Skip to content

Latest commit

 

History

History
1044 lines (736 loc) · 32.5 KB

README.md

File metadata and controls

1044 lines (736 loc) · 32.5 KB

Golang (GO) Javascript Object Signing and Encryption (JOSE) and JSON Web Token (JWT) implementation

GoDoc

Pure Golang (GO) library for generating, decoding and encrypting JSON Web Tokens. Zero dependency, relies only on standard library.

Supports full suite of signing, encryption and compression algorithms defined by JSON Web Algorithms as of July 4, 2014 version.

Extensively unit tested and cross tested (100+ tests) for compatibility with jose.4.j, Nimbus-JOSE-JWT, json-jwt and jose-jwt libraries.

Status

Used in production. GA ready. Current version is 1.6.

Important

v1.8 added experimental RSA-OAEP-384 and RSA-OAEP-512 key management algorithms

v1.7 introduced deflate decompression memory limits to avoid denial-of-service attacks aka 'deflate-bomb'. See Customizing compression section for details.

v1.6 security tuning options

v1.5 bug fix release

v1.4 changes default behavior of inserting typ=JWT header if not overriden. As of 1.4 no extra headers added by library automatically. To mimic pre 1.4 behaviour use:

token, err := jose.Sign(..., jose.Header("typ", "JWT"))

//or

token, err := jose.Encrypt(..., jose.Header("typ", "JWT"))

v1.3 fixed potential Invalid Curve Attack on NIST curves within ECDH key management. Upgrade strongly recommended.

v1.2 breaks jose.Decode interface by returning 3 values instead of 2.

v1.2 deprecates jose.Compress method in favor of using configuration options to jose.Encrypt, the method will be removed in next release.

Migration to v1.2

Pre v1.2 decoding:

payload,err := jose.Decode(token,sharedKey)

Should be updated to v1.2:

payload, headers, err := jose.Decode(token,sharedKey)

Pre v1.2 compression:

token,err := jose.Compress(payload,jose.DIR,jose.A128GCM,jose.DEF, key)

Should be update to v1.2:

token, err := jose.Encrypt(payload, jose.DIR, jose.A128GCM, key, jose.Zip(jose.DEF))

Supported JWA algorithms

Signing

  • HMAC signatures with HS256, HS384 and HS512.
  • RSASSA-PKCS1-V1_5 signatures with RS256, RS384 and RS512.
  • RSASSA-PSS signatures (probabilistic signature scheme with appendix) with PS256, PS384 and PS512.
  • ECDSA signatures with ES256, ES384 and ES512.
  • NONE (unprotected) plain text algorithm without integrity protection

Encryption

  • RSAES OAEP (using SHA-1 and MGF1 with SHA-1) encryption with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • RSAES OAEP 256, 384, 512 (using SHA-256, 384, 512 and MGF1 with SHA-256, 384, 512) encryption with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • RSAES-PKCS1-V1_5 encryption with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • A128KW, A192KW, A256KW encryption with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • A128GCMKW, A192GCMKW, A256GCMKW encryption with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • ECDH-ES with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW with A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM, A256GCM
  • Direct symmetric key encryption with pre-shared key A128CBC-HS256, A192CBC-HS384, A256CBC-HS512, A128GCM, A192GCM and A256GCM

Compression

  • DEFLATE compression

Installation

Grab package from github

go get github.com/dvsekhvalnov/jose2go or go get -u github.com/dvsekhvalnov/jose2go to update to latest version

Import package

import (
	"github.com/dvsekhvalnov/jose2go"
)

Usage

Creating Plaintext (unprotected) Tokens

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	token,err := jose.Sign(payload,jose.NONE, nil)

	if(err==nil) {
		//go use token
		fmt.Printf("\nPlaintext = %v\n",token)
	}
}

Creating signed tokens

HS-256, HS-384 and HS-512

Signing with HS256, HS384, HS512 expecting []byte array key of corresponding length:

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	key := []byte{97,48,97,50,97,98,100,56,45,54,49,54,50,45,52,49,99,51,45,56,51,100,54,45,49,99,102,53,53,57,98,52,54,97,102,99}

	token,err := jose.Sign(payload,jose.HS256,key)

	if(err==nil) {
		//go use token
		fmt.Printf("\nHS256 = %v\n",token)
	}
}

RS-256, RS-384 and RS-512, PS-256, PS-384 and PS-512

Signing with RS256, RS384, RS512, PS256, PS384, PS512 expecting *rsa.PrivateKey private key of corresponding length. jose2go provides convenient utils to construct *rsa.PrivateKey instance from PEM encoded PKCS1 or PKCS8 data: Rsa.ReadPrivate([]byte) under jose2go/keys/rsa package.

package main

import (
	"fmt"
	"io/ioutil"
	Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	keyBytes,err := ioutil.ReadFile("private.key")

	if(err!=nil) {
		panic("invalid key file")
	}

	privateKey,e:=Rsa.ReadPrivate(keyBytes)

	if(e!=nil) {
		panic("invalid key format")
	}

	token,err := jose.Sign(payload,jose.RS256, privateKey)

	if(err==nil) {
		//go use token
		fmt.Printf("\nRS256 = %v\n",token)
	}
}

ES-256, ES-384 and ES-512

ES256, ES384, ES512 ECDSA signatures expecting *ecdsa.PrivateKey private elliptic curve key of corresponding length. jose2go provides convenient utils to construct *ecdsa.PrivateKey instance from PEM encoded PKCS1 or PKCS8 data: ecc.ReadPrivate([]byte) or directly from X,Y,D parameters: ecc.NewPrivate(x,y,d []byte) under jose2go/keys/ecc package.

package main

import (
    "fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    payload := `{"hello":"world"}`

	privateKey:=ecc.NewPrivate([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
	 			 			   []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53},
							   []byte{ 42, 148, 231, 48, 225, 196, 166, 201, 23, 190, 229, 199, 20, 39, 226, 70, 209, 148, 29, 70, 125, 14, 174, 66, 9, 198, 80, 251, 95, 107, 98, 206 })

    token,err := jose.Sign(payload, jose.ES256, privateKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\ntoken = %v\n",token)
    }
}

Creating encrypted tokens

RSA-OAEP-512, RSA-OAEP-384, RSA-OAEP-256, RSA-OAEP and RSA1_5 key management algorithm

RSA-OAEP-512, RSA-OAEP-384, RSA-OAEP-256, RSA-OAEP and RSA1_5 key management expecting *rsa.PublicKey public key of corresponding length.

package main

import (
    "fmt"
    "io/ioutil"
    Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	keyBytes,err := ioutil.ReadFile("public.key")

	if(err!=nil) {
		panic("invalid key file")
	}

	publicKey,e:=Rsa.ReadPublic(keyBytes)

	if(e!=nil) {
		panic("invalid key format")
	}

	//OR:
	//token,err := jose.Encrypt(payload, jose.RSA1_5, jose.A256GCM, publicKey)
	token,err := jose.Encrypt(payload, jose.RSA_OAEP, jose.A256GCM, publicKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\ntoken = %v\n",token)
    }
}

AES Key Wrap key management family of algorithms

AES128KW, AES192KW and AES256KW key management requires []byte array key of corresponding length

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	sharedKey :=[]byte{194,164,235,6,138,248,171,239,24,216,11,22,137,199,215,133}

	token,err := jose.Encrypt(payload,jose.A128KW,jose.A128GCM,sharedKey)

	if(err==nil) {
		//go use token
		fmt.Printf("\nA128KW A128GCM = %v\n",token)
	}
}

AES GCM Key Wrap key management family of algorithms

AES128GCMKW, AES192GCMKW and AES256GCMKW key management requires []byte array key of corresponding length

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	sharedKey :=[]byte{194,164,235,6,138,248,171,239,24,216,11,22,137,199,215,133}

	token,err := jose.Encrypt(payload,jose.A128GCMKW,jose.A128GCM,sharedKey)

	if(err==nil) {
		//go use token
		fmt.Printf("\nA128GCMKW A128GCM = %v\n",token)
	}
}

ECDH-ES and ECDH-ES with AES Key Wrap key management family of algorithms

ECDH-ES and ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW key management requires *ecdsa.PublicKey elliptic curve key of corresponding length. jose2go provides convenient utils to construct *ecdsa.PublicKey instance from PEM encoded PKCS1 X509 certificate or PKIX data: ecc.ReadPublic([]byte) or directly from X,Y parameters: ecc.NewPublic(x,y []byte)under jose2go/keys/ecc package:

package main

import (
    "fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    payload := `{"hello":"world"}`

    publicKey:=ecc.NewPublic([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
                             []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53})

    token,err := jose.Encrypt(payload, jose.ECDH_ES, jose.A128CBC_HS256, publicKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\ntoken = %v\n",token)
    }
}

