-
Notifications
You must be signed in to change notification settings - Fork 0
/
LRL_Vector3.h
755 lines (662 loc) · 26.6 KB
/
LRL_Vector3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
#ifndef VECTOR_3D_H_INCLUDED
#define VECTOR_3D_H_INCLUDED
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <climits>
#include <sstream>
#include <list>
#include <iostream>
#include <string>
#include <utility>
#include <vector>
#pragma warning( disable : 4505) // unreferenced local function has been removed
// forward declarations
class Vector_3;
class Matrix_3x3;
// these are friend functions, put here because LINT complains if they are at the end
//#ifdef __cplusplus
// std::ostream& operator<< ( std::ostream&, const Vector_3& );
// std::ostream& operator<< ( std::ostream&, const Matrix_3x3& );
//#endif
Vector_3 operator* ( const double&, const Vector_3& );
double Angle ( const Vector_3& a, const Vector_3& b );
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
class Vector_3
{
friend class Matrix_3x3;
#ifdef __cplusplus
friend std::ostream& operator<< ( std::ostream&, const Vector_3& );
#endif
friend Vector_3 operator* ( const double&, const Vector_3& );
private:
double v[3];
public:
//CONSTRUCTORS, DESTRUCTOR
//This is a translation of an old fortran library of vector algebra code. It
//was designed to be versatile and easy to use. Surprisingly, even in 2005, it
//is in quite common use in the scientific community.
//
//Conventions:
// vector are internally arrays of 3 doubles
// matrices are internally arrays of 9 doubles, indexed as follows
// 0 1 2
// 3 4 5
// 6 7 8
//
//-----------------------------------------------------------------------------
// Name: Vector_3()
// Description: default constructor provides bad-looking data
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Vector_3( void )
//-------------------------------------------------------------------------------------
{
v[0]=v[1]=v[2]=DBL_MAX;
}
//-----------------------------------------------------------------------------
// Name: Vector_3()
// Description: constructor to insert 3 values into a new Vector_3 vector
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Vector_3( const double a, const double b, const double c )
//-------------------------------------------------------------------------------------
{
v[0] = a;
v[1] = b;
v[2] = c;
}
//-----------------------------------------------------------------------------
// Name: Vector_3()
// Description: constructor to insert 3 identical values into a new Vector_3 vector
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
explicit Vector_3( const double a )
//-------------------------------------------------------------------------------------
{
v[0] = a;
v[1] = a;
v[2] = a;
}
//-----------------------------------------------------------------------------
// Name: Vector_3()
// Description: copy constructor
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Vector_3 ( const Vector_3& o )
//-------------------------------------------------------------------------------------
{
v[0] = o.v[0];
v[1] = o.v[1];
v[2] = o.v[2];
}
//-----------------------------------------------------------------------------
// Name:~ Vector_3()
// Description: destructor
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
~Vector_3( void )
//-------------------------------------------------------------------------------------
{
v[0]=v[1]=v[2]=DBL_MAX;
}
//SCALAR OPERATIONS ON VECTORS
//-----------------------------------------------------------------------------
// Name: operator*()
// Description: multiply a vector by a floating point number
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Vector_3 operator* ( const double a ) const
//-----------------------------------------------------------------------------
{
return ( Vector_3(a*v[0],a*v[1],a*v[2]) );
}
//-----------------------------------------------------------------------------
// Name: operator/()
// Description: divide a vector by a floating point number
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Vector_3 operator/ ( const double a ) const
//-----------------------------------------------------------------------------
{
return ( Vector_3(v[0]/a,v[1]/a,v[2]/a) );
}
//-----------------------------------------------------------------------------
// Name: operator+=()
// Description: add two vectors
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Vector_3& operator+= ( const Vector_3& vv )
//-----------------------------------------------------------------------------
{
*this = *this + vv;
return( *this );
}
//-----------------------------------------------------------------------------
// Name: operator-=()
// Description: subtract two vectors
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Vector_3& operator-= ( const Vector_3& vv )
