-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathVFF_VoxelRCNN.yaml
269 lines (236 loc) · 7.72 KB
/
VFF_VoxelRCNN.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
CLASS_NAMES: ['Car']
DATA_CONFIG:
_BASE_CONFIG_: cfgs/dataset_configs/kitti_dataset.yaml
GET_ITEM_LIST: ["images", "points", "calib_matricies", "gt_boxes2d"]
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
IMAGE_AUG: ['flip', 'rescale'] # must keep the order with AUG_CONFIG_LIST
AUG_CONFIG_LIST:
- NAME: gt_sampling
AUG_WITH_IMAGE: True # use PC-Image Aug
JOINT_SAMPLE: True # joint sample with point
KEEP_RAW: True # keep original PC
POINT_REFINE: True # refine points with different calib
BOX_IOU_THRES: 0.5
IMG_AUG_TYPE: by_order
AUG_USE_TYPE: annotation
IMG_ROOT_PATH: training/image_2
USE_ROAD_PLANE: True
DB_INFO_PATH:
- kitti_dbinfos_train.pkl
PREPARE: {
filter_by_min_points: ['Car:5'],
filter_by_difficulty: [-1],
}
SAMPLE_GROUPS: ['Car:15']
NUM_POINT_FEATURES: 4
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
LIMIT_WHOLE_SCENE: False
- NAME: random_world_flip
ALONG_AXIS_LIST: ['x']
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.95, 1.05]
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-0.78539816, 0.78539816]
MODEL:
NAME: VoxelRCNNFusion
VFE:
NAME: ImagePointVFE
BACKBONE_3D:
NAME: VoxelImageFusionBackBone8x
NUM_POINT_FEATURES: 4
FUSION_LAYER: ["x_conv1"]
FUSION_METHOD: layer_by_layer
FFN:
NAME: Pyramid2DFFN
OPTIMIZE: True
IFN:
NAME: SemDeepLabV3
BACKBONE_NAME: ResNet50 # change R101->R50
NUM_CLASSES: 21 # pretrained on COCO
ARGS: {
"feat_extract_layer": ["layer1"],
"pretrained_path": "../checkpoints/deeplabv3_resnet50_coco-cd0a2569.pth"
# download link: https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth
}
DISCRETIZE: None
CHANNEL_REDUCE: {
"in_channels": [256],
"out_channels": [16],
"kernel_size": [1],
"stride": [1],
"bias": [False]
}
F2V:
NAME: VoxelFieldFusion
FUSE: "ray_sum"
DEPTH_THRES: 50
BLOCK_NUM: 3
TOPK_RATIO: 0.25 # Select TopK points
FUSE_THRES: 0.05
POSITION_TYPE: "absolute"
SAMPLE:
METHOD: "learnable_uniform"
WINDOW: 64
RATIO: 1.0
THRES: 0.5
GT_TYPE: "gaussian"
LOSS: BCELoss
WEIGHT: 2.0
LAYER_CHANNEL: {
"layer1": 16,
}
STRIDE: {
"layer1": 1,
"layer2": 2,
"layer3": 4,
"layer4": 8,
}
LOSS:
NAME: FocalLoss
WEIGHT: 5.0
GT_KERNEL: 3
ARGS: {
'alpha': 0.25,
'gamma': 2.0,
'reduction': 'mean',
}
MAP_TO_BEV:
NAME: HeightCompression
NUM_BEV_FEATURES: 256
BACKBONE_2D:
NAME: BaseBEVBackbone
LAYER_NUMS: [5, 5]
LAYER_STRIDES: [1, 2]
NUM_FILTERS: [64, 128]
UPSAMPLE_STRIDES: [1, 2]
NUM_UPSAMPLE_FILTERS: [128, 128]
DENSE_HEAD:
