-
Notifications
You must be signed in to change notification settings - Fork 0
/
LRL_inverse.cpp
108 lines (94 loc) · 2.81 KB
/
LRL_inverse.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
/* inverse.c basic Gaussian elimination version */
/* http://userpages.umbc.edu/~squire/f14-455/download/inverse.c */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "LRL_inverse.h"
#define abs(a) ((a)<0?(-(a)):(a))
void inverse( int n, double A [ ], double AA [ ] ) {
int *ROW, *COL;
double *TEMP;
int HOLD, I_pivot, J_pivot;
double pivot, abs_pivot;
int i, j, k;
ROW = (int *)calloc( n, sizeof( int ) );
COL = (int *)calloc( n, sizeof( int ) );
TEMP = (double *)calloc( n, sizeof( double ) );
memcpy( AA, A, n*n*sizeof( double ) );
/* set up row and column interchange vectors */
for ( k=0; k<n; k++ ) {
ROW[k] = k ;
COL[k] = k ;
}
/* begin main reduction loop */
for ( k=0; k<n; k++ ) {
/* find largest element for pivot */
pivot = AA[ROW[k]*n+COL[k]] ;
I_pivot = k;
J_pivot = k;
for ( i=k; i<n; i++ ) {
for ( j=k; j<n; j++ ) {
abs_pivot = abs( pivot ) ;
if ( abs( AA[ROW[i]*n+COL[j]] ) > abs_pivot ) {
I_pivot = i ;
J_pivot = j ;
pivot = AA[ROW[i]*n+COL[j]] ;
}
}
}
if ( abs( pivot ) < 1.0E-65 ) {
free( ROW );
free( COL );
free( TEMP );
printf( "MATRIX is SINGULAR !!! \n" );
return;
}
HOLD = ROW[k];
ROW[k]= ROW[I_pivot];
ROW[I_pivot] = HOLD ;
HOLD = COL[k];
COL[k]= COL[J_pivot];
COL[J_pivot] = HOLD ;
/* reduce about pivot */
AA[ROW[k]*n+COL[k]] = 1.0 / pivot ;
for ( j=0; j<n; j++ ) {
if ( j != k ) {
AA[ROW[k]*n+COL[j]] = AA[ROW[k]*n+COL[j]] * AA[ROW[k]*n+COL[k]];
}
}
/* inner reduction loop */
for ( i=0; i<n; i++ ) {
if ( k != i ) {
for ( j=0; j<n; j++ ) {
if ( k != j ) {
AA[ROW[i]*n+COL[j]] = AA[ROW[i]*n+COL[j]] - AA[ROW[i]*n+COL[k]] *
AA[ROW[k]*n+COL[j]] ;
}
}
AA[ROW[i]*n+COL[k]] = -AA[ROW[i]*n+COL[k]] * AA[ROW[k]*n+COL[k]] ;
}
}
}
/* end of main reduction loop */
/* unscramble rows */
for ( j=0; j<n; j++ ) {
for ( i=0; i<n; i++ ) {
TEMP[COL[i]] = AA[ROW[i]*n+j];
}
for ( i=0; i<n; i++ ) {
AA[i*n+j] = TEMP[i] ;
}
}
/* unscramble columns */
for ( i=0; i<n; i++ ) {
for ( j=0; j<n; j++ ) {
TEMP[ROW[j]] = AA[i*n+COL[j]] ;
}
for ( j=0; j<n; j++ ) {
AA[i*n+j] = TEMP[j] ;
}
}
free( ROW );
free( COL );
free( TEMP );
} /* end inverse */