-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfunctions.py
440 lines (363 loc) · 17.2 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import cv2
import numpy as np
import onnxruntime as ort
import PIL
from PIL import Image, ImageDraw
class Segmentator:
def __init__(self, conf_thresh=0.25, iou_thresh=0.5, max_det=300):
self.conf_thresh = conf_thresh
self.iou_thresh = iou_thresh
self.max_det = max_det
self.inference_time = None
self.nms_time = None
self.interpreter = None
self.is_inititated = False
def xywh2xyxy(self, x):
y = np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def xyxy2xywh(self, x):
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
y = np.copy(x)
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
y[:, 2] = x[:, 2] - x[:, 0] # width
y[:, 3] = x[:, 3] - x[:, 1] # height
return y
def nms(self, dets, scores, thresh):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
areas = (x2 - x1 + 1e-9) * (y2 - y1 + 1e-9)
order = scores.argsort()[::-1] # get boxes with more ious first
keep = []
while order.size > 0:
i = order[0] # pick maxmum iou box
other_box_ids = order[1:]
keep.append(i)
xx1 = np.maximum(x1[i], x1[other_box_ids])
yy1 = np.maximum(y1[i], y1[other_box_ids])
xx2 = np.minimum(x2[i], x2[other_box_ids])
yy2 = np.minimum(y2[i], y2[other_box_ids])
# print(list(zip(xx1, yy1, xx2, yy2)))
w = np.maximum(0.0, xx2 - xx1 + 1e-9) # maximum width
h = np.maximum(0.0, yy2 - yy1 + 1e-9) # maxiumum height
inter = w * h
ovr = inter / (areas[i] + areas[other_box_ids] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return np.array(keep)
def non_max_suppression(self, prediction, conf_thres=0.5, iou_thres=0.45, max_det=1000):
output = [np.zeros((0, 6))] * prediction.shape[0]
if prediction.size == 0:
return output
xc = prediction[..., 4] > conf_thres # candidate
# Settings
min_wh, max_wh = 2, 7680 # (pixels) minimum and maximum box width and height
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
nc = 80
mi = 5 + nc
for xi, x in enumerate(prediction): # image index, image inference
# Apply constraints
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
x = x[xc[xi]] # confidence
# If none remain process next image
if not x.shape[0]:
continue
# Compute conf
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
box = self.xywh2xyxy(x[:, :4]) #Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] (line 912/general.py)
mask = x[:, mi:]
# Detections matrix nx6 (xyxy, conf, cls)
conf = np.amax(x[:, 5:mi], axis=1, keepdims=True)
j = np.argmax(x[:, 5:mi], axis=1).reshape(conf.shape)
x = np.concatenate((box, conf, j.astype(float), mask), axis=1)[conf.flatten() > conf_thres]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
elif n > max_nms: # excess boxes
x = x[x[:, 4].argsort(descending=True)[:max_nms]]
# Batched NMS
c = x[:, 5:6] * max_wh # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
i = self.nms(boxes, scores, iou_thres) # NMS
# if i.shape[0] > max_det: # limit detections
# i = i[:max_det]
output[xi] = x[i]
return output
#Function to calculate masks
def crop_mask(self, masks, boxes):
"""
"Crop" predicted masks by zeroing out everything not in the predicted bbox.
Vectorized by Chong (thanks Chong).
Args:
- masks should be a size [h, w, n] tensor of masks
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
"""
n, h, w = masks.shape #n = 6 (yolov5s-seg.onnx)
x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
r = np.arange(w, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
c = np.arange(h, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
def process_mask(self, protos, masks_in, bboxes, shape, upsample=False):
"""
Crop before upsample.
proto_out: [mask_dim, mask_h, mask_w]
out_masks: [n, mask_dim], n is number of masks after nms
bboxes: [n, 4], n is number of masks after nms
shape:input_image_size, (h, w)
return: h, w, n
"""
c, mh, mw = protos.shape # CHW
ih, iw = shape
# masks = (masks_in @ protos.astype(float).view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
mask_protos = np.reshape(protos, (c, -1))
matmulres = np.matmul(masks_in, mask_protos)
masks = np.reshape(matmulres, (masks_in.shape[0], mh, mw))
downsampled_bboxes = bboxes.copy()
downsampled_bboxes[:, 0] *= mw / iw
downsampled_bboxes[:, 2] *= mw / iw
downsampled_bboxes[:, 3] *= mh / ih
downsampled_bboxes[:, 1] *= mh / ih
masks = self.crop_mask(masks, downsampled_bboxes) # CHW
# if upsample:
# masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
masks_gt = np.greater(masks, 0.5)
masks_gt = masks_gt.astype(float)
# return masks.gt_(0.5)
return masks_gt
def scale_boxes(self, img1_shape, boxes, img0_shape, ratio_pad=None):
# Rescale boxes (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
boxes[:, [0, 2]] -= pad[0] # x padding
boxes[:, [1, 3]] -= pad[1] # y padding
boxes[:, :4] /= gain
self.clip_boxes(boxes, img0_shape)
return boxes
def clip_boxes(self, boxes, shape):
# Clip boxes (xyxy) to image shape (height, width)
# if isinstance(boxes, torch.Tensor): # faster individually
# boxes[:, 0].clamp_(0, shape[1]) # x1
# boxes[:, 1].clamp_(0, shape[0]) # y1
# boxes[:, 2].clamp_(0, shape[1]) # x2
# boxes[:, 3].clamp_(0, shape[0]) # y2
# else: # np.array (faster grouped)
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
def is_ascii(self, s=''):
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
s = str(s) # convert list, tuple, None, etc. to str
return len(s.encode().decode('ascii', 'ignore')) == len(s)
def scale_image(self, im1_shape, masks, im0_shape, ratio_pad=None):
"""
img1_shape: model input shape, [h, w]
img0_shape: origin pic shape, [h, w, 3]
masks: [h, w, num] -> in onnx numpy: [n, w, h] ##(6, 160, 160)
"""
