-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
802 lines (667 loc) · 33.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
#! usr/bin/env python3
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import os
import random
import tensorflow as tf
import codecs
import pickle
from best_checkpoint_copier import BestCheckpointCopier
from bert import modeling
from bert import optimization
from nli import create_concat_model, SingleInputFeatures, InputExample
from tf_metrics import precision, recall, f1
from transformers import RobertaTokenizer as tokenization
__all__ = ['DataProcessor', 'NliProcessor', 'convert_single_example',
'filed_based_convert_examples_to_features', 'file_based_input_fn_builder',
'model_fn_builder', 'main']
flags = tf.flags
FLAGS = flags.FLAGS
# required arguments
flags.DEFINE_string('data_dir', default=None, help="train, dev and test data dir")
flags.DEFINE_string('bert_config_file', default=None, help="bert config file path")
flags.DEFINE_string('output_dir', default=None, help='directory of trained model')
flags.DEFINE_string('init_checkpoint', None,
help='Initial checkpoint (usually from a pre-trained model).')
# default arguments
flags.DEFINE_string('task', default='nli', help='which modle to train')
flags.DEFINE_integer('max_seq_len', default=60,
help='The maximum total input sequence length after Sentencepiece tokenization.')
flags.DEFINE_integer('batch_size', default=32, help='Total batch size for training, eval and predict.')
flags.DEFINE_integer('num_train_epochs', default=10, help='Total number of training epochs to perform.')
flags.DEFINE_integer('seed', default=123456, help='random seed')
flags.DEFINE_integer('keep_checkpoint_max', default=3, help='keep_checkpoint_max')
flags.DEFINE_integer('save_checkpoints_steps', default=2000, help='save_checkpoints_steps')
flags.DEFINE_integer('save_summary_steps', default=2000, help='save_summary_steps.')
flags.DEFINE_float('learning_rate', default=1e-5, help='The initial learning rate for Adam.')
flags.DEFINE_float('dropout_rate', default=0.5, help='Dropout rate')
flags.DEFINE_float('l2_reg_lambda', default=0.2, help='l2_reg_lambda')
flags.DEFINE_float('warmup_proportion', default=0.025,
help='Proportion of training to perform linear learning rate warmup for '
'E.g., 0.1 = 10% of training.')
flags.DEFINE_bool('do_train', default=False, help='Whether to run training.')
flags.DEFINE_bool('do_eval', default=False, help='Whether to run eval on the dev set.')
flags.DEFINE_bool('do_predict', default=False, help='Whether to run the predict in inference mode on the test set.')
flags.DEFINE_bool('filter_adam_var', default=False,
help='after training do filter Adam params from model and save no Adam params model in file.')
flags.DEFINE_bool('do_lower_case', default=True, help='Whether to lower case the input text.')
flags.DEFINE_bool('clean', default=False, help="whether to clean output folder")
flags.DEFINE_string('eval_file_path', default=None, help="path to evaluation file")
flags.DEFINE_bool('do_evaluate', default=False, help='Whether to perform dialogue evaluation')
flags.DEFINE_float("masked_lm_prob", 0.15, "Masked LM probability.")
flags.DEFINE_integer("max_predictions_per_seq", 20,
"Maximum number of masked LM predictions per sequence.")
