forked from szy21/pycles_GCM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConditionalStatistics.pyx
376 lines (291 loc) · 15.6 KB
/
ConditionalStatistics.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
from scipy.fftpack import fft, ifft
cimport Grid
cimport ReferenceState
cimport DiagnosticVariables
cimport PrognosticVariables
cimport ParallelMPI
from NetCDFIO cimport NetCDFIO_CondStats
import cython
cimport numpy as np
import numpy as np
from libc.math cimport sqrt, ceil
from thermodynamic_functions cimport thetas_c
include "parameters.pxi"
cdef class ConditionalStatistics:
def __init__(self, namelist):
self.CondStatsClasses = []
cpdef initialize(self, namelist, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_CondStats NC, ParallelMPI.ParallelMPI Pa):
try:
conditional_statistics = namelist['conditional_stats']['classes']
except:
conditional_statistics = ['Null']
#Convert whatever is in twodimensional_statistics to list if not already
if not type(conditional_statistics) == list:
conditional_statistics = [conditional_statistics]
#Build list of twodimensional statistics class instances
if 'Spectra' in conditional_statistics:
self.CondStatsClasses.append(SpectraStatistics(Gr,PV, DV, NC, Pa))
if 'Null' in conditional_statistics:
self.CondStatsClasses.append(NullCondStats())
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_CondStats NC, ParallelMPI.ParallelMPI Pa):
#loop over class instances and class stats_io
for _class in self.CondStatsClasses:
_class.stats_io(Gr, RS, PV, DV, NC, Pa)
return
cdef class NullCondStats:
def __init__(self) :
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_CondStats NC, ParallelMPI.ParallelMPI Pa):
return
cdef class SpectraStatistics:
def __init__(self, Grid.Grid Gr, PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_CondStats NC, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t ii, i, jj, j
double xi, yj
# Set up the wavenumber vectors
self.nwave = int( np.ceil(np.sqrt(2.0) * (Gr.dims.n[0] + 1.0) * 0.5 ) + 1.0)
self.dk = 2.0 * pi/(Gr.dims.n[0]*Gr.dims.dx[0])
self.wavenumbers = np.arange(self.nwave, dtype=np.double) * self.dk
self.kx = np.zeros(Gr.dims.nl[0],dtype=np.double,order='c')
self.ky = np.zeros(Gr.dims.nl[1],dtype=np.double,order='c')
for ii in xrange(Gr.dims.nl[0]):
i = Gr.dims.indx_lo[0] + ii
if i <= (Gr.dims.n[0])/2:
xi = np.double(i)
else:
xi = np.double(i - Gr.dims.n[0])
self.kx[ii] = xi * self.dk
for jj in xrange(Gr.dims.nl[1]):
j = Gr.dims.indx_lo[1] + jj
if j <= Gr.dims.n[1]/2:
yj = np.double(j)
else:
yj = np.double(j-Gr.dims.n[1])
self.ky[jj] = yj * self.dk
NC.create_condstats_group('spectra','wavenumber', self.wavenumbers, Gr, Pa)
# set up the names of the variables
NC.add_condstat('energy_spectrum', 'spectra', 'wavenumber', Gr, Pa)
if 's' in PV.name_index:
NC.add_condstat('s_spectrum', 'spectra', 'wavenumber', Gr, Pa)
if 'qt' in PV.name_index:
NC.add_condstat('qt_spectrum', 'spectra', 'wavenumber', Gr, Pa)
if 'theta_rho' in DV.name_index:
NC.add_condstat('theta_rho_spectrum', 'spectra', 'wavenumber', Gr, Pa)
if 'thetali' in DV.name_index:
