-
Notifications
You must be signed in to change notification settings - Fork 0
/
LRL_Vector3.cpp
246 lines (210 loc) · 8.27 KB
/
LRL_Vector3.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include <cmath>
#include <cfloat>
#include <climits>
#include <iostream>
/* remove the next include if using a local version of rand */
#include <stdlib.h>
#ifdef USE_SYSTEM_HEADERS
#include <LRL_Vector3.h>
#else
#include "LRL_Vector3.h"
#endif
const double Vector_3::MINNORM = 1.0E-8;
class Matrix_3x3;
//This is a translation of an old fortran library of vector algebra code. It
//was designed to be versatile and easy to use. Surprisingly, even in 2005, it
//is in quite common use in the scientific community.
//
//Conventions:
// vector are internally arrays of 3 doubles
// matrices are internally arrays of 9 doubles, indexed as follows
// 0 1 2
// 3 4 5
// 6 7 8
//
//-----------------------------------------------------------------------------
// Name: GeneralRotation()
// Original Defect: Q-3726 larrya
// Description: For a given rotation angle about the line from v1 to v2,
// GeneralRotation computes the transformation such that for some
// input vector "vIn", an output vector "vOut" can be computed by:
// vOut = m*vIn + vTrans
// where m is the matrix returned in the output pair and vTrans
// is the vector in that pair.
//
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
std::pair<Matrix_3x3, Vector_3> Vector_3::GeneralRotation(
const double angle,
const Vector_3& v1,
const Vector_3& v2 )
{
const Vector_3 x = v2 - v1;
const Matrix_3x3 m = x.Rotmat( angle );
const Vector_3 y = m.MV( v1 );
const Vector_3 tran = v1 - y;
return( std::make_pair( m, tran ) );
}
//-----------------------------------------------------------------------------
// Name: Rotmat()
// Description: Rotmat computes the matrix that would rotate an arbitrary vector
// about a specified vector by a specified angle.
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3 Vector_3::Rotmat( const double angle ) const
//-------------------------------------------------------------------------------------
{/* from Wikipedia http://en.wikipedia.org/wiki/Rotation_matrix
R = \begin{bmatrix}
u_x^2+(1-u_x^2)c & u_x u_y(1-c)-u_zs & u_x u_z(1-c)+u_ys
u_x u_y(1-c)+u_zs & u_y^2+(1-u_y^2)c & u_y u_z(1-c)-u_xs
u_x u_z(1-c)-u_ys & u_y u_z(1-c)+u_xs & u_z^2+(1-u_z^2)c
\end{bmatrix},
where
c = \cos\theta, s = \sin\theta.
*/
const double d = (*this).SquaredLength( );
Vector_3 vtemp;
if ( d != 1.0 )
{
vtemp = (*this) / sqrt( d );
}
else if ( d == 1.0 )
{
vtemp = (*this);
}
else if ( d == 0.0 )
{
vtemp = Vector_3::GetXAxis( );
}
// otherwise it was already a unit vector
const double& ux = vtemp.v[0];
const double& uy = vtemp.v[1];
const double& uz = vtemp.v[2];
const double ux2 = ux*ux;
const double uy2 = uy*uy;
const double uz2 = uz*uz;
const double uxy = ux*uy;
const double uxz = ux*uz;
const double uyz = uy*uz;
const double s = ::sin(angle);
const double c = ::cos(angle);
const Matrix_3x3 mtemp(
ux2+(1.0-ux2)*c, uxy*(1.0-c)-uz*s, uxz*(1.0-c)+uy*s,
uxy*(1.0-c)+uz*s, uy2+(1-uy2)*c, uyz*(1.0-c)-ux*s,
uxz*(1.0-c)-uy*s, uyz*(1.0-c)+ux*s, uz2+(1.0-uz2)*c
);
return (mtemp);
}
//-----------------------------------------------------------------------------
// Name: MV
// Description: multiply a vector by a matrix
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Vector_3 Vector_3::MV( const Matrix_3x3& m ) const
//-------------------------------------------------------------------------------------
{
return (Vector_3(
m.m[0]*v[0]+m.m[1]*v[1]+m.m[2]*v[2],
m.m[3]*v[0]+m.m[4]*v[1]+m.m[5]*v[2],
m.m[6]*v[0]+m.m[7]*v[1]+m.m[8]*v[2] ));
}
//-----------------------------------------------------------------------------
// Name: operator*()
// Description: multiply two matrices
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3 Matrix_3x3::operator* ( const Matrix_3x3& o ) const
//-------------------------------------------------------------------------------------
{
return(Matrix_3x3( m[0]*o.m[0] + m[1]*o.m[3] + m[2]*o.m[6],
m[0]*o.m[1] + m[1]*o.m[4] + m[2]*o.m[7],
m[0]*o.m[2] + m[1]*o.m[5] + m[2]*o.m[8],
m[3]*o.m[0] + m[4]*o.m[3] + m[5]*o.m[6],
m[3]*o.m[1] + m[4]*o.m[4] + m[5]*o.m[7],
m[3]*o.m[2] + m[4]*o.m[5] + m[5]*o.m[8],
m[6]*o.m[0] + m[7]*o.m[3] + m[8]*o.m[6],
m[6]*o.m[1] + m[7]*o.m[4] + m[8]*o.m[7],
m[6]*o.m[2] + m[7]*o.m[5] + m[8]*o.m[8] ) );
}
//NON MEMBER FUNCTIONS START HERE
#ifdef __cplusplus
//-----------------------------------------------------------------------------
// Name: operator<<()
// Description: stream a vector to the output stream
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
std::ostream& operator<< ( std::ostream& o, const Vector_3& v )
//-------------------------------------------------------------------------------------
{
o<<v.v[0]<<" "<<v.v[1]<<" "<<v.v[2];
return o;
}
//-----------------------------------------------------------------------------
// Name: operator<<()
// Description: stream a matrix to the output stream
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
std::ostream& operator<< ( std::ostream& o, const Matrix_3x3& m )
//-------------------------------------------------------------------------------------
{
o << m.m[0] << ", " << m.m[1] << ", " << m.m[2] << std::endl;
o << m.m[3] << ", " << m.m[4] << ", " << m.m[5] << std::endl;
o << m.m[6] << ", " << m.m[7] << ", " << m.m[8];
return o;
}
#endif
//-----------------------------------------------------------------------------
// Name: operator*()
// Description: multiples a vector by a floating point number
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Vector_3 operator* ( const double& a, const Vector_3& v )
//-------------------------------------------------------------------------------------
{
return ( Vector_3(a*v.v[0], a*v.v[1], a*v.v[2]) );
}
//-----------------------------------------------------------------------------
// Name: operator*()
// Description: multiples a matrix by a floating point number
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3 operator* ( const double& a, const Matrix_3x3& m )
//-------------------------------------------------------------------------------------
{
return ( Matrix_3x3(
a*m.m[0], a*m.m[1], a*m.m[2],
a*m.m[3], a*m.m[4], a*m.m[5],
a*m.m[6], a*m.m[7], a*m.m[8]
)
);
}
//-----------------------------------------------------------------------------
// Name: Angle()
// Description: angle between the ends of three vectors. In many cases, the
// middle vector will be the origin.
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
double Vector_3::Angle( const Vector_3& a, const Vector_3& b, const Vector_3& c )
//-------------------------------------------------------------------------------------
{
const Vector_3 x = a - b;
const Vector_3 y = c - b;
const Vector_3 z = x.Cross(y);
const double xNorm = x.Norm( );
const double yNorm = y.Norm( );
const double zNorm = z.Norm( );
const double dotProduct = x.Dot( y );
double angle;
if (xNorm > Vector_3::MINNORM && yNorm > Vector_3::MINNORM) {
const double cosAngle = dotProduct/(xNorm*yNorm);
const double sinAngle = zNorm/(xNorm*yNorm);
angle = ::atan2( sinAngle, cosAngle );
}
else
{
angle = 0.0;
}
return( angle );
}
double Angle( const Vector_3& v1, const Vector_3& v2 )
{
return Vector_3::Angle( v1, Vector_3::GetZeroVector( ), v2 );
}