PBES2 using HMAC SHA with AES Key Wrap key management family of algorithms

PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW key management requires string passphrase from which actual key will be derived

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	passphrase := `top secret`

	token,err := jose.Encrypt(payload,jose.PBES2_HS256_A128KW,jose.A256GCM,passphrase)

	if(err==nil) {
		//go use token
		fmt.Printf("\nPBES2_HS256_A128KW A256GCM = %v\n",token)
	}
}

DIR direct pre-shared symmetric key management

Direct key management with pre-shared symmetric keys expecting []byte array key of corresponding length:

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload :=  `{"hello": "world"}`

	sharedKey :=[]byte{194,164,235,6,138,248,171,239,24,216,11,22,137,199,215,133}

	token,err := jose.Encrypt(payload,jose.DIR,jose.A128GCM,sharedKey)

	if(err==nil) {
		//go use token
		fmt.Printf("\nDIR A128GCM = %v\n",token)
	}
}

Creating compressed & encrypted tokens

DEFLATE compression

jose2go supports optional DEFLATE compression of payload before encrypting, can be used with all supported encryption and key management algorithms:

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	payload := `{"hello": "world"}`

	sharedKey := []byte{194, 164, 235, 6, 138, 248, 171, 239, 24, 216, 11, 22, 137, 199, 215, 133}

	token, err := jose.Encrypt(payload, jose.DIR, jose.A128GCM, sharedKey, jose.Zip(jose.DEF))

	if err == nil {
		//go use token
		fmt.Printf("\nDIR A128GCM DEFLATED= %v\n", token)
	}
}

Verifying, Decoding and Decompressing tokens

Decoding json web tokens is fully symmetric to creating signed or encrypted tokens (with respect to public/private cryptography), decompressing deflated payloads is handled automatically:

As of v1.2 decode method defined as jose.Decode() payload string, headers map[string]interface{}, err error and returns both payload as unprocessed string and headers as map.

HS256, HS384, HS512 signatures, A128KW, A192KW, A256KW,A128GCMKW, A192GCMKW, A256GCMKW and DIR key management algorithm expecting []byte array key:

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	token := "eyJhbGciOiJIUzI1NiIsImN0eSI6InRleHRcL3BsYWluIn0.eyJoZWxsbyI6ICJ3b3JsZCJ9.chIoYWrQMA8XL5nFz6oLDJyvgHk2KA4BrFGrKymjC8E"

	sharedKey :=[]byte{97,48,97,50,97,98,100,56,45,54,49,54,50,45,52,49,99,51,45,56,51,100,54,45,49,99,102,53,53,57,98,52,54,97,102,99}

	payload, headers, err := jose.Decode(token,sharedKey)

	if(err==nil) {
		//go use token
		fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
	}
}

RS256, RS384, RS512,PS256, PS384, PS512 signatures expecting *rsa.PublicKey public key of corresponding length. jose2go provides convenient utils to construct *rsa.PublicKey instance from PEM encoded PKCS1 X509 certificate or PKIX data: Rsa.ReadPublic([]byte) under jose2go/keys/rsa package:

package main

import (
    "fmt"
    "io/ioutil"
    Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    token := "eyJhbGciOiJSUzI1NiIsImN0eSI6InRleHRcL3BsYWluIn0.eyJoZWxsbyI6ICJ3b3JsZCJ9.NL_dfVpZkhNn4bZpCyMq5TmnXbT4yiyecuB6Kax_lV8Yq2dG8wLfea-T4UKnrjLOwxlbwLwuKzffWcnWv3LVAWfeBxhGTa0c4_0TX_wzLnsgLuU6s9M2GBkAIuSMHY6UTFumJlEeRBeiqZNrlqvmAzQ9ppJHfWWkW4stcgLCLMAZbTqvRSppC1SMxnvPXnZSWn_Fk_q3oGKWw6Nf0-j-aOhK0S0Lcr0PV69ZE4xBYM9PUS1MpMe2zF5J3Tqlc1VBcJ94fjDj1F7y8twmMT3H1PI9RozO-21R0SiXZ_a93fxhE_l_dj5drgOek7jUN9uBDjkXUwJPAyp9YPehrjyLdw"

    keyBytes, err := ioutil.ReadFile("public.key")

    if(err!=nil) {
        panic("invalid key file")
    }

    publicKey, e:=Rsa.ReadPublic(keyBytes)

    if(e!=nil) {
        panic("invalid key format")
    }

    payload, headers, err := jose.Decode(token, publicKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
    }
}

