forked from NVlabs/stylegan2-ada-pytorch
-
-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathclosed_form_factorization.py
46 lines (36 loc) · 1.4 KB
/
closed_form_factorization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import argparse
import torch
import dnnlib
import legacy
import pickle
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Extract factor/eigenvectors of latent spaces using closed form factorization"
)
parser.add_argument(
"--out", type=str, default="factor.pt", help="name of the result factor file"
)
parser.add_argument("--ckpt", type=str, help="name of the model checkpoint")
args = parser.parse_args()
custom = False
G_kwargs = dnnlib.EasyDict()
G_kwargs.size = None
G_kwargs.scale_type = 'pad'
print('Loading networks from "%s"...' % args.ckpt)
device = torch.device('cuda')
with dnnlib.util.open_url(args.ckpt) as f:
G = legacy.load_network_pkl(f, custom=custom, **G_kwargs)['G_ema'].to(device) # type: ignore
# device = torch.device('cuda')
# with dnnlib.util.open_url(args.ckpt) as f:
# G = pickle.load(f)['G_ema'].to(device) # type: ignore
modulate = {
k[0]: k[1]
for k in G.named_parameters()
if "affine" in k[0] and "torgb" not in k[0] and "weight" in k[0] or ("torgb" in k[0] and "b4" in k[0] and "weight" in k[0] and "affine" in k[0])
}
weight_mat = []
for k, v in modulate.items():
weight_mat.append(v)
W = torch.cat(weight_mat, 0)
eigvec = torch.svd(W).V.to("cpu")
torch.save({"ckpt": args.ckpt, "eigvec": eigvec}, args.out)