQAwAAAAAAAAAAVTCuku/6GMtVEi5L3/ZEHum7QhlTko/uiywP8CJyg4BYAlQscFa4J//C8us1L2opRFlkkmtqYCnFzBkzQ7uusVX57NzO2Rwf/tODob1uHcuECgUtcXNE2thSiWXndozlE+8/6gjSsExjr5AD/eu/cLbj5ad9RJ/brq7Q3riJ5VG1dfxZp9NaLpHPIcv3gcRYM3tXt/ORXzY0itxZmDFbyEltPXTs3bs3tP/41B9C+67f3RPaj/75UeXT09Mb2suWHRfan//850L7ySeelC700kvcxz/72c+GtgzpCIKIVHcMHykE3gcmhniMD3z5RWvpmc48LeTfjrCjWb6FXK2S/NtxtE9jA0vu9gqZd38/94+9Hbp6Q9kSkjkhEwyEhDBma0mbbXH/kzJvx+F+EE9o2XtfP0t3A5/nH1tkPS4WdNhUY109n4OQCQ72s2QviIQVva1jGBg3TD3LpX2xDhvs11l3t3dwOw5E1YbeOPuYmO4fL3RxG+/v5vVfvMxtJZlJKp8GS4Qk9PJax/+3DaFdfnGj8vESvJi0TuM5ZGec++XMoV7lk/33Z0M7IbLYN+X5elKNM5XPTsPXsKmHM4BvEmEi8YQO5chkavgfIWNtncLZyE8+8ijpQgV3XJfk4G1AhVWK7z8q+fY8IVGWoUlCfm1H5o8ps9pDe88q7kO9L74S2oM5ff+xcRNnzl90LIda1NXw/VgQyYot5zpbzIdx0f48KxKnasn7HD6HuLiGqORbVkpKi2pEAwMyi76Wb/veyPOHDCv0RFUXIqJibym6+X4BT6gBAAAAAAAAAIAqwA01AAAAAAAAAABQBbihBgAAAAAAAAAAqmBcAzZaarmEwKQZU0N77WOvqu1MguOvSjmOlYlLvb1bo3zKAce6PCbKVt39uztCu2dvt/Ip5TjupSbO+nvX5t8RcpGSHz2DIg2+CImoEfEIqUhZnpIv4tsstqfPmR3aK847T/k8+eRjof3sfz4T2l1d/Hns3qVj7V5du47PO8dlT8oex70lEpOUj23jN5N3C2+9lBP7R2NdJIk4x9vERMxcro/bXDS2+bbbbw9tWVauq3MvVWLBgvmhff75nw7tp556KrT/5//8ufK5/oYfh3Y6zfFznijdMNZPadTPE2GgBwQyttgSJUhMECmHKMPeiAd2S7SBYe1BxMcZUdqw7FUuRdjTw3OO8biPyTJXuZyOUXUTonSXyB1iiZacTdUqn0yS+2gQlIQPx6XaIk6aiGigm8sweqI8VknEo5lI7pJ+Mc9kRByoLeY5Jxp7joQEBwS+J+MO+TssREqWus1TQjshSnfWxLitD/brPDm+WDw5aV477enieOy6rC4z1RjjGGQrxfuL+ZwHpiUaKylyefQlue2/7+iFoV36j+eUSyzHc1pbH/sfKXOE9OrrmSFKvzoJ7ouBGCOCQH9uVo4/g5woU1fyOOZ17R8fUD4LL9brRDDxsGwRAy2+cjvyfNIrc1sti/YTd3kcLfv6/iMn4oc9kVNqw3a+Z+rLDSofM8h9ikS+KqvMx0ymdTk2T81h8nr4+NESvHr9yOutXCkYYYvXSSW5jydFjgFVjtWOztVifiZZ24/n01KkvGPJQww1AAAAAAAAAABwwIIbagAAAAAAAAAAoArGVfJdFPKXkpSOGX3fXs6JMiEu+xRdlqhZEanylm2bQ/ul/9gU2j17WMYmZdBEREVRMsp3WDpQK6Rrub4+5TPQL2QSKZYrZBKNoS1L9BARdffx9UghxUknnhjac9rbSXL3vXeH9u5dfA21tSyp+s9nnlE+Pd29oS1leiUhuSjkI1KI4sSQQoCxIWWn0fIz8v9KcuWoj9qf0DEn4yyPi5a96djNZdyeeZpLjDz0wMOh/cADWqq2Y8dOcQ78uivKMJTLujzC7t27Q/snP/lJaL+6bn1oL122RPmcffbZ9EZEq/ZUUqCOVt7Hgub7gMAW31NM6+8iGwpZmpAoS0mZHy3VaGQbEHJysVkQ6L6zt5vnk1ohQU0meFx3HD0mJ0TZkJiQ4vkey/eSCS2PdUSpq0TAY35ZlG0c7NMhUK4oe+KI8lzJbBP7RyJBcnmWFxZEqax0hiWEdbU6PKtYwpxzIJAo8Zcdi3H77inrUIESNxWKx0V426AoGVXWZd1iIgQnLkqeBmWx1klnlE+6xP97ol9lmlliXfB0uES9y8fd8RqXEk3PagvtnSW9Jsqn+IKmxXjfbeJ1S5QoJSLK9vFxCx7vz8hydk5kOS3ml4Y4v9fdxyWDOiNrvMMufOP5DexfHCH59nwe6/KFcmRLsfaxeOxMJLidlcu6TGHnHh6zp9axRHrdyu2h3ZPXku8PTuHjdOzidVhpB4eMzqnX5YEtMRcUi9w/ZdnfaPlRW4REyCpgL7zAoaipGn097zuEw15JhRmybSLlxuRRLSVBd0Z8nYgo5urxZ3+BJ9QAAAAAAAAAAEAV4IYaAAAAAAAAAACognGVfG/tFHKDBMti7JiWDvhCFSAUBmQLiUEskkn7tU0s8351zZrQ7hWS75KvJaVlIYUuCmmGzDZn4lp25HkspwhEJruEkDqlU3Hl0z/A5zp98uTQXrpkKfsL+R8R0eLFR/IxD2P5w7333hfam17bqHziQqYrZRJ1dXX8euQ3kmJRy53Au4NK8m/f15pNJeUTWfBllu41oj8RET3zLMu8peS7W8iRojLqStnko+cj6RPhFr29bNfUcJ+88MILlE9zc/OI+1afx5jzfFfmrWdUB+8EtsowLbOVRtqjlPdLuZh43Y7p6dCSkm+xO9mnvGj7FlK6nMjyGrdZ5udGsmJnkjwfFXO9ob1zF0tYc529JEnUNIj98TkUSiw7dIyWxSXTPH80tggJYIIl27sjWfmlNJwC3rcv5p9MUsvRy2VIvg8ELNGO4+L7dEVWbSKiwPD/5Twv2Hp285g9b+ZU5bNoGo/TiTIfp9PnNWJTUktXO4e4vW41LIueKs7TxPUar9bhtp9+luexjbs7Qrv/kJnKZ2gxh9/5Yt4x3SzznhnX8l3fcDhhXGQ/DkRGYmPrsUDOIIFYizb4fD21kTVrNp0iMLGRWajJiGoJRZ0Z3hZzQeCKLPE2j71WRKmcH+L2WJSZtAe5be7s1GGqG40I3xvicNQp9RxSVyMy9RMRDQxyP35tE88zo0XryJBTKQffumVraGczeux43/xpoe3ERKis+GxMpOJMIMK4Em5K2HzfFc2o7opqNPsTPKEGAAAAAAAAAACqADfUAAAAAAAAAABAFYyr5DstlNC9HZyVrjGtJdJN9SwPsmL8uN8nlk+4rs6kvXULyxK2CTsmMqQmaiLSszzLdCxRFLwosj7m8jornUxIXhLStd7+3tCOJ7ROIyWyfs9rnxvaTU2cGbxc0hKiZctOCO0XXlwd2rtFlj7f03KgQHxW8QR/pkkhJw88LZ/wvMqSWzCxicqOx5LlO5XSkrGhIc5O+tMbbgzt66/7p9COZoavhC0ymppIduNotuN9VMr4TaSzfre0sETwb/7mK6F91llnKh953aNlRB8Lo8m6q9kfeOeR35Nsg64bkYCJr1Nl+RaZQ+1YxEfMGYHIEh5zRbuLSPaUzFPI4jwxl5Q9ravrLfD/xR4e/52yyKpd06x8Si6P+X5ZhFfFK0/pZSGL6+rlfdsx9o82e5lZNSbDloRsfnBQS3dtC7/THwj0Gl6TZEXG7xmk1x1OoT+0632eT/wsr0FmOnoddXiZt+tdy1mADxVrr4EdG5TP7kFun23TOezn5IWzQrtx1/PKxy/2hvZUh9d/TjcfpxBZ5pansuS2LOa0ZJ7POeHp+Swvxxk578j5KFItIxB9SZ2ByNDfs7dDvkN/Xvnn0P7oWZ8iMPGQIRBkRFiP0eN6fQ23rX6RnF5MJVQq66z1hRK3p/Y6Hm8/OJ+rKrilXuWzbjdLzbft4pbW0PM0b7Nht/Ix4kbHiHkqm+Xwnz3dOvwnN5gXNt9b5Yd4fDjiUD1P+SWeG1wxZ3mikoBFut/4IgP4kM/+Vpm3G8hreX25oKXm+wvMfAAAAAAAAAAAQBXghhoAAAAAAAAAAKgC3FADAAAAAAAAAABVMK4x1M0tHFNTLov4MaMDzeIJjnWx4rzdYIHTwQ8Vdcxxx47O0M4LvXxNkvftOvo4g6IUhIxn6x1g/f3QkI4fLYsyKIFI7T4oYlGbvQblI2P3sqKElQypKRf09ZRFfvrt2znefCjP1xaP69jzQETouTG+1s5Ojo9Ip3Qc+bBYQnDAEI3xrRQzLF9fvXq18vndb38X2v/rf/4itGXc9GjxwvIUZB9SQanD/mfbEn1IxkwTER188PzQ/vrXvx7a53zynNB2