RSA-OAEP-512, RSA-OAEP-384 ,RSA-OAEP-256, RSA-OAEP and RSA1_5 key management algorithms expecting *rsa.PrivateKey private key of corresponding length:

package main

import (
    "fmt"
    "io/ioutil"
    Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    token := "eyJhbGciOiJSU0ExXzUiLCJlbmMiOiJBMjU2R0NNIn0.ixD3WVOkvaxeLKi0kyVqTzM6W2EW25SHHYCAr9473Xq528xSK0AVux6kUtv7QMkQKgkMvO8X4VdvonyGkDZTK2jgYUiI06dz7I1sjWJIbyNVrANbBsmBiwikwB-9DLEaKuM85Lwu6gnzbOF6B9R0428ckxmITCPDrzMaXwYZHh46FiSg9djChUTex0pHGhNDiEIgaINpsmqsOFX1L2Y7KM2ZR7wtpR3kidMV3JlxHdKheiPKnDx_eNcdoE-eogPbRGFdkhEE8Dyass1ZSxt4fP27NwsIer5pc0b922_3XWdi1r1TL_fLvGktHLvt6HK6IruXFHpU4x5Z2gTXWxEIog.zzTNmovBowdX2_hi.QSPSgXn0w25ugvzmu2TnhePn.0I3B9BE064HFNP2E0I7M9g"

    keyBytes, err := ioutil.ReadFile("private.key")

    if(err!=nil) {
        panic("invalid key file")
    }

    privateKey, e:=Rsa.ReadPrivate(keyBytes)

    if(e!=nil) {
        panic("invalid key format")
    }

    payload, headers, err := jose.Decode(token, privateKey)

    if(err==nil) {
        //go use payload
        fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
    }
}

PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW key management algorithms expects string passpharase as a key

package main

import (
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	token :=  `eyJhbGciOiJQQkVTMi1IUzI1NitBMTI4S1ciLCJlbmMiOiJBMjU2R0NNIiwicDJjIjo4MTkyLCJwMnMiOiJlZWpFZTF0YmJVbU5XV2s2In0.J2HTgltxH3p7A2zDgQWpZPgA2CHTSnDmMhlZWeSOMoZ0YvhphCeg-w.FzYG5AOptknu7jsG.L8jAxfxZhDNIqb0T96YWoznQ.yNeOfQWUbm8KuDGZ_5lL_g`

	passphrase := `top secret`

	payload, headers, err := jose.Decode(token,passphrase)

	if(err==nil) {
		//go use token
		fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
	}
}

ES256, ES284, ES512 signatures expecting *ecdsa.PublicKey public elliptic curve key of corresponding length. jose2go provides convenient utils to construct *ecdsa.PublicKey instance from PEM encoded PKCS1 X509 certificate or PKIX data: ecc.ReadPublic([]byte) or directly from X,Y parameters: ecc.NewPublic(x,y []byte)under jose2go/keys/ecc package:

package main

import (
    "fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    token := "eyJhbGciOiJFUzI1NiIsImN0eSI6InRleHRcL3BsYWluIn0.eyJoZWxsbyI6ICJ3b3JsZCJ9.EVnmDMlz-oi05AQzts-R3aqWvaBlwVZddWkmaaHyMx5Phb2NSLgyI0kccpgjjAyo1S5KCB3LIMPfmxCX_obMKA"

	publicKey:=ecc.NewPublic([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
	 			 			 []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53})

    payload, headers, err := jose.Decode(token, publicKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
    }
}