# Rescale coordinates (xyxy) from im1_shape to im0_shape
if ratio_pad is None: # calculate from im0_shape
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
else:
pad = ratio_pad[1]
top, left = int(pad[1]), int(pad[0]) # y, x
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
if len(masks.shape) < 2:
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
masks = masks[top:bottom, left:right]
# masks = masks.permute(2, 0, 1).contiguous()
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
# masks = masks.permute(1, 2, 0).contiguous()
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
if len(masks.shape) == 2:
masks = masks[:, :, None]
return masks
def letterbox(self, im, new_shape=(640, 640), color=(114, 114, 114), auto=False, scaleFill=False, scaleup=False, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
r1 = max(new_shape[0] /shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
# if auto: # minimum rectangle
# dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
if scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0])
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, ratio, (dw, dh)
def _cv2_rotate(self, im):
# Rotate a cv2 video manually
if self.orientation == 0:
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
elif self.orientation == 180:
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif self.orientation == 90:
return cv2.rotate(im, cv2.ROTATE_180)
return im
def __len__(self):
return self.nf # number of files
class Colors:
# Ultralytics color palette https://ultralytics.com/
def __init__(self):
# hex = matplotlib.colors.TABLEAU_COLORS.values()
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
self.palette = [self.hex2rgb(f'#{c}') for c in hexs]
self.n = len(self.palette)
def __call__(self, i, bgr=False):
c = self.palette[int(i) % self.n]
return (c[2], c[1], c[0]) if bgr else c
@staticmethod
def hex2rgb(h): # rgb order (PIL)
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
#Annotator
class Annotator(Segmentator):
# YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
non_ascii = not self.is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic
self.pil = pil or non_ascii
self.im = im
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
if label:
tf = max(self.lw - 1, 1) # font thickness
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height
outside = p1[1] - h >= 3
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled
cv2.putText(self.im,
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2),
0,
self.lw / 3,
txt_color,
thickness=tf,
lineType=cv2.LINE_AA)
def masks(self, masks, colors, im_gpu=None, alpha=0.5):
"""Plot masks at once.
Args:
masks (tensor): predicted masks on cuda, shape: [n, h, w]
colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n]
im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1]
alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque
"""
if self.pil:
# convert to numpy first
self.im = np.asarray(self.im).copy()
if im_gpu is None:
# Add multiple masks of shape(h,w,n) with colors list([r,g,b], [r,g,b], ...)
if len(masks) == 0:
return
# if isinstance(masks, torch.Tensor):
# masks = torch.as_tensor(masks, dtype=torch.uint8)
# masks = masks.permute(1, 2, 0).contiguous()
# masks = masks.cpu().numpy()
masks = np.ascontiguousarray(masks.transpose(1, 2, 0))
masks = self.scale_image(masks.shape[:2], masks, self.im.shape)
masks = np.asarray(masks, dtype=np.float32)
colors = np.asarray(colors, dtype=np.float32) # shape(n,3)
s = masks.sum(2, keepdims=True).clip(0, 1) # add all masks together
masks = (masks @ colors).clip(0, 255) # (h,w,n) @ (n,3) = (h,w,3)
self.im[:] = masks * alpha + self.im * (1 - s * alpha)
if self.pil:
# convert im back to PIL and update draw
self.fromarray(self.im)
def rectangle(self, xy, fill=None, outline=None, width=1):
# Add rectangle to image (PIL-only)
self.draw.rectangle(xy, fill, outline, width)
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top'):
# Add text to image (PIL-only)
if anchor == 'bottom': # start y from font bottom
w, h = self.font.getsize(text) # text width, height
xy[1] += 1 - h
self.draw.text(xy, text, fill=txt_color, font=self.font)
def fromarray(self, im):
# Update self.im from a numpy array
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
self.draw = ImageDraw.Draw(self.im)
def result(self):
# Return annotated image as array
return np.asarray(self.im)
import threading
class VideoCameraAPI:
def __init__(self):
self.img = None
self.grabbed = False
self.video_capture = None
self.read_thread = None
self.read_lock = threading.Lock()
self.running = False
def open(self, cameraID):
try:
self.video_capture = cv2.VideoCapture(cameraID)
except RuntimeError:
self.video_capture.release()
print("Unable to open camera")
return
# Grab the first frame to start the video capturing
self.grabbed, self.img = self.video_capture.read()
return True
def start(self):
try:
if self.running:
print('Video capturing is already running')
return None
# create a thread to read the camera image
if self.video_capture is not None:
self.running = True
self.read_thread = threading.Thread(target=self._updateCamera, daemon=True)
self.read_thread.start()
return self
except Exception as e:
print(e)
return False
def read(self):
with self.read_lock:
img = self.img
return img
def _updateCamera(self):
# This is the thread to read images from the camera
while self.running:
try:
grabbed, img = self.video_capture.read()
with self.read_lock:
self.grabbed = grabbed
self.img = img
except RuntimeError:
print("Could not read image from camera")
def stop(self):
try:
self.running = False
except Exception as e:
print(e)
def release(self):
if self.video_capture is not None:
self.video_capture.release()