IuXzggqlsqpBllZCmawDExnPOGrbkDGQ8mVhj9oCxFziB5XzUsQcblOO2M4T80dR5PYgIiKb54a0w8eprRPltOp0ecfdHo//gSf6iBwjIvNhSczDtpizbDEXOa4u7yjnIFmGqyyPE/nkbHSlA4KkiKmf6XMbygzpL3BRnNc0U3NiDSJigROd3cons4vjL6f1cRxkXOSSsSnS1kRcvtPH+25YtYPPOdBL1o40t+O4x3HcySz3HSutj9PTz/1vVrw2tCdP43Ja3sZdymfQYh+9nBXjz7CcJ2zLmc9z+BpeXreOJLd98f8P7c2IoZ6QxC1eOxnxzZYjcb01cV7L9+1l2xOlsaJJK4YGeH8bCty2y3HOx+THddmsdaL8aLfH80wu4Hum7j4959Rk+D4hHedxoLmJ722KJR2XXBK5PgIxtxVFniY/kkdgSJSBzBe5f3p5PueYaVM+Owe5ZN72Qe77gzm+tvU7df6FciQWfX+BJ9QAAAAAAAAAAEAV4IYaAAAAAAAAAACognGVfJdSIm18UkjfKB7ZkmU/vpCR2hanhs8ktMStWOLU7CRKHVjiNwFfq6opkWY5TyzOPkMDLH8YKGqpQLHoCx+WQsSFRLa7T5cJ8cQ1+ELyt7efZQ1PP/kfyue5Vc+F9tZtW0Nby3r17x3ZNH8mDQ0szVizZg37R8oXOQ4k3wcSo5WCGovk+5FHHlE+t992R2j39fbTSNi2Po6WdlfSb44mtxYyONEejz32g2qrK79zZWgvWXrsiLv2TaQclzqsGfHlqHrb0Bt/blEgAT8wkDJv+cV7kZKDlmjjlpBc+komrqXcgRCH+0raKcoXxvX4GhO1crw9XXxqom5Kqajld04Nj/NBTJTnEraxo2Xq+PriohydlHI7cV160hOSbV+U7pKS7Whpu0CEXsVi/F7Zl8fX87tVRqnGA4EsiRCALpZZpvbqMDgrxe0z0c3tuDbg7WTpUCIiW8wh+Ry3FTvGbSWIzC1TbW43GdFFyiJEr5DR8u09FrfjKWJs95tY8t0TaOlqTz/7NPp83vlmXi9Sm5ahlnfxWi4ul81C+mpHQ0GEJN5OsI+X5XVcLiKR7RTfA5iYOEaO0dwey8k6tZ1n8XuJtAhnEONyzOhyc309fC+wZgOv13Kd3P627tH3Bb0l3ndCzBmpBPevmKXnQ+NzHyjk2d61m+18Qc9TgWirrpgLLNHOja3ngnLAY0xelB5OJvmc40kdmtRscemuUroltLd0b2aftL6epmNaaSKAJ9QAAAAAAAAAAEAV4IYaAAAAAAAAAACognGVfJOQGBghi4jK73yZXdfnU+juYjnR5g1blM/ODs5Yl0xzhjrjseyopW2S8vnoxz8Z2jNnzQzt3bs4c9zLL76ofLq7WXKzbQdn3962eVNo90Qyg8cSLHP4v8+tCu3XdnH27VfX6myOXR0doV0qjpxx2ff155YScqmYkO+RkFeVRMbW1/cX0cGDCcdoMm9Jpffk6+ef/xn13pzZc0L7V7+4NbT/8vhfQntoSEviYjI7sMxU6klJ29gk0cuWLQ3tn/zkJ+q9hYcdEtpFkaGVpDzXjO03PyVSr0auPSxD61vLIA7eGeT3FBMZqaNNQMvVuE3ZIqwm2mpU9IwIM9JRNXoK9Uo8lud27QzthhjL/FxXt2lfZIodEJlMAyHTcxI6XCOdZFmcK0ODxJxhReTbMVvITsU04VDl7Oi2CGGSEvhiWWZr1j4yozmYuBRssb5oqQ/NnsiQG5vF8uf+13gd1lfi0LdpbS3KxxHyzibi8LRyJ697kpG1SqMIFSg5LNneNYn9s+ms8intYolsQaw5LSFjrU2klM+kVt7f1BRnTw5E9IbdPlf55Lr5WsuWCDkUHcmOrNdsEU7iiyk1EOvFpnSjdKEzjz2KwMTGzXBoQKaJ70Wm1SxS29XXixBNMS8EAXew4pCW+FsOhzdMmjErtAfS3IZ35vT4mk5w46qr53ObOqkptPtzuq8VRcWVWIIbfk8PZ+fvH9DZxEtF3kc6wXL2lpY64aNl4t29fH1BwGu8osj4XRzSsvdel69vXZ6zeXdbfG7lqcqFEoWJEaKHJ9QAAAAAAAAAAEAV4IYaAAAAAAAAAACognGVfEslmy0kciams7j5FssX8vJxvyOyRtbojIkq4bWQOyczLJ/p7O8kyRNPc2bt3ULKPWsGy78/vPwM5ZNw+Vz//OjDvO9OzthaKGv5hJSY5reyTPyFta+GtsyKR0RUFnInlWlWZlyOyO+69u4J7f4BlgBOmsxS9yCidSyVtDwdTDxk+xmr/Ftmz7aE5LK5uUltd8aZ3L6Pfv8HQvuJJ54M7fvuu0/5yPf2dO2lkRjt3OQ1zJo1O7Tnz5+vtlPhCc74Sayjkm/It9+9WKLdWC5L12KRUAFbhhnJKhHSdnSGUiOyeRtHtikhg44cxxHS7mQ9S+G6d20L7ZqEnguSxLJBx+Jr6B5gmWltakD51CY5TCOweH85X0r50sonFuN9O0Lg7ouwqaEhXcFCZhD3xbxbEH03iMyHVNKyPzAxidfwOqx2ypTQ3rVps9ouNXNyaO8uiXXZ/PeHZqlGr/F6X342tGeJLN3NQled1E2aSn08p62q5764Lstt8IMtWutp51keWuzluSrTzyEJLU4k273P7Tid5OMMiDIxiUh1lCGX38vZUprO22yPhDaKBMfUJkNOxFrSndEgXeiHV3ybwMSmJstrrJQIQUgkI+OtqCxkREZ9E4iqDEbf5zTW14d2Kc77a8lyO+3r6ZIu1CIiGlK1fD7Jem5beU9Ly3v7+f+Bfpnxm+cV29LrqHSS+9GkZp7bWpr4mG5Mz6GFMs8txuF99/Rz5x/Ma2n5zmJvaO/t4XueroKUo0dk7zsmxhoPT6gBAAAAAAAAAIAqwA01AAAAAAAAAABQBbihBgAAAAAAAAAAqmBcY6hFNnjyZPkOS9+3W4Y1+3GXY0umz2gO7dpsjfLZuYk196V+EXctNiu7Onbrkb/cE9oPPMzHScbZqbm+Vfm0tXA88sAgHzMI+Hr8SLmHYiBiukVJhZokBzcM5bXmv6+P4wZkfLWM9XNSOi7JFjEMM+ZwOaTWFr6GfKRkSS4XCVQCEw4zxhJUkkpxweVy5TJpLaK0yf+34tzQ/vBJH1LbyZJad9z+69B+9M8rQzuf16UOKoUp/+lPfwrtZ555Rr13zJIPhnahzPuzxhhPXSnePPrZVBNDXVXpLfCO44i2YgI55+hYLlfED3uiOfii5GBkmiJHlI8zjshZIGKWfR0CR4Ec/ydPC+3iUG9o9+7ZLV2oVpT7MaJMVdnjc3MC3a/rHL5WO8XzQtzl67YiJYaKZb5wOc94Fl9EsaT7dV6UH0ok+DiO8C8VdNy1G6BU44FANsff+7qta0M72KtLtJkeXlNYg2w3JrlEjxXTbSBV4nhJby/ntkkYbkOBn1E+a2s5ZvQutze0d2znUlsvbtPrmY8eND20awp8boMO99FUUsdQu2u5BOqe7RyjWZjBceSTynr8T23dKv7h9WM5zXGq/zfXS5LOIvfRyxYfHtpHH8lrzO6UXudm3fGtZAvGn0SK44dth8tHkdFx97qWpzBF/ptyJO6+TpTa8l3ed+8ujh9+33Q9rtfP5n5TFCUdNw7yvnMDut/kxL3NUI7vmxyRw6m5Ucf314r47IOmcbm3TIavu2Dr9jswKK41wf1z9yDHgc/I67Ktgw7fG+0Vfaox4OMXtuo5Zm/fxLjPwRNqAAAAAAAAAACgCnBDDQAAAAAAAAAAVME4S75Z7iaqBJATkVw6xG8GAcuOfGGXC/qRvvw/EBK5xhaWJcw9fI7yeV+RJQZ793Ka+O69LA/o2KVT0L/4KsuBZKr7lmxbaMcSSeWTSLHkoiyk7kNDLKXwAy3tkJI5v8TXVvQqS+UPXbw4tGfOEFKnNMtEXEfLxD0P8ruJjix7NVbGKneW+KJEg1fidlbfWK+2O/uTZ4f2sUuPDe1H/sRl5H77u98pn2ee4TIpfb3cv2S5uZt+9jPlc/DCBaGdEXK/aOm3sQCJ9nsTW3ztlpx0jA7LkaOvL2RtshSULKFFFFHsiW4lN4tUFiEj+l8+xvNE3VQu1ThQ1mE5xSHuL2VRhquhTpRksfWB4gFLs2tclt421HPYlMm0KZ+uPpbWDeVYVpcUMtOircePsi9k52LezojSX4WS9knYWm4PJia1cZZCb+3aEtrlfh06t6uX105xUU4q/h+rQ/sDEVl1i+F95ER5rm5bSEAnNyqfnXne925RAtUT8u3Obh2S8ILH/XzWdF4TuTPZHvIC5ZPaw/2gsZbPbcohXNYxPmuG8pm9gOXgrlCXPtXJkvEt9+s5MeHxQJE+ZHFoH3rm8aH9xLPPKZ8dfSztbSEwEVn36rrQ1pU/9fzR2Mbj/6AogVgc4jV5oaTlzmlR+nHxrENDO9m/M7RTto4zmtzEEvScmOh6N3eHthvxKYtyujEx5idFWI9N2idp2Kc1wz7ZBl677ejT/XO9KMHXF+M+PeD1hnZzjwinIKJAREEEUsMu5kCjb8GoHPl/f4En1AAAAAAAAAAAQBXghhoAAAAAAAAAAKiCcZV8p0RWukBkDpVZrImIYkIaUXJY/mBb/Hi/PyI38Moiq6lQVkyfxVKc5hadMbHRZinCpCksDe/pY/nF1FlaFjcoMlp2d3O2y4Gd4jxJZ/Orr+PjdO4Wsobe3tCuq69XPg31LHfK9bOGyLH4OLXZWuXT0sJyPpm1Vsp87Yjk27Xxm8nEZ2xyZSlrHqvEWW1njZzR2PN1WICUhjeLNvepT38qtD/04ROUz59FBvD77rsvtJ9//oXQzqTTyqeswhGEbFTqaMdByR0EMkNzBXn8OGQGB+88tsjS7cr2bXSIjSdknwUhY7aEhNWOSL490fiMz+3BSfB2tqksEy+IkKHAZWlpqkFLXX0h3+4T4Uj1tTyfpZJaRm08lt85IgQqJtrtQKSyhCf0iQURjmQZITs0Wh6breFzKIosyjExRtRE5L7lSKUJMDFJOtym6ltZYNwRGXO7+jk8IF/mNrQjzm1gtq/XKnMGxXqpl9dbQzHul7EpTcpnTw3vw9vN29WIbNklV6+9tosQu5lnnh7ajSJj97OdW5TPkAjZC8Qc1C7WaFOmTZMuNH0Oy8G3/pll2qs714R2c1ZXjJkV45CNhx7gcKnGh54I7d2ReabO5fOmDy0nMPHo2LUttDt3sqy6XNShEnMWcHvY28N9oFQSc07k+y+VeVyf08JhB/Nmc7vY8qJuz/1DvO90Hc8ttWle5NVn9D1YZ5zfk/cSkiRpOXprlvfRJhKNuyL8ZyCt54I9Zf6sdg/wvZHF0yFt3LtR+UwLOFwjE+Nw1m09u0K7N3JupUhI7f4Cd1sAAAAAAAAAAEAV4IYaAAAAAAAAAACognGVfMeFtNsWmRntSLZqI+TclpB520KyVy7rLK3GsDQnlWLJTo3I0mhs/djfCDkg+XxMedF1ERlqNsn7bmxmCdLmwu7QDjwt05jUzHtsFNnAd3SwpGpvj5aDpEVmbilnL3t8noe97zDlM3PmzBF94kIGFXhRqePEkEKAysgs37JlWaPIuscqSZabGb33EbeJnkPgy4z8bE+aMln5/NXnLgrtU087JbRfe+210G5vn6t8GkR2cc+XY8Jby3oepdL+RpXNG0i+DwQsMcY7Yi4xEQmYrNgQCPm3LVp7qaQzlJIInwlEe/BlxtRIGwrEXBeI+SyweIx2Ezo0iVyWycVdlrINDLD8e7A2q1ycDIcwDYgKGK7LksEBX4dNDQ3x9QVCZm7EXOs6eq6OOXzd/VJCXuRwqHQ8KkfHnHMg0C8k/GWR6bd28iS1XV6skTJC0hlPiJCdbLN0oe4ebrs1Ijv8vCksg90d0/LQ9S++GtotcV6HHdXAPmtiur/tHuD+0h3nftUS58zH8VZ9PaVDeB3V1sJSd0tku3/1z08pnwfvvJf3l+c+8prD67rj2g9SPq0FHj9W7nwxtNcLiWztTF2ZpnW+niPBxCNTz2v3OhEyMJTT414qy99/PYns2TaHOqSTGeWzYTvLn7vzLOVuskXoja37zeYOlp3PTrHkW97ntNXo9UyHkIPnxbzZluV5qjUyt82fzefd3MLnMCSquhSH9H1OUMv7yOf4s2pK8vxVjsxTfXm+Hsdl/2SWx6G0p2XqRVHFaX+CJ9QAAAAAAAAAAEAV4IYaAAAAAAAAAACoAtxQAwAAAAAAAAAAVTCuMdRGxFsaEUsWDWH0AxmXKfXzvGGxoEv5xOOsmW9sqA9tmbK9FCn/UyxwPJll+HySCRHPYLSPF4hyDyKmJpPlOLGajC4R0TqDtf2BiBfKzuL4iK3b9iifng6OX8rv4biDdJZjJRYuWqR86kVZh0JexPvJWIdIiTIZ9womJiNHNo+A+J7HHmdcKX54TIdRZR1s0bai7Spf4Fi2pmaOtWkR5Vj8SKyM/F+epTq3MV6m/DzGWlJMYaL/jkO9LvC2Y8s0GUUeEy1Hf39OjMf/mIgTjrkiTjqyb0+1cTGfiVeDIBJDLeYPUR2STMBeMVfHzfkxjheVJSZ9se/uAV0mJMhw38m4fG5OnuOh+4qDyqcs5kfj8XbyV3U5hxPpskK2KJXlithqx+h+baPvHBCs28klbUpD/D1PnjJdbbdArEM6OrpCOy1i6jNzdfzwRy/9LL+X4vWR28ixzX9Z+bjyGXrpqtA+uplzdByeZJ9UNql8fr91Q2i/snV7aLdN5WvoLerY1sEUr+VaDuVyWFPmzApt6+XXpAvlEqLsXlzMNSXe97zWeuXTkOftcju5v+1ZzMf5yOc+r3zalxxLYGKzoYdLpQVi8HRrdNs0aVEeuI/biefzer+c1G0z3sj3Ob0l3m5DN4//Xk6P67v38P9tk7md1Yh7m3K+S/nExPzRNJ3712HzOAa7cXdR+cyezn2qtokv3Azxvc2kGj0XbAr4fFJiHKht4Psc29L3LHvKvD9LlPRKprg/BfojoJo2XYpyf4En1AAAAAAAAAAAQBXghhoAAAAAAAAAAKiCcZV8OwmW0hSGWKJQjm4oJJlGSLE9X0jFjD61xgYuy1BbxxKFQXEcz9JlT2xRCiImyqaQKKliRX9TMFJ2zpKHVIJlekNDWgohJUVuSkgDhT19rpaJ19Vxua+BXi5BsmDewaE9bcYM5eMLmZ6U5vmiTInjRiXfkN+B6lHyaSGrHk1yLku1ydJ1lq19Ksm0lfx7lHOrprwWeHdhGRFmpFqOHtfl3GKLcliWzbYTkZ7J9wLRdh0hGbejQnEhs7NFeUjb531btpYGFsU0bGwRViGurWzrcxsoiWsti75jWIbrS805EZV97pcxoZV3xb7zni5XSR7PdUZIxi2f59p0XJdxsZ3IPsCEZPrBXKIpKdrkpEZdZqpc4na4deOW0LbEmmr3oF7lbeniNU2p0BHau3Zw+dHVL7ysfDyxljukaUpoz5/EpUjtSAzQE2K9Y8f5fPbWiNJUVKd8ZtVwGa7NL6wL7af/8kRo15e0FLeznc9nTz9f2+YtfG2v7tqtfGbUcOhTbbae97W1k/3XbpAu5Ni8Llyy/HQCE4+eQZZPF0XJwVSNlh0XE/Wh3VHqDe2Bwt7QjkVWOIk090PP47F8+24uTeUODSifmAh79R1RTtdiO6jXc8Gsw7hsVXoWn2e6nu9T2lp0OUSrT8jJ67g/5DOsvz6srUX59BFLu5tjLGF303zde/v2Kp+44c8gkeT+7pVEmNPUJuVjxfX17S/whBoAAAAAAAAAAKgC3FADAAAAAAAAAABVMK6S71JJSJKletvW9+3yv5jDsoJAZEKNu1o25sZ6+DhlfvTf08sygqSrXMhN8pECcQ5Sskd+5d8UAiE794nlE6VAZ7IjS2SxFFnpXJEl1na0VMlt5X2/7/2HhPYxR30otBOplPLJDQg5oZAtBkL+bUdkfsbW0iUwsRlrhupK29l25fZcTfZr6WFUqIbel1VBDm45Y8u+reTfFY45ms9ojC0D+LA03+AAoFRkmWg8zlKxsqe/QN8Skm+Z2XuU7zkpspJ6YsyXQ7kdi4zrYm4JZFZsUfUi7umJyqtlqWAgpOm+aIROTYPyqWniLMhWjOdQ1+V9p1wtxe4f6g5tU+LPLTAiRMPWEvaSCN9IJHl/fp79cwWdgdyx0XkOBA5ZzNm7UxZ/txk3rbZb/cyq0J4yg9vd86+x/Ntdv1X5fPMr3wrtPhECMDjEoQJeRCaez7GUuldI0EtCRpqoqVE+CdHUNm/nzNxrH2AZad/mHcqnf9Pm0N7WtTO0B4jDG2a1tkkX8gf5vHeLLMtOnPves5t2Kp9Xs7xdfKoI32vga3th1xbpQqVaIfkmMBFJpHiMlbcP2QZdvYFcbpyFFM8FJiUyfsd1+GggQoZccT+V89mO1+j+efBUDtFobWQp9K5yX2hPmq7DR/c4fFwnwfNhj5gX/PiQ8lkQ8PXlxTqz3MivT8rqcJHDp/Bxnxvk8IpSia9zIK/nDxlqZWz+rB05bcb1HJpMaHn6/gJPqAEAAAAAAAAAgCrADTUAAAAAAAAAAFAF4yr59vMsS3DEo3o3ph/HS9llWah+cv0shSjkdcbujMhSlxEF1OuaWAKUrtVSbCMy3tmOuFSLz01mGScissUJ1QjZUW83SySamnTWyGy9kHy7Ihus+L3CimhI7Rj/P/uoQ0O7fe780C