You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I used export_weights.py to convert them. It converted safely.
On generate.py I get various errors.
The Error
Traceback (most recent call last):
File "generate.py", line 76, in <module>
g_ema.load_state_dict(checkpoint["g_ema"])
File "/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py", line 1407, in load_state_dict
self.__class__.__name__, "\n\t".join(error_msgs)))
RuntimeError: Error(s) in loading state_dict for Generator:
Missing key(s) in state_dict: "style.3.weight", "style.3.bias", "style.4.weight", "style.4.bias", "style.5.weight", "style.5.bias", "style.6.weight", "style.6.bias", "style.7.weight", "style.7.bias", "style.8.weight", "style.8.bias".
size mismatch for convs.6.conv.weight: copying a param with shape torch.Size([1, 256, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([1, 512, 512, 3, 3]).
size mismatch for convs.6.activate.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for convs.7.conv.weight: copying a param with shape torch.Size([1, 256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([1, 512, 512, 3, 3]).
size mismatch for convs.7.conv.modulation.weight: copying a param with shape torch.Size([256, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]).
size mismatch for convs.7.conv.modulation.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for convs.7.activate.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for convs.8.conv.weight: copying a param with shape torch.Size([1, 128, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([1, 256, 512, 3, 3]).
size mismatch for convs.8.conv.modulation.weight: copying a param with shape torch.Size([256, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]).
size mismatch for convs.8.conv.modulation.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for convs.8.activate.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([256]).
size mismatch for convs.9.conv.weight: copying a param with shape torch.Size([1, 128, 128, 3, 3]) from checkpoint, the shape in current model is torch.Size([1, 256, 256, 3, 3]).
size mismatch for convs.9.conv.modulation.weight: copying a param with shape torch.Size([128, 512]) from checkpoint, the shape in current model is torch.Size([256, 512]).
size mismatch for convs.9.conv.modulation.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([256]).
size mismatch for convs.9.activate.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([256]).
size mismatch for convs.10.conv.weight: copying a param with shape torch.Size([1, 64, 128, 3, 3]) from checkpoint, the shape in current model is torch.Size([1, 128, 256, 3, 3]).
size mismatch for convs.10.conv.modulation.weight: copying a param with shape torch.Size([128, 512]) from checkpoint, the shape in current model is torch.Size([256, 512]).
size mismatch for convs.10.conv.modulation.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([256]).
size mismatch for convs.10.activate.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for convs.11.conv.weight: copying a param with shape torch.Size([1, 64, 64, 3, 3]) from checkpoint, the shape in current model is torch.Size([1, 128, 128, 3, 3]).
size mismatch for convs.11.conv.modulation.weight: copying a param with shape torch.Size([64, 512]) from checkpoint, the shape in current model is torch.Size([128, 512]).
size mismatch for convs.11.conv.modulation.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for convs.11.activate.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for to_rgbs.3.conv.weight: copying a param with shape torch.Size([1, 3, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([1, 3, 512, 1, 1]).
size mismatch for to_rgbs.3.conv.modulation.weight: copying a param with shape torch.Size([256, 512]) from checkpoint, the shape in current model is torch.Size([512, 512]).
size mismatch for to_rgbs.3.conv.modulation.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([512]).
size mismatch for to_rgbs.4.conv.weight: copying a param with shape torch.Size([1, 3, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([1, 3, 256, 1, 1]).
size mismatch for to_rgbs.4.conv.modulation.weight: copying a param with shape torch.Size([128, 512]) from checkpoint, the shape in current model is torch.Size([256, 512]).
size mismatch for to_rgbs.4.conv.modulation.bias: copying a param with shape torch.Size([128]) from checkpoint, the shape in current model is torch.Size([256]).
size mismatch for to_rgbs.5.conv.weight: copying a param with shape torch.Size([1, 3, 64, 1, 1]) from checkpoint, the shape in current model is torch.Size([1, 3, 128, 1, 1]).
size mismatch for to_rgbs.5.conv.modulation.weight: copying a param with shape torch.Size([64, 512]) from checkpoint, the shape in current model is torch.Size([128, 512]).
size mismatch for to_rgbs.5.conv.modulation.bias: copying a param with shape torch.Size([64]) from checkpoint, the shape in current model is torch.Size([128]).
The Error
Reproduce the error
cc: @dvschultz
The text was updated successfully, but these errors were encountered: