-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsganTorchWGANDense.py
303 lines (222 loc) · 8.9 KB
/
sganTorchWGANDense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
import torch.nn as nn
from torch import optim
from skimage import io
import numpy
import LoadData
cuda = True
datasetVersion = 'dataset'
class Config():
def __init__(self, batchSize):
self.epochs = 50000
self.batchSize = batchSize
self.nc = 3
self.zx = 9
self.zxSample = 20
self.nz = 100
self.l2Fac = 1e-5 # L2 reg
self.genLayers = 5
self.disLayers = self.genLayers
self.genKernelSize = [(5, 5)] * self.genLayers
self.genKernelSize = self.genKernelSize[::-1]
self.disKernelSize = self.genKernelSize
self.genOutChannels = [self.nc] + [2 ** (n + 6) for n in range(self.genLayers - 1)]
self.genOutChannels = self.genOutChannels[::-1]
self.genInChannels = [self.nz] + self.genOutChannels[:-1]
self.genPadding = 2
self.disOutChannels = [2 ** (n + 6) for n in range(self.disLayers - 1)] + [1] # TODO check 1 or 2 output channels for final layer
self.disInChannels = [self.nc] + self.disOutChannels[:-1]
self.disPadding = 2
self.genStride = [(2, 2)] * self.genLayers # Dimensions: NC * W * H input, then genOutChannels[i] * (W * 2 ^ (i + 1)) * (H * 2 ^ (i + 1)), last is npx = zx * 32
self.disStride = [(2, 2)] * self.disLayers # Dimensions last layer is Wgen / 2**5 = Wgen / 32 = npx
self.lr = 0.0005
self.b1 = 0.5
self.l2_fac = 1e-5
self.epochIters = self.batchSize * 100
self.Dupdates = 1
self.npx = zxToNpx(self.zx, self.genLayers)
def zxToNpx(zx, depth):
return (zx - 1) * 2 ** depth + 1
class NetG(nn.Module):
def __init__(self, config):
super(NetG, self).__init__()
self.layers = torch.nn.ModuleList()
# Transposed Convolution
# outChannels - num_filters - gen_fn
# kernelSize - filter_size - gen_ks
# stride - (2, 2)
# Batchnorm
for l in range(config.genLayers - 1):
tconv = torch.nn.ConvTranspose2d(
config.genInChannels[l],
config.genOutChannels[l],
config.genKernelSize[l],
stride = config.genStride[l],
padding=config.genPadding)
activation = torch.nn.ReLU()
bnorm = torch.nn.BatchNorm2d(
config.genOutChannels[l])
self.layers.append(tconv)
self.layers.append(bnorm)
self.layers.append(activation)
tconv = torch.nn.ConvTranspose2d(
config.genInChannels[-1],
config.genOutChannels[-1],
config.genKernelSize[-1],
stride = config.genStride[-1],
padding=config.genPadding)
activation = torch.nn.Tanh()
self.layers.append(tconv)
self.layers.append(activation)
def forward(self, x):
out = self.layers[0](x)
for i, l in enumerate(self.layers[1:]):
out = l(out)
return out
class NetD(nn.Module):
def __init__(self, config):
super(NetD, self).__init__()
self.layers = torch.nn.ModuleList()
self.config = config
first = torch.nn.Conv2d(
config.disInChannels[0],
config.disOutChannels[0],
config.disKernelSize[0],
stride = config.disStride[0],
padding = config.disPadding)
firstActivation = torch.nn.LeakyReLU(negative_slope=0.2)
self.layers.append(first)
self.layers.append(firstActivation)
for l in range(1, config.disLayers - 1):
conv = torch.nn.Conv2d(
config.disInChannels[l],
config.disOutChannels[l],
config.disKernelSize[l],
stride = config.disStride[l],
padding = config.disPadding)
activation = torch.nn.LeakyReLU(negative_slope = 0.2)
bnorm = torch.nn.BatchNorm2d(config.disOutChannels[l])
self.layers.append(conv)
self.layers.append(bnorm)
self.layers.append(activation)
last = torch.nn.Conv2d(
config.disInChannels[-1],