logger = tf.get_logger()
logger.propagate = False
tokenizer = tokenization.from_pretrained('library/roberta-base/')
tf.random.set_random_seed(FLAGS.seed)
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_data(cls, input_file):
raise NotImplementedError()
class NliProcessor(DataProcessor):
def __init__(self, output_dir):
self.labels = []
self.output_dir = output_dir
def get_train_examples(self, data_dir):
return self._create_example(
self._read_data(os.path.join(data_dir, "train.txt"), split='train'), "train"
)
def get_dev_examples(self, data_dir):
return self._create_example(
self._read_data(os.path.join(data_dir, "valid.txt"), split='valid'), "valid"
)
def get_test_examples(self, data_dir):
return self._create_example(
self._read_data(os.path.join(data_dir, "test.txt"), split='test'), "test")
def get_eval_examples(self):
return self._create_example(
self._read_data(FLAGS.eval_file_path, split='eval'), "eval")
def get_labels(self):
self.labels.append('random')
self.labels.append('adversarial')
self.labels.append('original')
return self.labels
def _create_example(self, lines, set_type):
examples = []
if set_type != 'eval':
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
label = line[0]
text_a = line[1]
text_b = line[2]
text_c = line[3]
# if i == 0:
# logger.info('label: ', label)
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, text_c=text_c, label=label))
else:
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
label = 'original'
text_a = line[1]
text_b = line[2]
text_c = line[3]
# if i == 0:
# logger.info('label: ', label)
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, text_c=text_c, label=label))
return examples
def _read_data(self, input_file, split='train'):
with codecs.open(input_file, 'r', encoding='utf-8') as f:
lines = []
for line in f:
content = line.strip().split('|||')
label = content[0]
sentence_a = content[1]
sentence_b = content[2]
sentence_c = content[3]
lines.append([label, sentence_a, sentence_b, sentence_c])
return lines
def _truncate_seq_back(tokens, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens)
if total_length <= max_length:
break
else:
tokens.pop(-2)
def _truncate_seq_front(tokens, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens)
if total_length <= max_length:
break
else:
tokens.pop(1)
MaskedLmInstance = collections.namedtuple("MaskedLmInstance", ["index", "label"])
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_size, rng):
"""Creates the predictions for the masked LM objective."""
vocab_words = list(range(vocab_size))
cand_indexes = []
for (i, token) in enumerate(tokens):
if token == 0 or token == 2:
continue
# Whole Word Masking means that if we mask all of the wordpieces
# corresponding to an original word. When a word has been split into
# WordPieces, the first token does not have any marker and any subsequence
# tokens are prefixed with ##. So whenever we see the ## token, we
# append it to the previous set of word indexes.
#
# Note that Whole Word Masking does *not* change the training code
# at all -- we still predict each WordPiece independently, softmaxed
# over the entire vocabulary.
cand_indexes.append([i])
rng.shuffle(cand_indexes)
output_tokens = list(tokens)
num_to_predict = min(max_predictions_per_seq, max(1, int(round(len(tokens) * masked_lm_prob))))
masked_lms = []
covered_indexes = set()
for index_set in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
# If adding a whole-word mask would exceed the maximum number of
# predictions, then just skip this candidate.
if len(masked_lms) + len(index_set) > num_to_predict:
continue
is_any_index_covered = False
for index in index_set:
if index in covered_indexes:
is_any_index_covered = True
break
if is_any_index_covered:
continue
for index in index_set:
covered_indexes.add(index)
masked_token = None
# 80% of the time, replace with [MASK]
if rng.random() < 0.8:
masked_token = 50264
else:
# 10% of the time, keep original
if rng.random() < 0.5:
masked_token = tokens[index]
# 10% of the time, replace with random word
else:
masked_token = vocab_words[rng.randint(4, len(vocab_words) - 1)]
output_tokens[index] = masked_token
masked_lms.append(MaskedLmInstance(index=index, label=tokens[index]))
assert len(masked_lms) <= num_to_predict
masked_lms = sorted(masked_lms, key=lambda x: x.index)