ECDH-ES and ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-ES+A256KW key management expecting *ecdsa.PrivateKey private elliptic curve key of corresponding length. jose2go provides convenient utils to construct *ecdsa.PrivateKey instance from PEM encoded PKCS1 or PKCS8 data: ecc.ReadPrivate([]byte) or directly from X,Y,D parameters: ecc.NewPrivate(x,y,d []byte) under jose2go/keys/ecc package:

package main

import (
    "fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    token := "eyJhbGciOiJFQ0RILUVTIiwiZW5jIjoiQTEyOENCQy1IUzI1NiIsImVwayI6eyJrdHkiOiJFQyIsIngiOiItVk1LTG5NeW9IVHRGUlpGNnFXNndkRm5BN21KQkdiNzk4V3FVMFV3QVhZIiwieSI6ImhQQWNReTgzVS01Qjl1U21xbnNXcFZzbHVoZGJSZE1nbnZ0cGdmNVhXTjgiLCJjcnYiOiJQLTI1NiJ9fQ..UA3N2j-TbYKKD361AxlXUA.XxFur_nY1GauVp5W_KO2DEHfof5s7kUwvOgghiNNNmnB4Vxj5j8VRS8vMOb51nYy2wqmBb2gBf1IHDcKZdACkCOMqMIcpBvhyqbuKiZPLHiilwSgVV6ubIV88X0vK0C8ZPe5lEyRudbgFjdlTnf8TmsvuAsdtPn9dXwDjUR23bD2ocp8UGAV0lKqKzpAw528vTfD0gwMG8gt_op8yZAxqqLLljMuZdTnjofAfsW2Rq3Z6GyLUlxR51DAUlQKi6UpsKMJoXTrm1Jw8sXBHpsRqA.UHCYOtnqk4SfhAknCnymaQ"

	privateKey:=ecc.NewPrivate([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
	 			 			   []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53},
							   []byte{ 42, 148, 231, 48, 225, 196, 166, 201, 23, 190, 229, 199, 20, 39, 226, 70, 209, 148, 29, 70, 125, 14, 174, 66, 9, 198, 80, 251, 95, 107, 98, 206 })

    payload, headers, err := jose.Decode(token, privateKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\npayload = %v\n",payload)

        //and/or use headers
        fmt.Printf("\nheaders = %v\n",headers)
    }
}

Adding extra headers

It's possible to pass additional headers while encoding token. jose2go provides convenience configuration helpers: Header(name string, value interface{}) and Headers(headers map[string]interface{}) that can be passed to Sign(..) and Encrypt(..) calls.

Note: jose2go do not allow to override alg, enc and zip headers.

Example of signing with extra headers:

	token, err := jose.Sign(payload, jose.ES256, key,
                    		jose.Header("keyid", "111-222-333"),
                    		jose.Header("trans-id", "aaa-bbb"))

Encryption with extra headers:

token, err := jose.Encrypt(payload, jose.DIR, jose.A128GCM, sharedKey,
                    jose.Headers(map[string]interface{}{"keyid": "111-22-33", "cty": "text/plain"}))

Two phase validation

In some cases validation (decoding) key can be unknown prior to examining token content. For instance one can use different keys per token issuer or rely on headers information to determine which key to use, do logging or other things.

jose2go allows to pass func(headers map[string]interface{}, payload string) key interface{} callback instead of key to jose.Decode(..). Callback will be executed prior to decoding and integrity validation and will recieve parsed headers and payload as is (for encrypted tokens it will be cipher text). Callback should return key to be used for actual decoding process or error if decoding should be stopped, given error object will be returned from jose.Decode(..) call.

Example of decoding token with callback:

package main

import (
	"crypto/rsa"
	"fmt"
	"github.com/dvsekhvalnov/jose2go"
	"github.com/dvsekhvalnov/jose2go/keys/rsa"
	"io/ioutil"
	"errors"
)

func main() {

	token := "eyJhbGciOiJSUzI1NiIsImN0eSI6InRleHRcL3BsYWluIn0.eyJoZWxsbyI6ICJ3b3JsZCJ9.NL_dfVpZkhNn4bZpCyMq5TmnXbT4yiyecuB6Kax_lV8Yq2dG8wLfea-T4UKnrjLOwxlbwLwuKzffWcnWv3LVAWfeBxhGTa0c4_0TX_wzLnsgLuU6s9M2GBkAIuSMHY6UTFumJlEeRBeiqZNrlqvmAzQ9ppJHfWWkW4stcgLCLMAZbTqvRSppC1SMxnvPXnZSWn_Fk_q3oGKWw6Nf0-j-aOhK0S0Lcr0PV69ZE4xBYM9PUS1MpMe2zF5J3Tqlc1VBcJ94fjDj1F7y8twmMT3H1PI9RozO-21R0SiXZ_a93fxhE_l_dj5drgOek7jUN9uBDjkXUwJPAyp9YPehrjyLdw"