NAME: AnchorHeadSingle
CLASS_AGNOSTIC: False
USE_DIRECTION_CLASSIFIER: True
DIR_OFFSET: 0.78539
DIR_LIMIT_OFFSET: 0.0
NUM_DIR_BINS: 2
ANCHOR_GENERATOR_CONFIG: [
{
'class_name': 'Car',
'anchor_sizes': [[3.9, 1.6, 1.56]],
'anchor_rotations': [0, 1.57],
'anchor_bottom_heights': [-1.78],
'align_center': False,
'feature_map_stride': 8,
'matched_threshold': 0.6,
'unmatched_threshold': 0.45
},
]
TARGET_ASSIGNER_CONFIG:
NAME: AxisAlignedTargetAssigner
POS_FRACTION: -1.0
SAMPLE_SIZE: 512
NORM_BY_NUM_EXAMPLES: False
MATCH_HEIGHT: False
BOX_CODER: ResidualCoder
LOSS_CONFIG:
LOSS_WEIGHTS: {
'cls_weight': 1.0,
'loc_weight': 2.0,
'dir_weight': 0.2,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
ROI_HEAD:
NAME: VoxelRCNNHead
CLASS_AGNOSTIC: True
SHARED_FC: [256, 256]
CLS_FC: [256, 256]
REG_FC: [256, 256]
DP_RATIO: 0.3
NMS_CONFIG:
TRAIN:
NMS_TYPE: nms_gpu
MULTI_CLASSES_NMS: False
NMS_PRE_MAXSIZE: 9000
NMS_POST_MAXSIZE: 512
NMS_THRESH: 0.8
TEST:
NMS_TYPE: nms_gpu
MULTI_CLASSES_NMS: False
USE_FAST_NMS: False
SCORE_THRESH: 0.0
NMS_PRE_MAXSIZE: 2048
NMS_POST_MAXSIZE: 100
NMS_THRESH: 0.7
ROI_GRID_POOL:
FEATURES_SOURCE: ['x_conv2', 'x_conv3', 'x_conv4']
PRE_MLP: True
GRID_SIZE: 6
POOL_LAYERS:
x_conv2:
MLPS: [[32, 32]]
QUERY_RANGES: [[4, 4, 4]]
POOL_RADIUS: [0.4]
NSAMPLE: [16]
POOL_METHOD: max_pool
x_conv3:
MLPS: [[32, 32]]
QUERY_RANGES: [[4, 4, 4]]
POOL_RADIUS: [0.8]
NSAMPLE: [16]
POOL_METHOD: max_pool
x_conv4:
MLPS: [[32, 32]]
QUERY_RANGES: [[4, 4, 4]]
POOL_RADIUS: [1.6]
NSAMPLE: [16]
POOL_METHOD: max_pool
TARGET_CONFIG:
BOX_CODER: ResidualCoder
ROI_PER_IMAGE: 128
FG_RATIO: 0.5
SAMPLE_ROI_BY_EACH_CLASS: True
CLS_SCORE_TYPE: roi_iou
CLS_FG_THRESH: 0.75
CLS_BG_THRESH: 0.25
CLS_BG_THRESH_LO: 0.1
HARD_BG_RATIO: 0.8
REG_FG_THRESH: 0.55
LOSS_CONFIG:
CLS_LOSS: BinaryCrossEntropy
REG_LOSS: smooth-l1
CORNER_LOSS_REGULARIZATION: True
GRID_3D_IOU_LOSS: False
LOSS_WEIGHTS: {
'rcnn_cls_weight': 1.0,
'rcnn_reg_weight': 1.0,
'rcnn_corner_weight': 1.0,
'rcnn_iou3d_weight': 1.0,
'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
POST_PROCESSING:
RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
SCORE_THRESH: 0.3
OUTPUT_RAW_SCORE: False
EVAL_METRIC: kitti
NMS_CONFIG:
MULTI_CLASSES_NMS: False
NMS_TYPE: nms_gpu
NMS_THRESH: 0.1
NMS_PRE_MAXSIZE: 4096
NMS_POST_MAXSIZE: 500
OPTIMIZATION:
BATCH_SIZE_PER_GPU: 1
NUM_EPOCHS: 80
OPTIMIZER: adam_onecycle
LR: 0.005
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
MOMS: [0.95, 0.85]
PCT_START: 0.4
DIV_FACTOR: 10
DECAY_STEP_LIST: [35, 45]
LR_DECAY: 0.1
LR_CLIP: 0.0000001
LR_WARMUP: False
WARMUP_EPOCH: 1
GRAD_NORM_CLIP: 10