masked_lm_positions = []
masked_lm_labels = []
for p in masked_lms:
masked_lm_positions.append(p.index)
masked_lm_labels.append(p.label)
return (output_tokens, masked_lm_positions, masked_lm_labels)
def convert_single_example(ex_index, example, label_list, max_seq_len, output_dir, rng, flag=True):
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
if not os.path.exists(os.path.join(output_dir, 'label2id.pkl')):
with codecs.open(os.path.join(output_dir, 'label2id.pkl'), 'wb') as w:
pickle.dump(label_map, w)
a_input_ids = tokenizer.encode(example.text_a)
b_input_ids = tokenizer.encode(example.text_b)
c_input_ids = tokenizer.encode(example.text_c)
input_ids = tokenizer.build_inputs_with_special_tokens(token_ids_0=a_input_ids[1:-1],
token_ids_1=b_input_ids[1:-1])
input_ids_perm = tokenizer.build_inputs_with_special_tokens(token_ids_0=a_input_ids[1:-1],
token_ids_1=c_input_ids[1:-1])
_truncate_seq_front(input_ids, max_seq_len)
_truncate_seq_front(input_ids_perm, max_seq_len)
(input_ids, masked_lm_positions, masked_lm_labels) = create_masked_lm_predictions(input_ids,
FLAGS.masked_lm_prob,
FLAGS.max_predictions_per_seq,
tokenizer.vocab_size,
rng)
masked_lm_ids = masked_lm_labels
masked_lm_weights = [1.0] * len(masked_lm_ids)
while len(masked_lm_positions) < FLAGS.max_predictions_per_seq:
masked_lm_positions.append(0)
masked_lm_ids.append(0)
masked_lm_weights.append(0.0)
input_type_ids = [1] * len(input_ids)
token_len = len(input_ids)
input_mask = [1] * len(input_ids)
input_type_ids_perm = [1] * len(input_ids_perm)
token_len_perm = len(input_ids_perm)
input_mask_perm = [1] * len(input_ids_perm)
label_id = label_map[example.label]
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_len:
input_ids.append(1)
input_mask.append(0)
input_type_ids.append(0)
assert len(input_ids) == max_seq_len
assert len(input_mask) == max_seq_len
assert len(input_type_ids) == max_seq_len
while len(input_ids_perm) < max_seq_len:
input_ids_perm.append(1)
input_mask_perm.append(0)
input_type_ids_perm.append(0)
assert len(input_ids_perm) == max_seq_len
assert len(input_mask_perm) == max_seq_len
assert len(input_type_ids_perm) == max_seq_len
if ex_index < 5:
logger.info("*** Example ***")
logger.info("unique_id: %s" % example.guid)
logger.info("sequence length: %s" % str(token_len))
logger.info("sequence input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("sequence input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info("sequence input_type_ids: %s" % " ".join([str(x) for x in input_type_ids]))
logger.info("sequence length perm: %s" % str(token_len_perm))
logger.info("sequence input_ids perm: %s" % " ".join([str(x) for x in input_ids_perm]))
logger.info("sequence input_mask perm: %s" % " ".join([str(x) for x in input_mask_perm]))
logger.info("sequence input_type_ids perm: %s" % " ".join([str(x) for x in input_type_ids_perm]))
logger.info("label id: %s" % str(label_id))
feature = SingleInputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=input_type_ids,
seq_len=token_len,
input_ids_perm=input_ids_perm,
input_mask_perm=input_mask_perm,
segment_ids_perm=input_type_ids_perm,
seq_len_perm=token_len_perm,
label_id=label_id,
masked_lm_positions=masked_lm_positions,
masked_lm_ids=masked_lm_ids,
masked_lm_weights=masked_lm_weights)
return feature
def filed_based_convert_examples_to_features(
examples, label_list, max_seq_len, output_file, output_dir, rng, flag=True):
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 5000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list, max_seq_len, output_dir, rng, flag=flag)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
def create_float_feature(values):
feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
return feature
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["seq_len"] = create_int_feature([feature.seq_len])
features["input_ids_perm"] = create_int_feature(feature.input_ids_perm)
features["input_mask_perm"] = create_int_feature(feature.input_mask_perm)
features["segment_ids_perm"] = create_int_feature(feature.segment_ids_perm)
features["seq_len_perm"] = create_int_feature([feature.seq_len_perm])
features["label_id"] = create_int_feature([feature.label_id])
features["masked_lm_ids"] = create_int_feature(feature.masked_lm_ids)