//-----------------------------------------------------------------------------
{
(*this) = (*this) - vv;
return( *this );
}
static double Angle ( const Vector_3& a, const Vector_3& b, const Vector_3& c );
//OPERATIONS ONLY ON VECTORS
//-----------------------------------------------------------------------------
// Name: Dot()
// Description: compute the dot product of two vectors = |v1|*|v2|*cos(angle between)
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline double Dot ( const Vector_3& v_other ) const
//-----------------------------------------------------------------------------
{
return(
v[0] * v_other[0]+
v[1] * v_other[1]+
v[2] * v_other[2] );
}
//-----------------------------------------------------------------------------
// Name: Cross()
// Description: compute the cross product of two vectors. The result is a vector
// perpendicular to the two and with Norm=|v1|*|v2|*sin(angle between)
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Vector_3 Cross ( const Vector_3& v_other ) const
//-----------------------------------------------------------------------------
{
return (Vector_3( v[1]*v_other[2]-v_other[1]*v[2],
-v[0]*v_other[2]+v_other[0]*v[2],
v[0]*v_other[1]-v_other[0]*v[1] ) );
}
//-----------------------------------------------------------------------------
// Name: operator+()
// Description: add two vectors
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Vector_3 operator+ ( const Vector_3& v_other ) const
//-----------------------------------------------------------------------------
{
return ( Vector_3( v[0]+v_other[0],v[1]+v_other[1],v[2]+v_other[2] ) );
}
//-----------------------------------------------------------------------------
// Name: operator-()
// Description: subtract two vectors
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Vector_3 operator- ( const Vector_3& v_other ) const
//-----------------------------------------------------------------------------
{
return ( Vector_3(v[0]-v_other[0],v[1]-v_other[1],v[2]-v_other[2]) );
}
//-----------------------------------------------------------------------------
// Name: operator-()
// Description: Unary minus for a vector
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Vector_3 operator- ( void ) const
//-------------------------------------------------------------------------------------
{
return( Vector_3( -v[0], -v[1], -v[2] ) );
}
inline double norm(void) const
{
return(sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]));
}
inline double Norm(void) const
{
return(sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]));
}
inline double SquaredLength ( void ) const
{
return( v[0]*v[0]+v[1]*v[1]+v[2]*v[2] );
}
static Matrix_3x3 Pair ( const Vector_3& x1, const Vector_3& x2, const Vector_3& y1, const Vector_3& y2 );
inline static Vector_3 GetXAxis ( void ) { return( Vector_3( 1.0, 0.0, 0.0 ) ); };
inline static Vector_3 GetYAxis ( void ) { return( Vector_3( 0.0, 1.0, 0.0 ) ); };
inline static Vector_3 GetZAxis ( void ) { return( Vector_3( 0.0, 0.0, 1.0 ) ); };
inline static Vector_3 GetZeroVector ( void ) { return( Vector_3( 0.0, 0.0, 0.0 ) ); };
bool operator== ( const Vector_3& v_other ) const { return( v[0]==v_other.v[0] && v[1]==v_other.v[1] && v[2]==v_other.v[2] ); };
bool operator!= ( const Vector_3& v_other ) const { return( v[0]!=v_other.v[0] || v[1]!=v_other.v[1] || v[2]!=v_other.v[2] ); };
//-----------------------------------------------------------------------------
// Name: GetCenterOfMass()
// Description: for an input list of points, compute the center of mass
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
template< typename ContainerType >
static Vector_3 GetCenterOfMass( const ContainerType& lv )
//-------------------------------------------------------------------------------------
{
Vector_3 cm(0.0);
if( lv.empty( ) )
{
return( cm );
}
typename ContainerType::const_iterator it;
for( it=lv.begin( ); it!=lv.end( ); ++it )
{
cm += (*it);
}
return( cm / static_cast<double>(lv.size( ) ) );
}
//OPERATIONS USING MATRICES
Vector_3 MV( const Matrix_3x3& m) const;
static std::pair<Matrix_3x3, Vector_3> GeneralRotation( const double angle, const Vector_3& v1, const Vector_3& v2 );
//complex operations
Matrix_3x3 Rotmat ( const double angle ) const;
//access and io functions
//-----------------------------------------------------------------------------
// Name: operator[]()
// Description: access function for the components of a vector
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline double operator[] ( const size_t i ) const
//-------------------------------------------------------------------------------------
{
size_t n = ( i<0 ) ? 0 : i;
if( i > 2 ) n = 2;
return (v[n]);
}
inline double& operator[] ( const size_t i )
//-------------------------------------------------------------------------------------
{
size_t n = ( i<0 ) ? 0 : i;
