-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
295 lines (224 loc) · 13.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#-*-coding: utf-8
import numpy as np
import os
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import subprocess
import joblib
import re
from collections import OrderedDict
import os
import argparse
import pickle
from data_utils import Vocabulary
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from CNN_BiLSTM import CNNBiLSTM
from data_loader import get_loader
from sklearn.metrics import classification_report
from sklearn.metrics import f1_score
# from logger import Logger
from pprint import pprint
def main(args):
gpu_index = None
if args.gpu_index != 0:
gpu_index = args.gpu_index
def to_np(x):
return x.data.cpu().numpy()
def to_var(x, volatile=False):
if torch.cuda.is_available():
x = x.cuda(gpu_index)
return Variable(x, volatile=volatile)
f_result = open(args.data_file_dir_logs, 'w')
f_result.write(str(args.data_file_dir_train))
f_result.write('\n')
# apply word2vec
from gensim.models import word2vec
pretrained_word2vec_file = './data_in/word2vec/ko_word2vec_' + str(args.embed_size) + '.model'
wv_model_ko = word2vec.Word2Vec.load(pretrained_word2vec_file)
word2vec_matrix = wv_model_ko.wv.syn0
# build vocab
with open(args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
print("len(vocab): ",len(vocab))
print("word2vec_matrix: ",np.shape(word2vec_matrix))
with open(args.char_vocab_path, 'rb') as f:
char_vocab = pickle.load(f)
with open(args.pos_vocab_path, 'rb') as f:
pos_vocab = pickle.load(f)
with open(args.lex_dict_path, 'rb') as f:
lex_dict = pickle.load(f)
NER_idx_dic = {'<unk>': 0, 'LC': 1, 'DT': 2, 'OG': 3, 'TI': 4, 'PS': 5}
# build models
cnn_bilstm_tagger = CNNBiLSTM(vocab_size=len(vocab),
char_vocab_size=len(char_vocab),
pos_vocab_size=len(pos_vocab),
lex_ner_size=len(NER_idx_dic),
embed_size=args.embed_size,
hidden_size=args.hidden_size,
num_layers=args.num_layers,
word2vec=word2vec_matrix,
num_classes=10)
# If you don't use GPU, you can get error here (in the case of loading state dict from Tensor on GPU)
# To avoid error, you should use options -> map_location=lambda storage, loc: storage. it will load tensor to CPU
# cnn_bilstm_tagger.load_state_dict(torch.load(args.model_load_path, map_location=lambda storage, loc: storage))
# create model directory
if not os.path.exists(args.model_path):
os.mkdir(args.model_path)
if torch.cuda.is_available():
cnn_bilstm_tagger.cuda(gpu_index)
data_loader = get_loader(data_file_dir=args.data_file_dir_train,
vocab=vocab,
char_vocab=char_vocab,
pos_vocab=pos_vocab,
lex_dict=lex_dict,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
dataset='both')
test_data_loader = get_loader(data_file_dir=args.data_file_dir_test,
vocab=vocab,
char_vocab=char_vocab,
pos_vocab=pos_vocab,
lex_dict=lex_dict,
batch_size=args.test_batch_size,
shuffle=True,
num_workers=args.num_workers)
# Loss and Optimizer
learning_rate = args.learning_rate
momentum = args.momentum
cnn_bilstm_tagger_parameters = filter(lambda p: p.requires_grad, cnn_bilstm_tagger.parameters())
optimizer = torch.optim.SGD(cnn_bilstm_tagger_parameters, lr=learning_rate, momentum=momentum)
criterion = nn.CrossEntropyLoss(ignore_index=0)#nn.NLLLoss() #nn.CrossEntropyLoss()#
max_macro_f1_score = 0
total_step = len(data_loader)
for epoch in range(args.num_epochs):
for step, (x_text_batch, x_split_batch, padded_word_tokens_matrix, padded_char_tokens_matrix, padded_pos_tokens_matrix, padded_lex_tokens_matrix, labels, lengths) in enumerate(data_loader):
