-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
107 lines (80 loc) · 2.78 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import nltk, tflearn, tensorflow, random, json, pickle
import numpy as np
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
nltk.download('punkt')
with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words=[]
labels=[]
docs_x=[]
docs_y=[]
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for doc in enumerate(docs_x):
bag = []
print(doc)
wrds = [stemmer.stem(w[0]) for w in doc if type(w) is not int]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = list(out_empty)
output_row[labels.index(docs_y[doc[0]])] = 1
training.append(bag)
output.append(output_row)
training = np.array(training)
output = np.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
tensorflow.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 12)
net = tflearn.fully_connected(net, 12)
net = tflearn.fully_connected(net, 12)
net = tflearn.layers.core.dropout(net, 0.9)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net, learning_rate=0.001)
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch=1000, batch_size=1, show_metric=True)
model.save("model.tflearn")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w in se:
bag[i] = 1
return np.array(bag)
def model_response(inp):
results = model.predict([bag_of_words(inp, words)])[0]
results_index = np.argmax(results)
tag = labels[results_index]
if results[results_index] > 0.8:
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
return [tag, random.choice(responses)]
else:
return "Sorry, I'm not sure what you mean."