config.disOutChannels[-1],
config.disKernelSize[-1],
stride = config.disStride[-1],
padding = config.disPadding)
lastActivation = torch.nn.Linear(config.zx * config.zx, 1)
self.layers.append(last)
self.layers.append(lastActivation)
def forward(self, x):
out = self.layers[0](x)
for l in self.layers[1:-1]:
out = l(out)
out = out.view(-1, self.config.zx * self.config.zx)
out = self.layers[-1](out)
return out
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
def main():
config = Config(6)
#if cuda:
# torch.backends.cudnn.deterministic=True
gen = NetG(config)
if cuda:
gen = gen.cuda()
dis = NetD(config)
if cuda:
dis = dis.cuda()
weights_init(gen)
weights_init(dis)
print(gen)
print(dis)
trainset = LoadData.loadDataset(datasetVersion, config.npx)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=config.batchSize, shuffle=True, num_workers=2)
optimizerG = optim.Adam(gen.parameters(), lr=config.lr, betas=(config.b1, 0.999)) #, weight_decay=config.l2Fac)
optimizerD = optim.Adam(dis.parameters(), lr=config.lr, betas=(config.b1, 0.999)) #, weight_decay=config.l2Fac)
#optimizerD = optim.RMSprop(dis.parameters(), lr = 0.00005)
#optimizerG = optim.RMSprop(gen.parameters(), lr = 0.00005)
gen_iterations = 0
clampLower = -0.01
clampUpper = 0.01
one = torch.FloatTensor([1])
mone = one * -1
if cuda:
one = one.cuda()
mone = mone.cuda()
Zsample = torch.FloatTensor(1, config.nz, config.zxSample, config.zxSample).uniform_(-1, 1)
if cuda:
Zsample = Zsample.cuda()
for epoch in range(config.epochs):
errG = []
errD = []
dataIter = iter(trainloader)
i = 0
while i < len(trainloader):
# First update the D network
for p in dis.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in netG update
# train the discriminator Diters times
Diters = 5
j = 0
while j < Diters and i < len(trainloader):
j += 1
# clamp parameters to a cube
for p in dis.parameters():
p.data.clamp_(clampLower, clampUpper)
data = dataIter.next()
i += 1
# train with real
dis.zero_grad()
inputs, labels = data
inputs = inputs.float()
if cuda:
inputs = inputs.cuda()
output = dis(inputs)
errDReal = output.mean(0).view(1)
errDReal.backward(one)
# train with fake
noise = torch.FloatTensor(config.batchSize, config.nz, config.zx, config.zx).uniform_(-1, 1)
if cuda:
noise = noise.cuda()
fake = gen(noise)
outputfake = dis(fake)
errDFake = outputfake
errDFake = outputfake.mean(0).view(1)
errDFake.backward(mone)
optimizerD.step()
errD.append((errDReal - errDFake).item())
# Update G
for p in dis.parameters():
p.requires_grad = False # to avoid computation
gen.zero_grad()
noisegen = torch.FloatTensor(config.batchSize, config.nz, config.zx, config.zx).uniform_(-1, 1)
if cuda:
noisegen = noisegen.cuda()
fakegen = gen(noisegen)
outputgenfake = dis(fakegen)
errGFake = outputgenfake.mean(0).view(1)
errGFake.backward(one)
errG.append(errGFake.item())
optimizerG.step()
gen_iterations += 1
print(f"Epoch {epoch} Losses: G = {numpy.mean(errG)} D = {numpy.mean(errD)}")
if epoch % 5 == 0:
with torch.no_grad():
imfake = gen(Zsample).detach().cpu().numpy()[0, :, :, :]
im = numpy.zeros((imfake.shape[1], imfake.shape[2], imfake.shape[0]))
im[:, :, 0] = imfake[0, :, :]
im[:, :, 1] = imfake[1, :, :]
im[:, :, 2] = imfake[2, :, :]
io.imsave(f"samples/torch_sample_{datasetVersion}_{epoch}.png", im)
if epoch % 50 == 0:
torch.save(gen.state_dict(), f"models/gen_{epoch}.pth")
torch.save(dis.state_dict(), f"models/dis_{epoch}.pth")
if __name__ == "__main__":
main()