forked from BatLep/SkaPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSkaPy_script2-CRS.py
426 lines (338 loc) · 16.9 KB
/
SkaPy_script2-CRS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 5 10:33:04 2018
@author: blepillier
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import pandas as pd
import matplotlib.gridspec as gridspec
import itertools
from time import clock
import os
import pickle
import mplstereonet
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
#%%Import excel file to be analyzed
# Where is your file is located
#loaddir = r'D:\blepillier\Desktop\00-Tmp\201804-Doc BatL\04 - Python'
loaddir = r'K:\gse\PW\PW-shared\BatL\17-SCL_MPS\201807_SCL_DFN_Gemex'
# Where the results should be saved
#savedir = r'D:\blepillier\Desktop\00-Tmp\201804-Doc BatL\04 - Python'
savedir = r'K:\gse\PW\PW-shared\BatL\17-SCL_MPS\201807_SCL_DFN_Gemex'
#%% BOQUILLAS
# *** BOQ1 ***
# Import CSV file
# Give filename
filename = '{}/kinkBOQ1.csv'
#filename = '{}/tmp_PracticeTool.csv'
try:
kinkBoq1 = pd.read_csv(filename.format(loaddir), delimiter=',', index_col=[0], engine='python')
print('File loaded successfuly!')
except:
print('!!! Check file - Error when LOADING !!!')
# Calculate (x1,y1)
kinkBoq1['x1'] = kinkBoq1['xo'] + kinkBoq1['fx']
kinkBoq1['y1'] = kinkBoq1['yo'] + kinkBoq1['fy']
# Here are Real coordinates at the outcrop
x_boq1 = 694460
y_boq1 = 2178485
kinkBoq1['xo_ref'] = kinkBoq1['xo'] + x_boq1
kinkBoq1['yo_ref'] = kinkBoq1['yo'] + y_boq1
kinkBoq1['x1_ref'] = kinkBoq1['x1'] + x_boq1
kinkBoq1['y1_ref'] = kinkBoq1['y1'] + y_boq1
kinkBoq1['z'] = 1440
kinkBoq1.to_csv('Exp_Boq1.csv')
#kinkBoq1.to_csv('Exp_Boq1.dat')
# *** BOQ2 ***
# Import CSV file
# Give filename
filename = '{}/kinkBOQ2.csv'
#filename = '{}/tmp_PracticeTool.csv'
try:
kinkBoq2 = pd.read_csv(filename.format(loaddir), delimiter=',', index_col=[0], engine='python')
print('File loaded successfuly!')
except:
print('!!! Check file - Error when LOADING !!!')
# Calculate (x1,y1)
kinkBoq2['x1'] = kinkBoq2['xo'] + kinkBoq2['fx']
kinkBoq2['y1'] = kinkBoq2['yo'] + kinkBoq2['fy']
# Here are Real coordinates at the outcrop
x_boq2 = 694479
y_boq2 = 2178455
kinkBoq2['xo_ref'] = kinkBoq2['xo'] + x_boq2
kinkBoq2['yo_ref'] = kinkBoq2['yo'] + y_boq2
kinkBoq2['x1_ref'] = kinkBoq2['x1'] + x_boq2
kinkBoq2['y1_ref'] = kinkBoq2['y1'] + y_boq2
kinkBoq2['z'] = 1450
kinkBoq2.to_csv('Exp_Boq2.csv')
#kinkBoq2.to_csv('Exp_Boq2.dat')
#%% ELDORADO
# *** ELD1 ***
# Import CSV file
# Give filename
filename = '{}/kinkELD1.csv'
#filename = '{}/tmp_PracticeTool.csv'
try:
kinkEld1 = pd.read_csv(filename.format(loaddir), delimiter=',', index_col=[0], engine='python')
print('File loaded successfuly!')
except:
print('!!! Check file - Error when LOADING !!!')