features["masked_lm_positions"] = create_int_feature(feature.masked_lm_positions)
features["masked_lm_weights"] = create_float_feature(feature.masked_lm_weights)
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
def file_based_input_fn_builder(input_file, max_seq_length, is_training, drop_remainder):
name_to_features = {
"input_ids": tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([max_seq_length], tf.int64),
"seq_len": tf.FixedLenFeature([1], tf.int64),
"input_ids_perm": tf.FixedLenFeature([max_seq_length], tf.int64),
"input_mask_perm": tf.FixedLenFeature([max_seq_length], tf.int64),
"segment_ids_perm": tf.FixedLenFeature([max_seq_length], tf.int64),
"seq_len_perm": tf.FixedLenFeature([1], tf.int64),
"label_id": tf.FixedLenFeature([1], tf.int64),
"masked_lm_ids": tf.FixedLenFeature([FLAGS.max_predictions_per_seq], tf.int64),
"masked_lm_positions": tf.FixedLenFeature([FLAGS.max_predictions_per_seq], tf.int64),
"masked_lm_weights": tf.FixedLenFeature([FLAGS.max_predictions_per_seq], tf.float32)
}
def _decode_record(record, name_to_features):
example = tf.parse_single_example(record, name_to_features)
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
batch_size = params["batch_size"]
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=300)
d = d.apply(tf.data.experimental.map_and_batch(lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
num_parallel_calls=8,
drop_remainder=drop_remainder))
d = d.prefetch(buffer_size=4)
return d
return input_fn
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps):
"""
:param albert_config:
:param num_labels:
:param init_checkpoint:
:param learning_rate:
:param num_train_steps:
:param num_warmup_steps:
:return:
"""
def model_fn(features, labels, mode, params):
logger.info("*** Features ***")
for name in sorted(features.keys()):
logger.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
seq_len = tf.squeeze(features["seq_len"])
input_ids_perm = features["input_ids_perm"]
input_mask_perm = features["input_mask_perm"]
segment_ids_perm = features["segment_ids_perm"]
seq_len_perm = tf.squeeze(features["seq_len_perm"])
label_id = tf.squeeze(features["label_id"])
masked_lm_positions = features["masked_lm_positions"]
masked_lm_ids = features["masked_lm_ids"]
masked_lm_weights = features["masked_lm_weights"]
# label_mask = features["label_mask"]
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
nsp_probability, nsp_logits, nsp_loss, \
masked_lm_loss, masked_lm_example_loss, \
masked_lm_log_probs = create_concat_model(bert_config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
input_ids_perm=input_ids_perm,
input_mask_perm=input_mask_perm,
segment_ids_perm=segment_ids_perm,
labels=label_id,
masked_lm_positions=masked_lm_positions,
masked_lm_ids=masked_lm_ids,
masked_lm_weights=masked_lm_weights,
num_labels=num_labels,
use_one_hot_embeddings=False,
l2_reg_lambda=FLAGS.l2_reg_lambda,
dropout_rate=FLAGS.dropout_rate,
seed=FLAGS.seed)
total_loss = masked_lm_loss + nsp_loss
tvars = tf.trainable_variables()
if init_checkpoint:
(assignment_map, initialized_variable_names) = \
modeling.get_assignment_map_from_checkpoint(tvars,
init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
logger.info("**** Trainable Variables ****")
for var in tvars:
init_string = ""
if var.name in initialized_variable_names:
init_string = ", *INIT_FROM_CKPT*"
logger.info(" name = %s, shape = %s%s", var.name, var.shape, init_string)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
# train_op = optimizer.optimizer(total_loss, learning_rate, num_train_steps)
train_op = optimization.create_optimizer(total_loss,
learning_rate,
num_train_steps,
num_warmup_steps,
False)
hook_dict = {}
hook_dict['loss'] = total_loss
hook_dict['mlm_loss'] = masked_lm_loss
hook_dict['nsp_loss'] = nsp_loss
hook_dict['global_steps'] = tf.train.get_or_create_global_step()
logging_hook = tf.train.LoggingTensorHook(
hook_dict, every_n_iter=FLAGS.save_summary_steps)
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
training_hooks=[logging_hook])
elif mode == tf.estimator.ModeKeys.EVAL:
logger.info("shape of label_id: {}".format(label_id.shape))
def metric_fn(label_id, nsp_logits, masked_lm_log_probs,
masked_lm_example_loss, masked_lm_ids, masked_lm_weights):
prec = precision(labels=label_id,