if( i > 2 ) n = 2;
return (v[n]);
}
//-----------------------------------------------------------------------------
// Name: at()
// Description: access function for the components of a vector
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline double at ( const size_t i ) const
//-------------------------------------------------------------------------------------
{
size_t n = ( i<0 ) ? 0 : i;
if( i > 2 ) n = 2;
return (v[n]);
}
// constants
static const double MINNORM;
}; // end of class vector
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
class Matrix_3x3
{
friend class Vector_3;
#ifdef __cplusplus
friend std::ostream& operator<< ( std::ostream&, const Matrix_3x3& );
#endif
friend Matrix_3x3 operator* ( const double&, const Matrix_3x3& );
double m[9];
public:
//CONSTRUCTORS, DESTRUCTOR
//-----------------------------------------------------------------------------
// Name: Matrix_3x3()
// Description: constructor
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3( void )
//-------------------------------------------------------------------------------------
{
for ( int i=0; i<9; i++) m[i] = DBL_MAX;
}
//-----------------------------------------------------------------------------
// Name: Matrix_3x3()
// Description: constructor to fill a matrix with a list of values
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3( const double a, const double b, const double c,
const double d, const double e, const double f,
const double g, const double h, const double i )
//-------------------------------------------------------------------------------------
{
m[0] = a;
m[1] = b;
m[2] = c;
m[3] = d;
m[4] = e;
m[5] = f;
m[6] = g;
m[7] = h;
m[8] = i;
}
size_t GetRowDim() const { return 3; }
//-----------------------------------------------------------------------------
// Name: Matrix_3x3()
// Description: copy constructor
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3( const Matrix_3x3& o )
//-------------------------------------------------------------------------------------
{
for ( int i=0; i<9; ++i) m[i] = o.m[i];
}
Matrix_3x3(const std::string& s) {
std::istringstream istr(s);
double d;
int i = 0;
while (istr && !istr.eof() && i < 10) {
istr >> d;
m[i] = d;
++i;
}
}
std::vector<double> GetVector() const {
std::vector<double> v(9);
for (size_t i = 0; i < 9; ++i) v[i] = (*this)[i];
return v;
}
//-----------------------------------------------------------------------------
// Name: ~Matrix_3x3()
// Description: destructor
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
~Matrix_3x3( void )
//-------------------------------------------------------------------------------------
{
for ( int i=0;i<9;i++) m[i] = DBL_MAX;
}
double trace( void ) const {
return m[0]+m[4]+m[8];
}
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3 adjoint( void ) const {
return Matrix_3x3(
m[4]*m[8] - m[7]*m[5], //m2[0] =
m[3]*m[8] - m[6]*m[5], //m2[1] =
m[3]*m[7] - m[6]*m[4], //m2[2] =
m[1]*m[8] - m[7]*m[2], //m2[3] =
m[0]*m[8] - m[6]*m[2], //m2[4] =
m[0]*m[7] - m[6]*m[1], //m2[5] =
m[1]*m[5] - m[4]*m[2], //m2[6] =
m[0]*m[5] - m[3]*m[2], //m2[7] =
m[0]*m[4] - m[3]*m[1]); //m2[8] =
}
//matrix-vector operations
//-----------------------------------------------------------------------------
// Name: MV()
// Description: multiply a vector (from the right) by a matrix
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Vector_3 MV ( const Vector_3& v ) const
//-------------------------------------------------------------------------------------
{
return (Vector_3( m[0]*v[0]+m[1]*v[1]+m[2]*v[2],
m[3]*v[0]+m[4]*v[1]+m[5]*v[2],
m[6]*v[0]+m[7]*v[1]+m[8]*v[2]));
}
Vector_3 operator* ( const Vector_3& v ) const
{
return (Vector_3(m[0]*v[0]+m[1]*v[1]+m[2]*v[2],
m[3]*v[0]+m[4]*v[1]+m[5]*v[2],
m[6]*v[0]+m[7]*v[1]+m[8]*v[2]));
}
//operations on matrices only
Matrix_3x3 operator* ( const Matrix_3x3& mm ) const;
//-----------------------------------------------------------------------------
// Name: operator+()
// Description: add two matrices
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Matrix_3x3 operator+ ( const Matrix_3x3& o ) const
//-------------------------------------------------------------------------------------
{
return (Matrix_3x3(
m[0]+o.m[0],
m[1]+o.m[1],
m[2]+o.m[2],
m[3]+o.m[3],
m[4]+o.m[4],
m[5]+o.m[5],
m[6]+o.m[6],
m[7]+o.m[7],
m[8]+o.m[8] ));
}
//-----------------------------------------------------------------------------
// Name: operator-()
// Description: subtract two matrices
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Matrix_3x3 operator- ( const Matrix_3x3& o ) const
//-------------------------------------------------------------------------------------
{
return (Matrix_3x3(m[0]-o.m[0],m[1]-o.m[1],m[2]-o.m[2],
m[3]-o.m[3],m[4]-o.m[4],m[5]-o.m[5],
m[6]-o.m[6],m[7]-o.m[7],m[8]-o.m[8]));
}