NC.add_condstat('thetali_spectrum', 'spectra', 'wavenumber', Gr, Pa)
if 'theta' in DV.name_index:
NC.add_condstat('theta_spectrum', 'spectra', 'wavenumber', Gr, Pa)
if 'qt_variance' in DV.name_index:
NC.add_condstat('qtvar_spectrum', 'spectra', 'wavenumber', Gr, Pa)
if 'qt_variance_clip' in DV.name_index:
NC.add_condstat('qtvarclip_spectrum', 'spectra', 'wavenumber', Gr, Pa)
if 's_variance' in DV.name_index:
NC.add_condstat('svar_spectrum', 'spectra', 'wavenumber', Gr, Pa)
if 'covariance' in DV.name_index:
NC.add_condstat('covar_spectrum', 'spectra', 'wavenumber', Gr, Pa)
if 's' in PV.name_index and 'qt' in PV.name_index:
NC.add_condstat('s_qt_cospectrum', 'spectra', 'wavenumber', Gr, Pa)
#Instantiate classes used for Pencil communication/transposes
self.X_Pencil = ParallelMPI.Pencil()
self.Y_Pencil = ParallelMPI.Pencil()
#Initialize classes used for Pencil communication/tranposes (here dim corresponds to the pencil direction)
self.X_Pencil.initialize(Gr,Pa,dim=0)
self.Y_Pencil.initialize(Gr,Pa,dim=1)
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState RS, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, NetCDFIO_CondStats NC, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t i, j, k, ijk, var_shift
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t ishift
Py_ssize_t jshift
Py_ssize_t u_shift = PV.get_varshift(Gr, 'u')
Py_ssize_t v_shift = PV.get_varshift(Gr, 'v')
Py_ssize_t w_shift = PV.get_varshift(Gr, 'w')
complex [:] data_fft= np.zeros(Gr.dims.npg,dtype=np.complex,order='c')
complex [:] data_fft_s= np.zeros(Gr.dims.npg,dtype=np.complex,order='c')
double [:] uc = np.zeros(Gr.dims.npg,dtype=np.double,order='c')
double [:] vc = np.zeros(Gr.dims.npg,dtype=np.double,order='c')
double [:] wc = np.zeros(Gr.dims.npg,dtype=np.double,order='c')
Py_ssize_t npg = Gr.dims.npg
Py_ssize_t gw = Gr.dims.gw
double [:,:] spec_u, spec_v, spec_w, spec
#Interpolate to cell centers
with nogil:
for i in xrange(1, Gr.dims.nlg[0]):
ishift = i * istride
for j in xrange(1, Gr.dims.nlg[1]):
jshift = j * jstride
for k in xrange(1, Gr.dims.nlg[2]):
ijk = ishift + jshift + k
uc[ijk] = 0.5 * (PV.values[u_shift + ijk - istride] + PV.values[u_shift + ijk])
vc[ijk] = 0.5 * (PV.values[v_shift + ijk - jstride] + PV.values[v_shift + ijk])
wc[ijk] = 0.5 * (PV.values[w_shift + ijk - 1] + PV.values[w_shift + ijk])
self.fluctuation_forward_transform(Gr, Pa, uc[:], data_fft[:])
spec_u = self.compute_spectrum(Gr, Pa, data_fft[:])
self.fluctuation_forward_transform(Gr, Pa, vc[:], data_fft[:])
spec_v = self.compute_spectrum(Gr, Pa, data_fft[:])
self.fluctuation_forward_transform(Gr, Pa, wc[:], data_fft[:])
spec_w = self.compute_spectrum(Gr, Pa, data_fft[:])
spec = np.add(np.add(spec_u,spec_v), spec_w)
NC.write_condstat('energy_spectrum', 'spectra', spec[:,:], Pa)
if 's' in PV.name_index:
var_shift = PV.get_varshift(Gr, 's')
self.fluctuation_forward_transform(Gr, Pa, PV.values[var_shift:var_shift+npg], data_fft_s[:])
spec = self.compute_spectrum(Gr, Pa, data_fft_s[:])
NC.write_condstat('s_spectrum', 'spectra', spec[:,:], Pa)