	payload, _, err := jose.Decode(token,
		func(headers map[string]interface{}, payload string) interface{} {
            //log something
			fmt.Printf("\nHeaders before decoding: %v\n", headers)
			fmt.Printf("\nPayload before decoding: %v\n", payload)

            //lookup key based on keyid header as en example
            //or lookup based on something from payload, e.g. 'iss' claim for instance
            key := FindKey(headers['keyid'])

            if(key==nil) {
                return errors.New("Key not found")
            }

            return key;
		})

	if err == nil {
		//go use token
		fmt.Printf("\ndecoded payload = %v\n", payload)
	}
}

Two phase validation can be used for implementing additional things like strict alg or enc validation, see Customizing library for security for more information.

Working with binary payload

In addition to work with string payloads (typical use-case) jose2go supports encoding and decoding of raw binary data. jose.DecodeBytes, jose.SignBytes and jose.EncryptBytes functions provides similar interface but accepting []byte payloads.

Examples:

package main

import (
	"github.com/dvsekhvalnov/jose2go"
)

func main() {

	token :=  `eyJhbGciOiJQQkVTMi1IUzI1NitBMTI4S1ciLCJlbmMiOiJBMjU2R0NNIiwicDJjIjo4MTkyLCJwMnMiOiJlZWpFZTF0YmJVbU5XV2s2In0.J2HTgltxH3p7A2zDgQWpZPgA2CHTSnDmMhlZWeSOMoZ0YvhphCeg-w.FzYG5AOptknu7jsG.L8jAxfxZhDNIqb0T96YWoznQ.yNeOfQWUbm8KuDGZ_5lL_g`

	passphrase := `top secret`

	payload, headers, err := jose.DecodeBytes(token,passphrase)

	if(err==nil) {
		//go use token
		//payload = []byte{....}
	}
}
package main

import (
    "fmt"
    "io/ioutil"
    Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    payload :=  []byte {0x01, 0x02, 0x03, 0x04}

    keyBytes,err := ioutil.ReadFile("private.key")

    if(err!=nil) {
        panic("invalid key file")
    }

    privateKey,e:=Rsa.ReadPrivate(keyBytes)

    if(e!=nil) {
        panic("invalid key format")
    }

    token,err := jose.SignBytes(payload,jose.RS256, privateKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\nRS256 = %v\n",token)
    }
}
package main

import (
    "fmt"
    "io/ioutil"
    Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
    "github.com/dvsekhvalnov/jose2go"
)

func main() {

    payload :=  []byte {0x01, 0x02, 0x03, 0x04}

    keyBytes,err := ioutil.ReadFile("public.key")

    if(err!=nil) {
        panic("invalid key file")
    }

    publicKey,e:=Rsa.ReadPublic(keyBytes)

    if(e!=nil) {
        panic("invalid key format")
    }

    token,err := jose.EncryptBytes(payload, jose.RSA_OAEP, jose.A256GCM, publicKey)

    if(err==nil) {
        //go use token
        fmt.Printf("\ntoken = %v\n",token)
    }
}

Dealing with keys

jose2go provides several helper methods to simplify loading & importing of elliptic and rsa keys. Import jose2go/keys/rsa or jose2go/keys/ecc respectively:

RSA keys

  1. Rsa.ReadPrivate(raw []byte) (key *rsa.PrivateKey,err error) attempts to parse RSA private key from PKCS1 or PKCS8 format (BEGIN RSA PRIVATE KEY and BEGIN PRIVATE KEY headers)
package main

import (
	"fmt"
	Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
	"io/ioutil"
)

func main() {

    keyBytes, _ := ioutil.ReadFile("private.key")

    privateKey, err:=Rsa.ReadPrivate(keyBytes)