//-----------------------------------------------------------------------------
// Name: operator*()
// Description: multiplies a matrix by a floating point number
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Matrix_3x3 operator* ( const double d ) const
//-------------------------------------------------------------------------------------
{
Matrix_3x3 mTemp(*this);
for( int i=0; i<9; ++i )
{
mTemp.m[i] *= d;
}
return( mTemp );
}
//-----------------------------------------------------------------------------
// Name: operator/()
// Description: divides a matrix by a floating point number
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3 operator/ ( const double d ) const
//-------------------------------------------------------------------------------------
{
Matrix_3x3 mTemp(*this);
for( int i=0; i<9; ++i )
{
mTemp.m[i] /= d;
}
return( mTemp );
}
//-----------------------------------------------------------------------------
// Name: operator+=()
// Description: add two matrices
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3& operator+= ( const Matrix_3x3& mm )
//-------------------------------------------------------------------------------------
{
(*this) = (*this) + mm;
return( *this );
}
//-----------------------------------------------------------------------------
// Name: operator-=()
// Description: subtracts two matrices
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3& operator-= ( const Matrix_3x3& mm )
//-------------------------------------------------------------------------------------
{
(*this) = (*this) - mm;
return( *this );
}
//-----------------------------------------------------------------------------
// Name: operator*=()
// Description: multiplies two matrices
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3& operator*= ( const Matrix_3x3& mm )
//-------------------------------------------------------------------------------------
{
(*this) = (*this) * mm;
return( *this );
}
//-----------------------------------------------------------------------------
// Name: operator=()
// Description: copy a matrix
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
inline Matrix_3x3& operator= ( const Matrix_3x3& o )
//-------------------------------------------------------------------------------------
{
if (this!=&o)
{
int i;
for (i=0;i<9;i++) m[i] = o.m[i];
}
return (*this);
}
//-----------------------------------------------------------------------------
// Name: Transpose()
// Description: returns the transpose of the input matrix
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3 Transpose ( void ) const
//-------------------------------------------------------------------------------------
{
return (Matrix_3x3(m[0],m[3],m[6],
m[1],m[4],m[7],
m[2],m[5],m[8]));
}
//-----------------------------------------------------------------------------
// Name: Inver()
// Description: returns the inverse of a matrix
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3 Inver ( void ) const
//-------------------------------------------------------------------------------------
{
double d(this->Det( ));
if( d == 0.0 ) d = 1.0;
if( ::fabs( d ) < 1.0E-20 )
{
d = ( d < 0.0 ) ? -d : d;
}
const Vector_3 v0( this->m[0], this->m[1], this->m[2] );
const Vector_3 v1( this->m[3], this->m[4], this->m[5] );
const Vector_3 v2( this->m[6], this->m[7], this->m[8] );
const Vector_3 vOut0 = v1.Cross( v2 );
const Vector_3 vOut1 = v2.Cross( v0 );
const Vector_3 vOut2 = v0.Cross( v1 );
const Matrix_3x3 mTemp(
vOut0.v[0], vOut1.v[0], vOut2.v[0],
vOut0.v[1], vOut1.v[1], vOut2.v[1],
vOut0.v[2], vOut1.v[2], vOut2.v[2] ); // computes the ? of a matrix
return( mTemp/ d );
}
static
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
// Name: Cart
// Description: Cart is used to generate a matrix that will convert from coordinates
// in a non-orthogonal coordinate system to an orthogonal basis. This is the solution
// for the common problem in crystallography, where coordinates are often reported in
// coordinates that are measured using the unit cell dimensions. Cart will return
// a matrix that when multiplied by a vector expressed in fractional coordinates will
// generate the corresponding position in an orthonormal system. NOTE: VERY IMPORTANT:
// The coordinates created by that operation may NOT be comparable to those generated
// by some other conversion software. Each system assumes a particular relationship
// between the two system, and they are ALL correct. Basically, the conversion matrix
// can be multiplied by ANY rotation matrix at all, and the result will still generate
// correct orthogonal coordinates, just different ones. The inverse of the matrix that
// Cart generates will convert from orthogonal coordinates back to fractional ONLY IF
// the orginal transformation was made with the same convention that Cart uses.