predictions=tf.argmax(nsp_logits, axis=1),
num_classes=num_labels, pos_indices=[0, 1, 2], average='macro')
rec = recall(labels=label_id,
predictions=tf.argmax(nsp_logits, axis=1),
num_classes=num_labels, pos_indices=[0, 1, 2], average='macro')
fscore = f1(labels=label_id,
predictions=tf.argmax(nsp_logits, axis=1),
num_classes=num_labels, pos_indices=[0, 1, 2], average='macro')
masked_lm_log_probs = tf.reshape(masked_lm_log_probs, [-1, masked_lm_log_probs.shape[-1]])
masked_lm_predictions = tf.argmax(masked_lm_log_probs, axis=-1, output_type=tf.int32)
masked_lm_example_loss = tf.reshape(masked_lm_example_loss, [-1])
masked_lm_ids = tf.reshape(masked_lm_ids, [-1])
masked_lm_weights = tf.reshape(masked_lm_weights, [-1])
masked_lm_accuracy = tf.metrics.accuracy(
labels=masked_lm_ids,
predictions=masked_lm_predictions,
weights=masked_lm_weights)
masked_lm_mean_loss = tf.metrics.mean(
values=masked_lm_example_loss, weights=masked_lm_weights)
return {
"precision": prec,
"recall": rec,
"f1-score": fscore,
"accuracy": tf.metrics.accuracy(labels=label_id, predictions=tf.argmax(nsp_logits, axis=1)),
"masked_lm_accuracy": masked_lm_accuracy,
"masked_lm_mean_loss": masked_lm_mean_loss
}
eval_metrics = metric_fn(label_id, nsp_logits,
masked_lm_log_probs, masked_lm_example_loss, masked_lm_ids, masked_lm_weights)
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
eval_metric_ops=eval_metrics
)
else:
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
predictions=nsp_probability
)
return output_spec
return model_fn
def get_last_checkpoint(model_path):
if not os.path.exists(os.path.join(model_path, 'checkpoint')):
logger.info('checkpoint file not exits:'.format(os.path.join(model_path, 'checkpoint')))
return None
last = None
with codecs.open(os.path.join(model_path, 'checkpoint'), 'r', encoding='utf-8') as fd:
for line in fd:
line = line.strip().split(':')
if len(line) != 2:
continue
if line[0] == 'model_checkpoint_path':
last = line[1][2:-1]
break
return last
def adam_filter(model_path):
"""
:param model_path:
:return:
"""
last_name = get_last_checkpoint(model_path)
if last_name is None:
return
sess = tf.Session()
imported_meta = tf.train.import_meta_graph(os.path.join(model_path, last_name + '.meta'))
imported_meta.restore(sess, os.path.join(model_path, last_name))
need_vars = []
for var in tf.global_variables():
if 'adam_v' not in var.name and 'adam_m' not in var.name:
need_vars.append(var)
saver = tf.train.Saver(need_vars)
saver.save(sess, os.path.join(model_path, 'model.ckpt'))
def main(_):
processors = {
"nli": NliProcessor
}
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.max_seq_len > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length %d because the BERT model "
"was only trained up to sequence length %d" %
(FLAGS.max_seq_len, bert_config.max_position_embeddings))
if FLAGS.clean and FLAGS.do_train:
if os.path.exists(FLAGS.output_dir):
def del_file(path):
ls = os.listdir(path)
for i in ls:
c_path = os.path.join(path, i)
if os.path.isdir(c_path):
del_file(c_path)
else:
os.remove(c_path)
try:
del_file(FLAGS.output_dir)
except Exception as e:
logger.info(e)
logger.info('please remove the files of output dir and data.conf')
exit(-1)
# check output dir exists
if not os.path.exists(FLAGS.output_dir):
os.mkdir(FLAGS.output_dir)
processor = processors[FLAGS.task](FLAGS.output_dir)
logger.info("total vocabulary size is: {}".format(bert_config.vocab_size))
session_config = tf.ConfigProto(
log_device_placement=False,
inter_op_parallelism_threads=0,
intra_op_parallelism_threads=0,
allow_soft_placement=True)
# dist_strategy = tf.contrib.distribute.MirroredStrategy(num_gpus=2)
run_config = tf.estimator.RunConfig(
model_dir=FLAGS.output_dir,
save_summary_steps=FLAGS.save_summary_steps,
save_checkpoints_steps=FLAGS.save_checkpoints_steps,
session_config=session_config,
keep_checkpoint_max=FLAGS.keep_checkpoint_max
)
train_examples = None
eval_examples = None
num_train_steps = None
num_warmup_steps = None
rng = random.Random(FLAGS.seed)
if FLAGS.do_train and FLAGS.do_eval:
train_examples = processor.get_train_examples(FLAGS.data_dir)
num_train_steps = int(
len(train_examples) * 1.0 / FLAGS.batch_size * FLAGS.num_train_epochs)
if num_train_steps < 1:
raise AttributeError('training data is so small...')