# try:
padded_word_tokens_matrix = to_var(padded_word_tokens_matrix)
padded_char_tokens_matrix = to_var(padded_char_tokens_matrix)
padded_pos_tokens_matrix = to_var(padded_pos_tokens_matrix)
padded_lex_tokens_matrix = to_var(padded_lex_tokens_matrix)
# padded_lex_tokens_matrix.requires_grad = False
labels = to_var(labels)
cnn_bilstm_tagger.zero_grad()
labels = pack_padded_sequence(labels, lengths, batch_first=True)[0] #[0] -> data, [1] -> batch_size
predictions = cnn_bilstm_tagger(padded_word_tokens_matrix, padded_char_tokens_matrix, padded_pos_tokens_matrix, padded_lex_tokens_matrix, lengths)
# features = cnn_bilstm_crf_tagger(padded_word_tokens_matrix, padded_char_tokens_matrix,
# padded_pos_tokens_matrix, lengths)
max_labels, argmax_labels = labels.max(1)
# loss = cnn_bilstm_crf_tagger.loss(features, argmax_labels)
# viterbi_score, best_tag_sequence = cnn_bilstm_crf_tagger.viterbi_decode(features)
# argmax_predictions = best_tag_sequence
max_predictions, argmax_predictions = predictions.max(1)
# print("predictions",predictions)
# print("labels",labels)
loss = criterion(predictions, argmax_labels)
loss.backward()
# Update weight parameters
optimizer.step()
# Acc
accuracy = (argmax_labels == argmax_predictions).float().mean() # Different Dim, but it works (batch_size, 1) & (batch_size)
# print("to_np(argmax_labels):",to_np(argmax_labels))
# print("to_np(argmax_predictions):", to_np(argmax_predictions))
# f1_score(to_np(argmax_labels), to_np(argmax_predictions), average='macro')
print("Training:")
print("Epoch [%d/%d], Step [%d/%d], Loss: %.4f, accuracy: %.4f, macro-avg f1: %.4f"%
(epoch + 1, args.num_epochs, step + 1, total_step, loss.data[0], accuracy.data[0], f1_score(to_np(argmax_labels), to_np(argmax_predictions), average='macro')))
# f_result.write('\n')
# f_result.write("Training:")
# f_result.write('\n')
# f_result.write("Epoch [%d/%d], Step [%d/%d], Loss: %.4f, accuracy: %.4f"%
# (epoch + 1, args.num_epochs, step + 1, total_step, loss.data[0], accuracy.data[0]))
# f_result.write('\n')
# except Exception as e: # Cuda out of memory
# print("out of memory!, skip this batch")
# print(e)
# continue
#
# # Test
if (step + 1) % args.test_step == 0:
cnn_bilstm_tagger.eval()
argmax_labels_list = []
argmax_predictions_list = []
for step_test, (x_text_batch, x_split_batch, padded_word_tokens_matrix, padded_char_tokens_matrix, padded_pos_tokens_matrix, padded_lex_tokens_matrix, labels, lengths) in enumerate(test_data_loader):
try:
padded_word_tokens_matrix = to_var(padded_word_tokens_matrix, volatile=True)
padded_char_tokens_matrix = to_var(padded_char_tokens_matrix, volatile=True)
padded_pos_tokens_matrix = to_var(padded_pos_tokens_matrix, volatile=True)
padded_lex_tokens_matrix = to_var(padded_lex_tokens_matrix, volatile=True)
labels = to_var(labels, volatile=True)
labels = pack_padded_sequence(labels, lengths, batch_first=True)[0]
predictions = cnn_bilstm_tagger(padded_word_tokens_matrix, padded_char_tokens_matrix, padded_pos_tokens_matrix, padded_lex_tokens_matrix, lengths)
max_labels, argmax_labels = labels.max(1)
max_predictions, argmax_predictions = predictions.max(1)
if len(argmax_labels.size()) != len(labels.size()): # Check that class dimension is reduced or not (API version issue, pytorch 0.1.12)
max_labels, argmax_labels = labels.max(1, keepdim=True)
max_predictions, argmax_predictions = predictions.max(1, keepdim=True)
# argmax_labels = argmax_labels.squeeze(1)
argmax_labels_list.append(argmax_labels)
argmax_predictions_list.append(argmax_predictions)
except Exception as e:
print(e)
continue
argmax_labels = torch.cat(argmax_labels_list, 0)
argmax_predictions = torch.cat(argmax_predictions_list, 0)
# Acc
accuracy = (argmax_labels == argmax_predictions).float().mean() #ToDo: Check Dim
# f1 score
argmax_labels_np_array = to_np(argmax_labels)
argmax_predictions_np_array = to_np(argmax_predictions)
macro_f1_score = f1_score(argmax_labels_np_array, argmax_predictions_np_array, average='macro')
if (max_macro_f1_score < macro_f1_score):
max_macro_f1_score = macro_f1_score
print("")
print("Test:")
print("Epoch [%d/%d], Step [%d/%d], Loss: %.4f, accuracy: %.4f, F1 Score: %.4f, Max F1 Score: %.4f" %
(epoch + 1, args.num_epochs, step + 1, total_step, loss.data[0], accuracy.data[0], macro_f1_score, max_macro_f1_score))
print("")
print("classification_report:")
target_names = ['B_LC','B_DT','B_OG','B_TI','B_PS','I','O','<PAD>','<START>','<STOP>']
print(classification_report(argmax_labels.cpu().data.numpy(), argmax_predictions.cpu().data.numpy(), target_names=target_names))
f_result.write('\n')
f_result.write("Test:")
f_result.write('\n')
f_result.write("Epoch [%d/%d], Step [%d/%d], Loss: %.4f, accuracy: %.4f, F1 Score: %.4f, Max F1 Score: %.4f" %
(epoch + 1, args.num_epochs, step + 1, total_step, loss.data[0], accuracy.data[0], macro_f1_score, max_macro_f1_score))
f_result.write("classification_report:")
f_result.write('\n')
f_result.write(classification_report(argmax_labels.cpu().data.numpy(), argmax_predictions.cpu().data.numpy(), target_names=target_names))
f_result.write('\n')
cnn_bilstm_tagger.train()
# Save the models
if (step + 1) % args.save_step == 0:
torch.save(cnn_bilstm_tagger.state_dict(),
os.path.join(args.model_path,
'cnn_bilstm_crf_tagger-%d-%d_f1_%.4f_maxf1_%.4f_%d_%d.pkl' % (
epoch + 1, step + 1, macro_f1_score, max_macro_f1_score, args.embed_size, args.hidden_size)))
f_result.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_file_dir_train', type=str, default='./data_in/2016klpNER.base_train')
parser.add_argument('--data_file_dir_test', type=str, default='./data_in/2016klpNER.base_test')
parser.add_argument('--data_file_dir_logs', type=str, default='./data_out/results.txt')
parser.add_argument('--vocab_path', type=str, default='./data_in/vocab_ko_NER.pkl')
parser.add_argument('--char_vocab_path', type=str, default='./data_in/char_vocab_ko_NER.pkl')
parser.add_argument('--pos_vocab_path', type=str, default='./data_in/pos_vocab_ko_NER.pkl')
parser.add_argument('--lex_dict_path', type=str, default='./data_in/lex_dict.pkl')
parser.add_argument('--model_load_path', type=str, default='./data_in/cnn_bilstm_crf_tagger-50-52.pkl')
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--num_epochs', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=3) #64
parser.add_argument('--test_batch_size', type=int, default=30) # 64
parser.add_argument('--embed_size', type=int, default=100) #200
parser.add_argument('--hidden_size', type=int, default=100)
parser.add_argument('--learning_rate', type=int, default=1e-1)
parser.add_argument('--momentum', type=int, default=0.6)
parser.add_argument('--test_step', type=int, default=300)
parser.add_argument('--save_step', type=int, default=300)
parser.add_argument('--model_path', type=str, default='./data_out')
parser.add_argument('--gpu_index', type=int, default=0)
args = parser.parse_args()
main(args)