// The convention used in Cart is that the a-crystallographic axis will be aligned
// parallel to x, the b-axis as close as possible to y, and the c-axis by construction
// of a right handed-coordinate system.
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
Matrix_3x3 Cart(const double a, const double b, const double c,
const double alpha, const double beta, const double gamma)
//-------------------------------------------------------------------------------------
{
const double degreesPerRad = 180.0 / (4.0 * atan(1.0));
//const double sinAlpha = sin(alpha / degreesPerRad);
//const double sinBeta = sin(beta / degreesPerRad);
const double sinGamma = sin(gamma / degreesPerRad);
const double cosAlpha = cos(alpha / degreesPerRad);
const double cosBeta = cos(beta / degreesPerRad);
const double cosGamma = cos(gamma / degreesPerRad);
const double V = a*b*c*sqrt(1.0
- cosAlpha*cosAlpha - cosBeta*cosBeta - cosGamma*cosGamma +
2.0*cosAlpha*cosBeta*cosGamma);
if (std::abs(sinGamma) < 1.0E-10) {
return Matrix_3x3(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
}
else {
const Matrix_3x3 amat(
a, b*cosGamma, c*cosBeta,
0.0, b*sinGamma, c*(cosAlpha - cosBeta*cosGamma) / sinGamma,
0.0, 0.0, V / (a*b*sinGamma)
);
return(amat);
}
}
//
//static Matrix_3x3 Cart(const double a, const double b, const double c,
// const double alpha, const double beta, const double gamma) {
// throw "not implemented--Cart";
// return Matrix_3x3();
//}
//-----------------------------------------------------------------------------
// Name: UnitMatrix()
// Description: return a unit matrix
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
void UnitMatrix ( void )
//-------------------------------------------------------------------------------------
{
*this = Matrix_3x3(
1.0,0.0,0.0,
0.0,1.0,0.0,
0.0,0.0,1.0 );
}
//-----------------------------------------------------------------------------
// Name: Det()
// Description: returns the determinant of a matrix
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
double Det( void ) const
//-------------------------------------------------------------------------------------
{
const double d = m[0]*m[4]*m[8] + m[1]*m[5]*m[6] + m[2]*m[3]*m[7]
-m[6]*m[4]*m[2] - m[7]*m[5]*m[0] - m[8]*m[3]*m[1];
return( d );
}
//-----------------------------------------------------------------------------
// Name: Zero()
// Description: insert all zero values into a 3x3 matrix
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
void Zero( void )
//-------------------------------------------------------------------------------------
{
for( int i=0; i<9; ++i )
{
this->m[i] = 0.0;
}
}
bool Eigen1 ( double& eigenvalue, Vector_3& eigenvector1 ) const;
bool Eigen3 ( std::vector<double>& eigenvalues, std::vector<Vector_3>& eigenvectors ) const;
//-----------------------------------------------------------------------------
// Name: operator[]()
// Description: access function for the components of a matrix
//
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
double operator[]( const int& i ) const
//-------------------------------------------------------------------------------------
{
int n = ( i<0 ) ? 0 : i;
if( i > 8 ) n = 8;
return (m[n]);
}
double& operator[]( const int& i )
//-------------------------------------------------------------------------------------
{
int n = ( i<0 ) ? 0 : i;
if( i > 8 ) n = 8;
return (m[n]);
}
}; // end of class Matrix_3x3
/*=========================================================================================*/
/* start of non-class functions */
/*=========================================================================================*/
static Vector_3 UnitV( const Vector_3& v ) { return( v/v.Norm( ) ); }
static Matrix_3x3 UnitMatrix( void ) { return( Matrix_3x3( 1.0,0.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0 ) ); }
#endif // vector_3_INCLUDED