# Calculate (x1,y1)
kinkEld1['x1'] = kinkEld1['xo'] + kinkEld1['fx']
kinkEld1['y1'] = kinkEld1['yo'] + kinkEld1['fy']
# Here are Real coordinates at the outcrop
x_eld1 = 694415.51
y_eld1 = 2178086.99
kinkEld1['xo_ref'] = kinkEld1['xo'] + x_eld1
kinkEld1['yo_ref'] = kinkEld1['yo'] + y_eld1
kinkEld1['x1_ref'] = kinkEld1['x1'] + x_eld1
kinkEld1['y1_ref'] = kinkEld1['y1'] + y_eld1
kinkEld1['z'] = 1462
kinkEld1.to_csv('Exp_Eld1.csv')
# *** ELD2 ***
# Import CSV file
# Give filename
filename = '{}/kinkEld2.csv'
#filename = '{}/tmp_PracticeTool.csv'
try:
kinkEld2 = pd.read_csv(filename.format(loaddir), delimiter=',', index_col=[0], engine='python')
print('File loaded successfuly!')
except:
print('!!! Check file - Error when LOADING !!!')
# Calculate (x1,y1)
kinkEld2['x1'] = kinkEld2['xo'] + kinkEld2['fx']
kinkEld2['y1'] = kinkEld2['yo'] + kinkEld2['fy']
# Here are Real coordinates at the outcrop
x_eld2 = 694419
y_eld2 = 2178114
kinkEld2['xo_ref'] = kinkEld2['xo'] + x_eld2
kinkEld2['yo_ref'] = kinkEld2['yo'] + y_eld2
kinkEld2['x1_ref'] = kinkEld2['x1'] + x_eld2
kinkEld2['y1_ref'] = kinkEld2['y1'] + y_eld2
kinkEld2['z'] = 1457
kinkEld2.to_csv('Exp_Eld2.csv')
#%% TATATILA
# Import CSV file
# Give filename
filename = '{}/kinkTAT.csv'
#filename = '{}/tmp_PracticeTool.csv'
try:
kinkTat = pd.read_csv(filename.format(loaddir), delimiter=',', index_col=[0], engine='python')
print('File loaded successfuly!')
except:
print('!!! Check file - Error when LOADING !!!')
# Calculate (x1,y1)
kinkTat['x1'] = kinkTat['xo'] + kinkTat['fx']
kinkTat['y1'] = kinkTat['yo'] + kinkTat['fy']
# Here are Real coordinates at the outcrop
x_Tat = 698793.76
y_Tat = 2180079.71
kinkTat['xo_ref'] = kinkTat['xo'] + x_Tat
kinkTat['yo_ref'] = kinkTat['yo'] + y_Tat
kinkTat['x1_ref'] = kinkTat['x1'] + x_Tat
kinkTat['y1_ref'] = kinkTat['y1'] + y_Tat
kinkTat['z'] = 1850
kinkTat.to_csv('Exp_Tat.csv')
#%% Pueblo Nuevo PNO
# Import CSV file
# Give filename
filename1 = '{}/kinkPNO.csv'
filename2 = '{}/Scl_surveyPNO.csv'
#filename = '{}/tmp_PracticeTool.csv'
try:
kinkPNO = pd.read_csv(filename1.format(loaddir), delimiter=',', index_col=[0], engine='python')
print('File loaded successfuly!')
except:
print('!!! Check file - Error when LOADING !!!')
try:
SurveyPNO = pd.read_csv(filename2.format(loaddir), delimiter=',', index_col=[0], engine='python')
print('File loaded successfuly!')
except:
print('!!! Check file - Error when LOADING !!!')
# Calculate (x1,y1)
kinkPNO['x1'] = kinkPNO['xo'] + kinkPNO['fx']
kinkPNO['y1'] = kinkPNO['yo'] + kinkPNO['fy']
# Here are Real coordinates at the outcrop
x_PNO = 693029.53
y_PNO = 2180263.17
SurveyPNO['xo_ref'] = SurveyPNO['Xout'] + x_PNO
SurveyPNO['yo_ref'] = SurveyPNO['Yout'] + y_PNO
kinkPNO['xo_ref'] = kinkPNO['xo'] + x_PNO
kinkPNO['yo_ref'] = kinkPNO['yo'] + y_PNO
kinkPNO['x1_ref'] = kinkPNO['x1'] + x_PNO
kinkPNO['y1_ref'] = kinkPNO['y1'] + y_PNO
kinkPNO['z'] = 2043
kinkPNO.to_csv('Exp_PNO.csv')
#%% Rinconada RIN
# Import CSV file
# Give filename
filename = '{}/kinkRIN.csv'
#filename = '{}/tmp_PracticeTool.csv'
try:
kinkRin = pd.read_csv(filename.format(loaddir), delimiter=',', index_col=[0], engine='python')
print('File loaded successfuly!')
except:
print('!!! Check file - Error when LOADING !!!')
