-
Notifications
You must be signed in to change notification settings - Fork 39
/
fmix.py
190 lines (144 loc) · 6.19 KB
/
fmix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import math
import random
import numpy as np
from scipy.stats import beta
def fftfreqnd(h, w=None, z=None):
""" Get bin values for discrete fourier transform of size (h, w, z)
:param h: Required, first dimension size
:param w: Optional, second dimension size
:param z: Optional, third dimension size
"""
fz = fx = 0
fy = np.fft.fftfreq(h)
if w is not None:
fy = np.expand_dims(fy, -1)
if w % 2 == 1:
fx = np.fft.fftfreq(w)[: w // 2 + 2]
else:
fx = np.fft.fftfreq(w)[: w // 2 + 1]
if z is not None:
fy = np.expand_dims(fy, -1)
if z % 2 == 1:
fz = np.fft.fftfreq(z)[:, None]
else:
fz = np.fft.fftfreq(z)[:, None]
return np.sqrt(fx * fx + fy * fy + fz * fz)
def get_spectrum(freqs, decay_power, ch, h, w=0, z=0):
""" Samples a fourier image with given size and frequencies decayed by decay power
:param freqs: Bin values for the discrete fourier transform
:param decay_power: Decay power for frequency decay prop 1/f**d
:param ch: Number of channels for the resulting mask
:param h: Required, first dimension size
:param w: Optional, second dimension size
:param z: Optional, third dimension size
"""
scale = np.ones(1) / (np.maximum(freqs, np.array([1. / max(w, h, z)])) ** decay_power)
param_size = [ch] + list(freqs.shape) + [2]
param = np.random.randn(*param_size)
scale = np.expand_dims(scale, -1)[None, :]
return scale * param
def make_low_freq_image(decay, shape, ch=1):
""" Sample a low frequency image from fourier space
:param decay_power: Decay power for frequency decay prop 1/f**d
:param shape: Shape of desired mask, list up to 3 dims
:param ch: Number of channels for desired mask
"""
freqs = fftfreqnd(*shape)
spectrum = get_spectrum(freqs, decay, ch, *shape)#.reshape((1, *shape[:-1], -1))
spectrum = spectrum[:, 0] + 1j * spectrum[:, 1]
mask = np.real(np.fft.irfftn(spectrum, shape))
if len(shape) == 1:
mask = mask[:1, :shape[0]]
if len(shape) == 2:
mask = mask[:1, :shape[0], :shape[1]]
if len(shape) == 3:
mask = mask[:1, :shape[0], :shape[1], :shape[2]]
mask = mask
mask = (mask - mask.min())
mask = mask / mask.max()
return mask
def sample_lam(alpha, reformulate=False):
""" Sample a lambda from symmetric beta distribution with given alpha
:param alpha: Alpha value for beta distribution
:param reformulate: If True, uses the reformulation of [1].
"""
if reformulate:
lam = beta.rvs(alpha+1, alpha)
else:
lam = beta.rvs(alpha, alpha)
return lam
def binarise_mask(mask, lam, in_shape, max_soft=0.0):
""" Binarises a given low frequency image such that it has mean lambda.
:param mask: Low frequency image, usually the result of `make_low_freq_image`
:param lam: Mean value of final mask
:param in_shape: Shape of inputs
:param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
:return:
"""
idx = mask.reshape(-1).argsort()[::-1]
mask = mask.reshape(-1)
num = math.ceil(lam * mask.size) if random.random() > 0.5 else math.floor(lam * mask.size)
eff_soft = max_soft
if max_soft > lam or max_soft > (1-lam):
eff_soft = min(lam, 1-lam)
soft = int(mask.size * eff_soft)
num_low = num - soft
num_high = num + soft
mask[idx[:num_high]] = 1
mask[idx[num_low:]] = 0
mask[idx[num_low:num_high]] = np.linspace(1, 0, (num_high - num_low))
mask = mask.reshape((1, *in_shape))
return mask
def sample_mask(alpha, decay_power, shape, max_soft=0.0, reformulate=False):
""" Samples a mean lambda from beta distribution parametrised by alpha, creates a low frequency image and binarises
it based on this lambda
:param alpha: Alpha value for beta distribution from which to sample mean of mask
:param decay_power: Decay power for frequency decay prop 1/f**d
:param shape: Shape of desired mask, list up to 3 dims
:param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
:param reformulate: If True, uses the reformulation of [1].
"""
if isinstance(shape, int):
shape = (shape,)
# Choose lambda
lam = sample_lam(alpha, reformulate)
# Make mask, get mean / std
mask = make_low_freq_image(decay_power, shape)
mask = binarise_mask(mask, lam, shape, max_soft)
return lam, mask
def sample_and_apply(x, alpha, decay_power, shape, max_soft=0.0, reformulate=False):
"""
:param x: Image batch on which to apply fmix of shape [b, c, shape*]
:param alpha: Alpha value for beta distribution from which to sample mean of mask
:param decay_power: Decay power for frequency decay prop 1/f**d
:param shape: Shape of desired mask, list up to 3 dims
:param max_soft: Softening value between 0 and 0.5 which smooths hard edges in the mask.
:param reformulate: If True, uses the reformulation of [1].
:return: mixed input, permutation indices, lambda value of mix,
"""
lam, mask = sample_mask(alpha, decay_power, shape, max_soft, reformulate)
index = np.random.permutation(x.shape[0])
x1, x2 = x * mask, x[index] * (1-mask)
return x1+x2, index, lam
class FMixBase:
r""" FMix augmentation
Args:
decay_power (float): Decay power for frequency decay prop 1/f**d
alpha (float): Alpha value for beta distribution from which to sample mean of mask
size ([int] | [int, int] | [int, int, int]): Shape of desired mask, list up to 3 dims
max_soft (float): Softening value between 0 and 0.5 which smooths hard edges in the mask.
reformulate (bool): If True, uses the reformulation of [1].
"""
def __init__(self, decay_power=3, alpha=1, size=(32, 32), max_soft=0.0, reformulate=False):
super().__init__()
self.decay_power = decay_power
self.reformulate = reformulate
self.size = size
self.alpha = alpha
self.max_soft = max_soft
self.index = None
self.lam = None
def __call__(self, x):
raise NotImplementedError
def loss(self, *args, **kwargs):
raise NotImplementedError