forked from MhLiao/DB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
148 lines (133 loc) · 6.3 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!python3
import argparse
import os
import torch
import cv2
import numpy as np
from experiment import Structure, Experiment
from concern.config import Configurable, Config
import math
def main():
parser = argparse.ArgumentParser(description='Text Recognition Training')
parser.add_argument('exp', type=str)
parser.add_argument('--resume', type=str, help='Resume from checkpoint')
parser.add_argument('--image_path', type=str, help='image path')
parser.add_argument('--result_dir', type=str, default='./demo_results/', help='path to save results')
parser.add_argument('--data', type=str,
help='The name of dataloader which will be evaluated on.')
parser.add_argument('--image_short_side', type=int, default=736,
help='The threshold to replace it in the representers')
parser.add_argument('--thresh', type=float,
help='The threshold to replace it in the representers')
parser.add_argument('--box_thresh', type=float, default=0.6,
help='The threshold to replace it in the representers')
parser.add_argument('--visualize', action='store_true',
help='visualize maps in tensorboard')
parser.add_argument('--resize', action='store_true',
help='resize')
parser.add_argument('--polygon', action='store_true',
help='output polygons if true')
parser.add_argument('--eager', '--eager_show', action='store_true', dest='eager_show',
help='Show iamges eagerly')
args = parser.parse_args()
args = vars(args)
args = {k: v for k, v in args.items() if v is not None}
conf = Config()
experiment_args = conf.compile(conf.load(args['exp']))['Experiment']
experiment_args.update(cmd=args)
experiment = Configurable.construct_class_from_config(experiment_args)
Demo(experiment, experiment_args, cmd=args).inference(args['image_path'], args['visualize'])
class Demo:
def __init__(self, experiment, args, cmd=dict()):
self.RGB_MEAN = np.array([122.67891434, 116.66876762, 104.00698793])
self.experiment = experiment
experiment.load('evaluation', **args)
self.args = cmd
model_saver = experiment.train.model_saver
self.structure = experiment.structure
self.model_path = self.args['resume']
def init_torch_tensor(self):
# Use gpu or not
torch.set_default_tensor_type('torch.FloatTensor')
if torch.cuda.is_available():
self.device = torch.device('cuda')
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
self.device = torch.device('cpu')
def init_model(self):
model = self.structure.builder.build(self.device)
return model
def resume(self, model, path):
if not os.path.exists(path):
print("Checkpoint not found: " + path)
return
print("Resuming from " + path)
states = torch.load(
path, map_location=self.device)
model.load_state_dict(states, strict=False)
print("Resumed from " + path)
def resize_image(self, img):
height, width, _ = img.shape
if height < width:
new_height = self.args['image_short_side']
new_width = int(math.ceil(new_height / height * width / 32) * 32)
else:
new_width = self.args['image_short_side']
new_height = int(math.ceil(new_width / width * height / 32) * 32)
resized_img = cv2.resize(img, (new_width, new_height))
return resized_img
def load_image(self, image_path):
img = cv2.imread(image_path, cv2.IMREAD_COLOR).astype('float32')
original_shape = img.shape[:2]
img = self.resize_image(img)
img -= self.RGB_MEAN
img /= 255.
img = torch.from_numpy(img).permute(2, 0, 1).float().unsqueeze(0)
return img, original_shape
def format_output(self, batch, output):
batch_boxes, batch_scores = output
for index in range(batch['image'].size(0)):
original_shape = batch['shape'][index]
filename = batch['filename'][index]
result_file_name = 'res_' + filename.split('/')[-1].split('.')[0] + '.txt'
result_file_path = os.path.join(self.args['result_dir'], result_file_name)
boxes = batch_boxes[index]
scores = batch_scores[index]
if self.args['polygon']:
with open(result_file_path, 'wt') as res:
for i, box in enumerate(boxes):
box = np.array(box).reshape(-1).tolist()
result = ",".join([str(int(x)) for x in box])
score = scores[i]
res.write(result + ',' + str(score) + "\n")
else:
with open(result_file_path, 'wt') as res:
for i in range(boxes.shape[0]):
score = scores[i]
if score < self.args['box_thresh']:
continue
box = boxes[i,:,:].reshape(-1).tolist()
result = ",".join([str(int(x)) for x in box])
res.write(result + ',' + str(score) + "\n")
def inference(self, image_path, visualize=False):
self.init_torch_tensor()
model = self.init_model()
self.resume(model, self.model_path)
all_matircs = {}
model.eval()
batch = dict()
batch['filename'] = [image_path]
img, original_shape = self.load_image(image_path)
batch['shape'] = [original_shape]
with torch.no_grad():
batch['image'] = img
pred = model.forward(batch, training=False)
output = self.structure.representer.represent(batch, pred, is_output_polygon=self.args['polygon'])
if not os.path.isdir(self.args['result_dir']):
os.mkdir(self.args['result_dir'])
self.format_output(batch, output)
if visualize and self.structure.visualizer:
vis_image = self.structure.visualizer.demo_visualize(image_path, output)
cv2.imwrite(os.path.join(self.args['result_dir'], image_path.split('/')[-1].split('.')[0]+'.jpg'), vis_image)
if __name__ == '__main__':
main()