num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", FLAGS.batch_size)
logger.info(" Num steps = %d", num_train_steps)
eval_examples = processor.get_dev_examples(FLAGS.data_dir)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", FLAGS.batch_size)
label_list = processor.get_labels()
model_fn = model_fn_builder(
bert_config=bert_config,
num_labels=len(label_list),
init_checkpoint=FLAGS.init_checkpoint,
learning_rate=FLAGS.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps)
params = {
'batch_size': FLAGS.batch_size
}
estimator = tf.estimator.Estimator(
model_fn,
params=params,
config=run_config)
if FLAGS.do_train and FLAGS.do_eval:
train_file = os.path.join(FLAGS.output_dir, "train.tf_record")
if not os.path.exists(train_file):
filed_based_convert_examples_to_features(
train_examples, label_list, FLAGS.max_seq_len, train_file, FLAGS.output_dir, rng, flag=True)
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
max_seq_length=FLAGS.max_seq_len,
is_training=True,
drop_remainder=True)
# estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record")
if not os.path.exists(eval_file):
filed_based_convert_examples_to_features(
eval_examples, label_list, FLAGS.max_seq_len, eval_file, FLAGS.output_dir, rng, flag=True)
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
max_seq_length=FLAGS.max_seq_len,
is_training=False,
drop_remainder=True)
# train and eval togither
# early stop hook
early_stopping_hook = tf.estimator.experimental.stop_if_no_decrease_hook(
estimator=estimator,
metric_name='loss',
max_steps_without_decrease=num_train_steps,
eval_dir=None,
min_steps=0,
run_every_secs=None,
run_every_steps=FLAGS.save_checkpoints_steps)
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=num_train_steps,
hooks=[early_stopping_hook])
best_copier = BestCheckpointCopier(
name='best', # directory within model directory to copy checkpoints to
checkpoints_to_keep=1, # number of checkpoints to keep
score_metric='f1-score', # metric to use to determine "best"
compare_fn=lambda x, y: x.score > y.score,
sort_key_fn=lambda x: x.score,
sort_reverse=True) # sort order when discarding excess checkpoints
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, steps=1000, exporters=best_copier)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
if FLAGS.do_evaluate:
predict_examples = processor.get_eval_examples()
predict_file = FLAGS.eval_file_path + ".tf_record"
filed_based_convert_examples_to_features(predict_examples, label_list,
FLAGS.max_seq_len,
predict_file, FLAGS.output_dir, rng, flag=False)
logger.info("***** Running Evaluation*****")
logger.info(" Num examples = %d", len(predict_examples))
logger.info(" Batch size = %d", FLAGS.batch_size)
predict_drop_remainder = False
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file,
max_seq_length=FLAGS.max_seq_len,
is_training=False,
drop_remainder=predict_drop_remainder)
result = estimator.predict(input_fn=predict_input_fn)
output_predict_file = FLAGS.eval_file_path + ".score"
def result_to_pair(write_agent):
for predict_line, prediction in zip(predict_examples, result):
line = ''
try:
line += '\t'.join([str(item) for item in prediction]) + '\n'
except Exception as e:
logger.info(e)
logger.info(predict_line.text_a)
logger.info(predict_line.text_b)
break
write_agent.write(line)
with codecs.open(output_predict_file, 'w', encoding='utf-8') as writer:
result_to_pair(writer)
logger.info("evaluation has completed!")
# filter model
if FLAGS.filter_adam_var:
adam_filter(FLAGS.output_dir)
if __name__ == "__main__":
tf.app.run()