    if(err!=nil) {
        panic("invalid key format")
    }

	fmt.Printf("privateKey = %v\n",privateKey)
}
  1. Rsa.ReadPublic(raw []byte) (key *rsa.PublicKey,err error) attempts to parse RSA public key from PKIX key format or PKCS1 X509 certificate (BEGIN PUBLIC KEY and BEGIN CERTIFICATE headers)
package main

import (
	"fmt"
	Rsa "github.com/dvsekhvalnov/jose2go/keys/rsa"
	"io/ioutil"
)

func main() {

    keyBytes, _ := ioutil.ReadFile("public.cer")

    publicKey, err:=Rsa.ReadPublic(keyBytes)

    if(err!=nil) {
        panic("invalid key format")
    }

	fmt.Printf("publicKey = %v\n",publicKey)
}

ECC keys

  1. ecc.ReadPrivate(raw []byte) (key *ecdsa.PrivateKey,err error) attemps to parse elliptic curve private key from PKCS1 or PKCS8 format (BEGIN EC PRIVATE KEY and BEGIN PRIVATE KEY headers)
package main

import (
	"fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
	"io/ioutil"
)

func main() {

    keyBytes, _ := ioutil.ReadFile("ec-private.pem")

    ecPrivKey, err:=ecc.ReadPrivate(keyBytes)

    if(err!=nil) {
        panic("invalid key format")
    }

	fmt.Printf("ecPrivKey = %v\n",ecPrivKey)
}
  1. ecc.ReadPublic(raw []byte) (key *ecdsa.PublicKey,err error) attemps to parse elliptic curve public key from PKCS1 X509 or PKIX format (BEGIN PUBLIC KEY and BEGIN CERTIFICATE headers)
package main

import (
	"fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
	"io/ioutil"
)

func main() {

    keyBytes, _ := ioutil.ReadFile("ec-public.key")

    ecPubKey, err:=ecc.ReadPublic(keyBytes)

    if(err!=nil) {
        panic("invalid key format")
    }

	fmt.Printf("ecPubKey = %v\n",ecPubKey)
}
  1. ecc.NewPublic(x,y []byte) (*ecdsa.PublicKey) constructs elliptic public key from (X,Y) represented as bytes. Supported are NIST curves P-256,P-384 and P-521. Curve detected automatically by input length.
package main

import (
	"fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
)

func main() {

    ecPubKey:=ecc.NewPublic([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
		 				    []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53})

	fmt.Printf("ecPubKey = %v\n",ecPubKey)
}
  1. ecc.NewPrivate(x,y,d []byte) (*ecdsa.PrivateKey) constructs elliptic private key from (X,Y) and D represented as bytes. Supported are NIST curves P-256,P-384 and P-521. Curve detected automatically by input length.
package main

import (
	"fmt"
    "github.com/dvsekhvalnov/jose2go/keys/ecc"
)

func main() {

    ecPrivKey:=ecc.NewPrivate([]byte{4, 114, 29, 223, 58, 3, 191, 170, 67, 128, 229, 33, 242, 178, 157, 150, 133, 25, 209, 139, 166, 69, 55, 26, 84, 48, 169, 165, 67, 232, 98, 9},
		 					  []byte{131, 116, 8, 14, 22, 150, 18, 75, 24, 181, 159, 78, 90, 51, 71, 159, 214, 186, 250, 47, 207, 246, 142, 127, 54, 183, 72, 72, 253, 21, 88, 53},
							  []byte{ 42, 148, 231, 48, 225, 196, 166, 201, 23, 190, 229, 199, 20, 39, 226, 70, 209, 148, 29, 70, 125, 14, 174, 66, 9, 198, 80, 251, 95, 107, 98, 206 })

	fmt.Printf("ecPrivKey = %v\n",ecPrivKey)
}

More examples

Checkout jose_test.go for more examples.

Customizing library for security

In response to ever increasing attacks on various JWT implementations, jose2go as of version v1.6 introduced number of additional security controls to limit potential attack surface on services and projects using the library.

Deregister algorithm implementations

One can use following methods to deregister any signing, encryption, key management or compression algorithms from runtime suite, that is considered unsafe or simply not expected by service.

  • func DeregisterJwa(alg string) JwaAlgorithm
  • func DeregisterJwe(alg string) JweEncryption
  • func DeregisterJws(alg string) JwsAlgorithm
  • func DeregisterJwc(alg string) JwcAlgorithm

All of them expecting alg name matching jose constants and returns implementation that have been deregistered.