if 'qt' in PV.name_index:
var_shift = PV.get_varshift(Gr, 'qt')
self.fluctuation_forward_transform(Gr, Pa, PV.values[var_shift:var_shift+npg], data_fft[:])
spec = self.compute_spectrum(Gr, Pa, data_fft[:])
NC.write_condstat('qt_spectrum', 'spectra', spec[:,:], Pa)
if 's' in PV.name_index and 'qt' in PV.name_index:
spec = self.compute_cospectrum(Gr, Pa, data_fft_s[:], data_fft[:])
NC.write_condstat('s_qt_cospectrum', 'spectra', spec[:,:], Pa)
if 'theta_rho' in DV.name_index:
var_shift = DV.get_varshift(Gr, 'theta_rho')
self.fluctuation_forward_transform(Gr, Pa, DV.values[var_shift:var_shift+npg], data_fft[:])
spec = self.compute_spectrum(Gr, Pa, data_fft[:])
NC.write_condstat('theta_rho_spectrum', 'spectra', spec[:,:], Pa)
if 'thetali' in DV.name_index:
var_shift = DV.get_varshift(Gr, 'thetali')
self.fluctuation_forward_transform(Gr, Pa, DV.values[var_shift:var_shift+npg], data_fft[:])
spec = self.compute_spectrum(Gr, Pa, data_fft[:])
NC.write_condstat('thetali_spectrum', 'spectra', spec[:,:], Pa)
if 'theta' in DV.name_index:
var_shift = DV.get_varshift(Gr, 'theta')
self.fluctuation_forward_transform(Gr, Pa, DV.values[var_shift:var_shift+npg], data_fft[:])
spec = self.compute_spectrum(Gr, Pa, data_fft[:])
NC.write_condstat('theta_spectrum', 'spectra', spec[:,:], Pa)
if 'qt_variance' in DV.name_index:
var_shift = DV.get_varshift(Gr, 'qt_variance')
self.fluctuation_forward_transform(Gr, Pa, DV.values[var_shift:var_shift+npg], data_fft[:])
spec = self.compute_spectrum(Gr, Pa, data_fft[:])
NC.write_condstat('qtvar_spectrum', 'spectra', spec[:,:], Pa)
if 'qt_variance_clip' in DV.name_index:
var_shift = DV.get_varshift(Gr, 'qt_variance_clip')
self.fluctuation_forward_transform(Gr, Pa, DV.values[var_shift:var_shift+npg], data_fft[:])
spec = self.compute_spectrum(Gr, Pa, data_fft[:])
NC.write_condstat('qtvarclip_spectrum', 'spectra', spec[:,:], Pa)
if 's_variance' in DV.name_index:
var_shift = DV.get_varshift(Gr, 's_variance')
self.fluctuation_forward_transform(Gr, Pa, DV.values[var_shift:var_shift+npg], data_fft[:])
spec = self.compute_spectrum(Gr, Pa, data_fft[:])
NC.write_condstat('svar_spectrum', 'spectra', spec[:,:], Pa)
if 'covariance' in DV.name_index:
var_shift = DV.get_varshift(Gr, 'covariance')
self.fluctuation_forward_transform(Gr, Pa, DV.values[var_shift:var_shift+npg], data_fft[:])
spec = self.compute_spectrum(Gr, Pa, data_fft[:])
NC.write_condstat('covar_spectrum', 'spectra', spec[:,:], Pa)
return
cpdef forward_transform(self, Grid.Grid Gr,ParallelMPI.ParallelMPI Pa, double [:] data, complex [:] data_fft):
cdef:
double [:,:] x_pencil
complex [:,:] x_pencil_fft, y_pencil, y_pencil_fft
#Do fft in x direction
x_pencil = self.X_Pencil.forward_double(&Gr.dims, Pa, &data[0])
x_pencil_fft = fft(x_pencil,axis=1)
self.X_Pencil.reverse_complex(&Gr.dims, Pa, x_pencil_fft, &data_fft[0])
#Do fft in y direction
y_pencil = self.Y_Pencil.forward_complex(&Gr.dims, Pa, &data_fft[0])
y_pencil_fft = fft(y_pencil,axis=1)
self.Y_Pencil.reverse_complex(&Gr.dims, Pa, y_pencil_fft, &data_fft[0])
return
cpdef fluctuation_forward_transform(self, Grid.Grid Gr,ParallelMPI.ParallelMPI Pa, double [:] data, complex [:] data_fft):
cdef:
double [:,:] x_pencil
complex [:,:] x_pencil_fft, y_pencil, y_pencil_fft
Py_ssize_t i, j, k, ijk
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t ishift
Py_ssize_t jshift
double [:] fluctuation = np.zeros(Gr.dims.npg,dtype=np.double,order='c')
cdef:
double [:] data_mean = Pa.HorizontalMean(Gr, &data[0])
with nogil:
for i in xrange(1, Gr.dims.nlg[0]):
ishift = i * istride
for j in xrange(1, Gr.dims.nlg[1]):
jshift = j * jstride
for k in xrange(1, Gr.dims.nlg[2]):
ijk = ishift + jshift + k
#Compute fluctuations
fluctuation[ijk] = data[ijk] - data_mean[k]
#Do fft in x direction
x_pencil = self.X_Pencil.forward_double(&Gr.dims, Pa, &fluctuation[0])
x_pencil_fft = fft(x_pencil,axis=1)
self.X_Pencil.reverse_complex(&Gr.dims, Pa, x_pencil_fft, &data_fft[0])
#Do fft in y direction
y_pencil = self.Y_Pencil.forward_complex(&Gr.dims, Pa, &data_fft[0])
y_pencil_fft = fft(y_pencil,axis=1)
self.Y_Pencil.reverse_complex(&Gr.dims, Pa, y_pencil_fft, &data_fft[0])
del fluctuation
return
cpdef compute_spectrum(self, Grid.Grid Gr, ParallelMPI.ParallelMPI Pa, complex [:] data_fft ):
cdef:
Py_ssize_t i, j, k, ijk, ik, kg, ishift, jshift
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t gw = Gr.dims.gw
Py_ssize_t nwave = self.nwave
double [:] kx = self.kx
double [:] ky = self.ky
double dk = self.dk
double kmag
double [:,:] spec = np.zeros((Gr.dims.nl[2],self.nwave),dtype=np.double, order ='c')
with nogil:
for i in xrange(Gr.dims.nl[0]):
ishift = (i + gw) * istride
for j in xrange(Gr.dims.nl[1]):
jshift = (j + gw) * jstride
kmag = sqrt(kx[i]*kx[i] + ky[j]*ky[j])
ik = int(ceil(kmag/dk + 0.5) - 1.0)
for k in xrange(Gr.dims.nl[2]):
kg = k + gw
ijk = ishift + jshift + kg
spec[k, ik] += data_fft[ijk].real * data_fft[ijk].real + data_fft[ijk].imag * data_fft[ijk].imag
for k in xrange(Gr.dims.nl[2]):
for ik in xrange(nwave):
spec[k, ik] = Pa.domain_scalar_sum(spec[k,ik])
return spec
cpdef compute_cospectrum(self, Grid.Grid Gr, ParallelMPI.ParallelMPI Pa, complex [:] data_fft_1, complex [:] data_fft_2):
cdef:
Py_ssize_t i, j, k, ijk, ik, kg, ishift, jshift
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t gw = Gr.dims.gw
Py_ssize_t nwave = self.nwave
double [:] kx = self.kx
double [:] ky = self.ky
double dk = self.dk
double kmag, R1, R2
double [:,:] spec = np.zeros((Gr.dims.nl[2],self.nwave),dtype=np.double, order ='c')
with nogil:
for i in xrange(Gr.dims.nl[0]):
ishift = (i + gw) * istride
for j in xrange(Gr.dims.nl[1]):
jshift = (j + gw) * jstride
kmag = sqrt(kx[i]*kx[i] + ky[j]*ky[j])
ik = int(ceil(kmag/dk + 0.5) - 1.0)
for k in xrange(Gr.dims.nl[2]):
kg = k + gw
ijk = ishift + jshift + kg
R1 = sqrt(data_fft_1[ijk].real * data_fft_1[ijk].real + data_fft_1[ijk].imag * data_fft_1[ijk].imag)
R2 = sqrt(data_fft_2[ijk].real * data_fft_2[ijk].real + data_fft_2[ijk].imag * data_fft_2[ijk].imag)
spec[k, ik] += R1*R2
for k in xrange(Gr.dims.nl[2]):
for ik in xrange(nwave):
spec[k, ik] = Pa.domain_scalar_sum(spec[k,ik])
return spec