# Calculate (x1,y1)
kinkRin['x1'] = kinkRin['xo'] + kinkRin['fx']
kinkRin['y1'] = kinkRin['yo'] + kinkRin['fy']
# Here are Real coordinates at the outcrop
x_Rin = 692787.68
y_Rin = 2175790.93
kinkRin['xo_ref'] = kinkRin['xo'] + x_Rin
kinkRin['yo_ref'] = kinkRin['yo'] + y_Rin
kinkRin['x1_ref'] = kinkRin['x1'] + x_Rin
kinkRin['y1_ref'] = kinkRin['y1'] + y_Rin
kinkRin['z'] = 1883
kinkRin.to_csv('Exp_Rin.csv')
#%% SAT
# Import CSV file
# Give filename
filename = '{}/kinkSAT.csv'
try:
kinkSat = pd.read_csv(filename.format(loaddir), delimiter=',', index_col=[0], engine='python')
print('File loaded successfuly!')
except:
print('!!! Check file - Error when LOADING !!!')
# Calculate (x1,y1)
kinkSat['x1'] = kinkSat['xo'] + kinkSat['fx']
kinkSat['y1'] = kinkSat['yo'] + kinkSat['fy']
# Here are Real coordinates at the outcrop
x_Sat = 679318.10
y_Sat = 2156777.25
kinkSat['xo_ref'] = kinkSat['xo'] + x_Sat
kinkSat['yo_ref'] = kinkSat['yo'] + y_Sat
kinkSat['x1_ref'] = kinkSat['x1'] + x_Sat
kinkSat['y1_ref'] = kinkSat['y1'] + y_Sat
kinkSat['z'] = 2492
kinkSat.to_csv('Exp_Sat.csv')
#%% PLOTS
# Define Figure/plot specs
fig9 = plt.figure(figsize=(7,4))
row = 1
column = 1
gs = gridspec.GridSpec(row,column)
# Define subplots axes:
ax0 = plt.subplot(gs[0,0])
ax0 = fig9.add_subplot(gs[0,0])
color='k'
#ax0.plot(kinkBoq1['xo_ref'],kinkBoq1['yo_ref'], color)
#ax0.plot(kinkBoq2['xo_ref'],kinkBoq2['yo_ref'], color)
#ax0.plot(kinkEld1['xo_ref'],kinkEld1['yo_ref'], color)
#ax0.plot(kinkEld2['xo_ref'],kinkEld2['yo_ref'], color)
#ax0.plot(kinkTat['xo_ref'],kinkTat['yo_ref'], color)
ax0.plot(SurveyPNO['xo_ref'],SurveyPNO['yo_ref'], color)
#ax0.plot(kinkRin['xo_ref'],kinkRin['yo_ref'], color)
#ax0.plot(kinkSat['xo_ref'],kinkSat['yo_ref'], color)
# PLOTTING ALL EXTRAPOLATED FRACTURES
#ax0.quiver(kinkBoq1['xo_ref'], kinkBoq1['yo_ref'], kinkBoq1['fx'], kinkBoq1['fy'], color= kinkBoq1['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkBoq1['xo_ref'], kinkBoq1['yo_ref'], -kinkBoq1['fx'], -kinkBoq1['fy'], color= kinkBoq1['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkEld1['xo_ref'], kinkEld1['yo_ref'], kinkEld1['fx'], kinkEld1['fy'], color= kinkEld1['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkEld1['xo_ref'], kinkEld1['yo_ref'], -kinkEld1['fx'], -kinkEld1['fy'], color= kinkEld1['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkBoq2['xo_ref'], kinkBoq2['yo_ref'], kinkBoq2['fx'], kinkBoq2['fy'], color= kinkBoq2['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkBoq2['xo_ref'], kinkBoq2['yo_ref'], -kinkBoq2['fx'], -kinkBoq2['fy'], color= kinkBoq2['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkEld2['xo_ref'], kinkEld2['yo_ref'], kinkEld2['fx'], kinkEld2['fy'], color= kinkEld2['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkEld2['xo_ref'], kinkEld2['yo_ref'], -kinkEld2['fx'], -kinkEld2['fy'], color= kinkEld2['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#