Strict validation

Sometimes it is desirable to verify that alg or enc values are matching expected before attempting to decode actual payload. jose2go provides helper matchers to be used within Two-phase validation precheck:

  • jose.Alg(key, alg) - to match alg header
  • jose.Enc(key, alg) - to match alg and enc headers
	token := "eyJhbGciOiJSUzI1NiIsImN0eSI6InRleHRcL3BsYWluIn0.eyJoZWxsbyI6ICJ3b3JsZCJ9.NL_dfVpZkhNn4bZpCyMq5TmnXbT4yiyecuB6Kax_lV8Yq2dG8wLfea-T4UKnrjLOwxlbwLwuKzffWcnWv3LVAWfeBxhGTa0c4_0TX_wzLnsgLuU6s9M2GBkAIuSMHY6UTFumJlEeRBeiqZNrlqvmAzQ9ppJHfWWkW4stcgLCLMAZbTqvRSppC1SMxnvPXnZSWn_Fk_q3oGKWw6Nf0-j-aOhK0S0Lcr0PV69ZE4xBYM9PUS1MpMe2zF5J3Tqlc1VBcJ94fjDj1F7y8twmMT3H1PI9RozO-21R0SiXZ_a93fxhE_l_dj5drgOek7jUN9uBDjkXUwJPAyp9YPehrjyLdw"

	key := Rsa.ReadPublic(....)

	// we expecting 'RS256' alg here and if matching continue to decode with a key
	payload, header, err := jose.Decode(token, Alg(key, "RS256"))

	// or match both alg and enc for decrypting scenarios
	payload, header, err := jose.Decode(token, Enc(key, "RSA-OAEP-256", "A192CBC-HS384"))

Customizing PBKDF2

As it quite easy to abuse PBES2 family of algorithms via forging header with extra large p2c values, jose-jwt library introduced iteration count limits in v1.6 to reduce runtime exposure.

By default, maxIterations is set according to OWASP PBKDF2 Recomendations:

PBES2-HS256+A128KW: 1300000
PBES2-HS384+A192KW: 950000
PBES2-HS512+A256KW: 600000

, while minIterations kept at 0 for backward compatibility.

If it is desired to implement different limits, register new implementation with new parameters:

	jose.RegisterJwa(NewPbse2HmacAesKWAlg(128, 1300000, 1300000))
	jose.RegisterJwa(NewPbse2HmacAesKWAlg(192, 950000, 950000))
	jose.RegisterJwa(NewPbse2HmacAesKWAlg(256, 600000, 600000))

In case you can't upgrade to latest version, but would like to have protections against PBES2 abuse, it is recommended to stick with Two-phase validation precheck before decoding:

test, headers, err := Decode(token, func(headers map[string]interface{}, payload string) interface{} {
	alg := headers["alg"].(string)
	p2c := headers["p2c"].(float64)

	if strings.HasPrefix(alg, "PBES2-") && int64(p2c) > 100 {
		return errors.New("Too many p2c interation count, aborting")
	}

	return "top secret"
})

Customizing compression

There were denial-of-service attacks reported on JWT libraries that supports deflate compression by constructing malicious payload that explodes in terms of RAM on decompression. See for details: #33

As of v1.7.0 jose2go limits decompression buffer to 250Kb to limit memory consumption and additionaly provides a way to adjust the limit according to specific scenarios:

    // Override compression alg with new limits (10Kb example)
    jose.RegisterJwc(RegisterJwc(NewDeflate(10240)))

Changelog

1.8

  • RSA-OAEP-384 and RSA-OAEP-512 key management algorithms

1.7

  • 250Kb limit on decompression buffer
  • ability to register deflate compressor with custom limits

1.6

  • ability to deregister specific algorithms
  • configurable min/max restrictions for PBES2-HS256+A128KW, PBES2-HS384+A192KW, PBES2-HS512+A256KW

1.5

  • security and bug fixes

1.4

  • removed extra headers to be inserted by library

1.3

  • security fixes: Invalid Curve Attack on NIST curves

1.2

  • interface to access token headers after decoding
  • interface to provide extra headers for token encoding
  • two-phase validation support

1.1

  • security and bug fixes

1.0

  • initial stable version with full suite JOSE spec support