6WI3JtIfMui8/QE9Jyx9FSCGOQCfndSCW5czWy7lGP8yaPH2W08xnvc91HVdm/Iz4QrR4YVApDMIGWLptAjPMycb3IpO0HkezUAc8FjpBsBx6/Ho9Hqip4YvwPeLxOx4VPTLeuhhTL4nrSLNnLi2oUTlpXiUjUsyS1QWREbmpi+Xh/d4fy6dmwK7TLRSFbJZ4zZCZwIl1BwhdZ0H2Xz6dc1pI920RCosCEpC7NUk2Z6d21ddjYkhOOCe1+kdV45eY1of3Q/31J+cSFXHUgwX0nUcvtpsXREllPjMFdQob6fAe3471Gt8+BXm7Hf3j4gdDOicoriZLub2URvheI7uvE+fh7dnRKF2oV/XLB5DmhbYkQi97+PuUzdQ7364+u+Hho19bytdUkdVhGHBPPhCczle85rDy3v1RWzzlumtt9bQt/z8biPuAk9H2OKYiQnZKoBJTgMXZv5N4onxftLsf3LEMON6Z4Q1b5ZEt8Df4Qj9elNO87ltHS8lSK7+O2Gg6p6E+zNHxGoGXiuRLvrySylts27ysrMuC//p7olCX+DGMiVKvo6zknFak0sb/AE2oAAAAAAAAAAKAKcEMNAAAAAAAAAABUAW6oAQAAAAAAAACAKhjXGGqLRi5PY0UiMX1izb5ncTyLleTXm6fp+Jops/l/R8QSWyIezU3q+BoTiHhiETftiVopnq+DVixRxssRsd/tB88MbdvS5R6KAev5bZc/0mSC4xlcR3/UMZEtv6WJ4+FKeXENdsRHlEFxYhyj5It4QT9SssTCbybvKUaNWa4mtvgdQp33WzzPaAx1EImnHfkEIvtAFPWBQYW24nl6LrBjPHbKEVGWMwy8aPywKC0i5gXyeZ6KRaZQS5YzFPOMZXiOiM6HyaQoC2SL2Dbhn6rVZbNcEVNd08Ix1PG08N/bpc9N5toQH0KpyPNZuaznNhVD7bC/57HtBpHPGjHUBwStInbRiolSNZEutXUbl8Ra9ZKIle4ZEP7ax4gXsiJOOCZijovR1Wec4zxXdXHb7ZvJsZzr17+mXHYNcgxrMs3X0JoUpXziutRWWzvHNk89dF5oT29tDe2WrM5ZUCNKIjWIcnpl0fbLkTmjxuX1nyfWha4oD2sNRcuaou9MdOTYmxblm9yUjjl2k/w9T2rgMZ5i3C58R8fduwO8P0uECVskymmldAeNpbjd9fTtDu29BdE2LZ3HqtjDO88T96FEUpRg1KkUKGfzcXODogyYKCnZl8kpnwGL5wlRUZhsUR6sLpuULpSO14e2L8prBSKnScHT+U7i43onWz242wIAAAAAAAAAAKoAN9QAAAAAAAAAAEAVjOuD8piQtVjEegEvUoqjZPhxfWAJ+RxniSc3rfUGtihvouShosSDHy1NVUE5agufmBWRSAuZtWdJqaiQwhkti5O/SnhCDijlc35ETujaLG9qbqgP7cIASzGKJS1VlWIgS0jY4+JzHyb5NZFSMOBdx1jLT6nuYI0cnjFs38L2VRjH2FDy62gpo0rbVdgmut14lt0ywzXf4ABAfk2ybURl/jGLx3xHjP9yjnAi4TJGlMeyhYRVhhzJeYmIyBZnFIj3CgUeveMpLUH1xbnVNnN5nkIvS2qbmicrn7ap/H/J5xmot0eUM+nrVz5lcQ6OCicSZYQipRrV52izne/v5uOXdamUdELLC8HExBIhBVK2qeIBiChTK+TTon0e3DYptDsj3/nO3VyirShKCw2Jcm0UKcuTreE10RbRvjat7Q1tP7JknTqLwx0+fMKS0D5i7oLQnpJtVD7ZFg6fCDIsR0+IccFy9FgwaHEbjxVEKIgox5e29efmiv5WKLG/VeZrCCJr4wCS7wlPjSjp5sS5bWUsHaaaGuTvuc7weyUxrwz6WiId9PN7RZ/H/5opvN6vTUXKzdVyPyr5PP+U+8Q9U35A+VCR22NNnCXX5Z3c7jcN7lYug/NZtp4d5HNIp7nvd9ZGwmEd/j+T4Bu8UkmEQNnaxxJad4/YdmLcv5KRR8G+0Z/j/gJPqAEAAAAAAAAAgCrADTUAAAAAAAAAAFAFb2OWbymF0/ftUkktFddSIiel00RECZFlNZ0UUiGRnbJQLOjjiGyjttD2SemqX9aSaMfwucaF6lxmAzeRNJhG+MjL9oq877irJVGBz7KhzZteDu1MgiUkiYi0o0ZkwUyJ7IK+kB3l85FMteMoiwVvD1K6rLLjj5LtuiofvYM3d5IRgoh/pePKV9+plliNFBwK7wMTu0JW7Whrsy0xRsuwHCm5jMg8HSHzToh5RiQGJ6+Yly5KQi73nYqzVNZy9LjeX+B91NZxBtlshqXhbc3Nyqcw0BPa23ZsE+fDE9BQr84gWxwS4VVxMWYIiW88ppcEnpACF8T1lMR8mHIiEm/HJTDxsRIio7CKzNFrr9YGXpO0Hn10aB/zgWNCu39AS0rXvrI2tPfu4TAEGS7R2Kil2DIsbtVzq0K7vr4+tOcddJDyWbTosNBuauI+RqKtDq8yIySmRdGmZTgRaRwVcsj9xRf9wIuEmeR9/r8ojuOVub/rMYuoVCoSmNhMsUQGeCGxtj0dpmpE2yinZPUethOuDnvwm0U2b3EDIsM6y3HdZvYIu0Zk1HfF/UfNgO7TdXN5PnEDPgcn4LE8X9Qyai/B7TktwjXcJJ9nf1LLt+UcGJdhqklZzULPoYER4RHis4qJmGDL1p+1CiXZj+AJNQAAAAAAAAAAUAW4oQYAAAAAAAAAAKpgXCXfvpDSyayoUQlR4AnJgjAdUfnbsvWpSWm4K+R3AbEMwbUrS7Glpsn3WFYT+JHMwwFLDIx4LyFkbLalC5HnA5aau0lxDTIZ+TBJrCiSnusI7XKhl/dV0FK6TIqlJo7F8odEirNW1gvJIBGRY+oJTGwqSZSjr9v2yL9/jVniLGXio2w2mmz8zWxzIDOeGcTB24f8mnw5lyS0lI5klm8hUS57PMYnI2E5mZq60I7FWaKWSvD4b0o6zKgs5JxxIW9ta54V2kODWkpXHuwM7cFeFvDV1bEsr7dzq/LZvG1zaBeFVDab4bkg7mpZXG09S2wtm+WAgzmWhhuKyBZleJTPPo74DBzSMj/Pwe/0BwK5HLfddFqUWDH6+5NKZiP+cUT7ymZ15vpjj2E5uKx24rq8Pkom9TrKK/F2xy9bNqKPlIwT6dBCTxxHZs+OzlXyf/WemF+j43+lECsjJNvD5dt8Pvl8Xrwuwgwj52YisnEw8RiMsbw4JjJPO66+ZymJyJey8HFFv4nFdXiMH/D/xSTfp8TEuGwi90bkcFsviuaUqOHQolSL7p+2qAwxJEKOXJHxO23rObQk7ptkaFBgRJWIyPwhT8gXc20qxeGrFkXup8r8WTmif3gihNdE7imdmN7H/gIzHwAAAAAAAAAAUAW4oQYAAAAAAAAAAKoAN9QAAAAAAAAAAEAVjGsMtSylE3dlLLGOE3Fs1tJbIpqzJGK0yoEuH+C49ojvybgVv6x19ZaIm/N8jmeRsTpOJB7BEandfdIltfiY+n9b7EPI/CkuYvXsSOmGQMS9uSL2QpwylTydTt4MiBTyDqfHHypw3J0XSd3vqhItZxOY2Iy1VFalOLCxls1S5axGiRcb874rxRzLfUXfqyIOe6wlwir5qNf1Rm/6XMD+x3Z5HExmuGxOPK3jvywxLmdqOH7LF8OlnLOIdDyxk6kP7abGltCOBTp+uGvXdvZJ83FsUc6k2N+tfEqeKK8ozrNz+zqxjZ7b3Bo+h5oM24kkx8L6zpDyGRjkUlumKOLzRPxZaVjpF56DEuL1wLB/1tUTYsFCHOiBwNo13L5aWrjv1NXrPCwyPtpxxFpHjJnR/B5BIEtGFYUPb+NHSqMW8xzTLUtlyRhsaUeR5zDa3BBUiFOW5xPdZix5TsY6H8l9R6/H87zo5mCC0R30h3ZMlFpMWnr+KBS4PTtinsoYHm8jocBULovtSJSZEmNqLFKmMJ7kdlfwuHydZfG+4jE9rpfKvL+SbPcivt+O3BvFRG4Mz+NjluT9mNHt1xLPbANxH9if7+XjWPpDKJdEXgRRCtmX80rkc7NNiiYCeEINAAAAAAAAAABUAW6oAQAAAAAAAACAKrAM6sMAAAAAAAAAAABvGjyhBgAAAAAAAAAAqgA31AAAAAAAAAAAQBXghhoAAAAAAAAAAKgC3FADAAAAAAAAAABVgBtqAAAAAAAAAACgCnBDDQAAAAAAAAAAVAFuqAEAAAAAAAAAgCrADTUAAAAAAAAAAFAFuKEGAAAAAAAAAACq4P8B/akt4xJdylUAAAAASUVORK5CYII=\n"},"metadata":{}}]}]} \ No newline at end of file