#ax0.quiver(kinkTat['xo_ref'], kinkTat['yo_ref'], kinkTat['fx'], kinkTat['fy'], color= kinkTat['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkTat['xo_ref'], kinkTat['yo_ref'], -kinkTat['fx'], -kinkTat['fy'], color= kinkTat['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkPNO['xo_ref'], kinkPNO['yo_ref'], kinkPNO['fx'], kinkPNO['fy'], color= kinkPNO['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkPNO['xo_ref'], kinkPNO['yo_ref'], -kinkPNO['fx'], -kinkPNO['fy'], color= kinkPNO['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#
#ax0.quiver(kinkRin['xo_ref'], kinkRin['yo_ref'], kinkRin['fx'], kinkRin['fy'], color= kinkRin['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkRin['xo_ref'], kinkRin['yo_ref'], -kinkRin['fx'], -kinkRin['fy'], color= kinkRin['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkSat['xo_ref'], kinkSat['yo_ref'], kinkSat['fx'], kinkSat['fy'], color= kinkSat['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkSat['xo_ref'], kinkSat['yo_ref'], -kinkSat['fx'], -kinkSat['fy'], color= kinkSat['fapcol'], width=0.001, headlength=0, headaxislength=0, scale=0.1)
# PLOTTING Background fractures Axes using AVG values
#ax0.quiver(kinkBoq1['xo_ref'], kinkBoq1['yo_ref'], kinkBoq1['fxmean'], kinkBoq1['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkBoq1['xo_ref'], kinkBoq1['yo_ref'], -kinkBoq1['fxmean'], -kinkBoq1['fymean'], color='lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkEld1['xo_ref'], kinkEld1['yo_ref'], kinkEld1['fxmean'], kinkEld1['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkEld1['xo_ref'], kinkEld1['yo_ref'], -kinkEld1['fxmean'], -kinkEld1['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkBoq2['xo_ref'], kinkBoq2['yo_ref'], kinkBoq2['fxmean'], kinkBoq2['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkBoq2['xo_ref'], kinkBoq2['yo_ref'], -kinkBoq2['fxmean'], -kinkBoq2['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkEld2['xo_ref'], kinkEld2['yo_ref'], kinkEld2['fxmean'], kinkEld2['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkEld2['xo_ref'], kinkEld2['yo_ref'], -kinkEld2['fxmean'], -kinkEld2['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#
#ax0.quiver(kinkTat['xo_ref'], kinkTat['yo_ref'], kinkTat['fxmean'], kinkTat['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkTat['xo_ref'], kinkTat['yo_ref'], -kinkTat['fxmean'], -kinkTat['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkPNO['xo_ref'], kinkPNO['yo_ref'], kinkPNO['fxmean'], kinkPNO['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkPNO['xo_ref'], kinkPNO['yo_ref'], -kinkPNO['fxmean'], -kinkPNO['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#
#ax0.quiver(kinkRin['xo_ref'], kinkRin['yo_ref'], kinkRin['fxmean'], kinkRin['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkRin['xo_ref'], kinkRin['yo_ref'], -kinkRin['fxmean'], -kinkRin['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkSat['xo_ref'], kinkSat['yo_ref'], kinkSat['fxmean'], kinkSat['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
#ax0.quiver(kinkSat['xo_ref'], kinkSat['yo_ref'], -kinkSat['fxmean'], -kinkSat['fymean'], color= 'lightgrey', width=0.001, headlength=0, headaxislength=0, scale=0.1)
# PLOTTING SCANLINES
#ax0.quiver(kinkBoq1['xo_ref'], kinkBoq1['yo_ref'], kinkBoq1['fx'], kinkBoq1['fy'], color= kinkBoq1['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkBoq1['xo_ref'], kinkBoq1['yo_ref'], -kinkBoq1['fx'], -kinkBoq1['fy'], color= kinkBoq1['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkEld1['xo_ref'], kinkEld1['yo_ref'], kinkEld1['fx'], kinkEld1['fy'], color= kinkEld1['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkEld1['xo_ref'], kinkEld1['yo_ref'], -kinkEld1['fx'], -kinkEld1['fy'], color= kinkEld1['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkBoq2['xo_ref'], kinkBoq2['yo_ref'], kinkBoq2['fx'], kinkBoq2['fy'], color= kinkBoq2['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkBoq2['xo_ref'], kinkBoq2['yo_ref'], -kinkBoq2['fx'], -kinkBoq2['fy'], color= kinkBoq2['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkEld2['xo_ref'], kinkEld2['yo_ref'], kinkEld2['fx'], kinkEld2['fy'], color= kinkEld2['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkEld2['xo_ref'], kinkEld2['yo_ref'], -kinkEld2['fx'], -kinkEld2['fy'], color= kinkEld2['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#
#ax0.quiver(kinkTat['xo_ref'], kinkTat['yo_ref'], kinkTat['fx'], kinkTat['fy'], color= kinkTat['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkTat['xo_ref'], kinkTat['yo_ref'], -kinkTat['fx'], -kinkTat['fy'], color= kinkTat['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
ax0.quiver(kinkPNO['xo_ref'], kinkPNO['yo_ref'], kinkPNO['fx'], kinkPNO['fy'], color= kinkPNO['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
ax0.quiver(kinkPNO['xo_ref'], kinkPNO['yo_ref'], -kinkPNO['fx'], -kinkPNO['fy'], color= kinkPNO['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#
#ax0.quiver(kinkRin['xo_ref'], kinkRin['yo_ref'], kinkRin['fx'], kinkRin['fy'], color= kinkRin['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkRin['xo_ref'], kinkRin['yo_ref'], -kinkRin['fx'], -kinkRin['fy'], color= kinkRin['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkSat['xo_ref'], kinkSat['yo_ref'], kinkSat['fx'], kinkSat['fy'], color= kinkSat['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
#ax0.quiver(kinkSat['xo_ref'], kinkSat['yo_ref'], -kinkSat['fx'], -kinkSat['fy'], color= kinkSat['f_col'], width=0.001, headlength=0, headaxislength=0, scale=None)
plt.axis('equal')
ax0.grid()
fig9.tight_layout()
fig9.savefig('Scanlines_UTMQ14_Boq', dpi=300)
#%%
#Boquillas1 xyz (Main)
# lat 19,69232 / 19.69223
# long -97,14502 / -97.14484
# alt 1440 m
# UTM 694460 m E
# UTM 2178485 m N
#Boquillas2 xyz (Upper)
# lat 19,692235 / 19.69196
# long -97,144769 / -97.14466
# alt 1450 m
# UTM 694479 m E
# UTM 2178455 m N
#Eldorado1 xyz (Main)
# lat 19,688638
# long -97,145308
# alt 1462 m
# UTM 694415.51 m E
# UTM 2178086.99 m N
#Eldorado2 xyz (Lower)
# lat 19.68888
# long -97.14527
# alt 1456.5 m
# UTM 694419 m E
# UTM 2178114 m N
#PNO xyz
# lat 19,70843
# long -97,1583
# alt 2042.6 m
# UTM 693029.53 m E
# UTM 2180263.17 m N
#Tat xyz
# lat 19,706200
# long -97,103345
# alt 1850.4
# UTM 698793.76 m E
# UTM 2180079.71 m N
#Rinco xyz
# lat 19.668059
# long -97.161068
# alt 1882.9 m
# UTM 692787.68 m E
# UTM 2175790.93 m N
#SAT xyz
# lat 19,497576
# long -97,291318
# alt 2492 m
# UTM 679318.10 m E
# UTM 2156777.25 m N