forked from szy21/pycles_GCM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Radiation.bkup
1880 lines (1438 loc) · 81.8 KB
/
Radiation.bkup
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!python
#cython: boundscheck=False
#cython: wraparound=False
#cython: initializedcheck=False
#cython: cdivision=True
cimport Grid
cimport ReferenceState
cimport PrognosticVariables
cimport DiagnosticVariables
from NetCDFIO cimport NetCDFIO_Stats
cimport ParallelMPI
cimport TimeStepping
cimport Surface
from Forcing cimport AdjustedMoistAdiabat
from Thermodynamics cimport LatentHeat
# import pylab as plt
import numpy as np
cimport numpy as np
import netCDF4 as nc
from scipy.interpolate import pchip_interpolate
from libc.math cimport pow, cbrt, exp, fmin, fmax, sin
from thermodynamic_functions cimport cpm_c, exner_c
include 'parameters.pxi'
from profiles import profile_data
from scipy.interpolate import pchip
import cPickle
import cython
from fms_forcing_reader import reader
def RadiationFactory(namelist, LatentHeat LH, ParallelMPI.ParallelMPI Pa):
# if namelist specifies RRTM is to be used, this will override any case-specific radiation schemes
try:
use_rrtm = namelist['radiation']['use_RRTM']
except:
use_rrtm = False
if use_rrtm:
return RadiationRRTM(namelist,LH, Pa)
else:
casename = namelist['meta']['casename']
if casename == 'DYCOMS_RF01':
return RadiationDyCOMS_RF01(namelist)
elif casename == 'DYCOMS_RF02':
#Dycoms RF01 and RF02 use the same radiation
return RadiationDyCOMS_RF01(namelist)
elif casename == 'SMOKE':
return RadiationSmoke()
elif casename == 'CGILS':
return RadiationRRTM(namelist,LH, Pa)
elif casename == 'ZGILS':
return RadiationRRTM(namelist, LH, Pa)
elif casename == 'GCMFixed':
return RadiationGCMGrey(namelist, LH, Pa)
elif casename == 'GCMVarying':
return RadiationGCMGreyMean(namelist, LH, Pa)
#return RadiationGCMGreyVarying(namelist, LH, Pa)
elif casename == 'GCMMean':
return RadiationGCMGreyMean(namelist, LH, Pa)
else:
return RadiationNone()
cdef class RadiationBase:
def __init__(self):
return
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
self.z_pencil = ParallelMPI.Pencil()
self.z_pencil.initialize(Gr, Pa, 2)
self.heating_rate = np.zeros((Gr.dims.npg,), dtype=np.double, order='c')
self.dTdt_rad = np.zeros((Gr.dims.npg,), dtype=np.double, order='c')
NS.add_profile('radiative_heating_rate', Gr, Pa)
NS.add_profile('radiative_entropy_tendency', Gr, Pa)
NS.add_profile('radiative_temperature_tendency',Gr, Pa)
NS.add_ts('srf_lw_flux_up', Gr, Pa)
NS.add_ts('srf_lw_flux_down', Gr, Pa)
NS.add_ts('srf_sw_flux_up', Gr, Pa)
NS.add_ts('srf_sw_flux_down', Gr, Pa)
return
cpdef initialize_profiles(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
Surface.SurfaceBase Sur, TimeStepping.TimeStepping TS, ParallelMPI.ParallelMPI Pa):
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t i,j,k
Py_ssize_t gw = Gr.dims.gw
Py_ssize_t imax = Gr.dims.nlg[0] - Gr.dims.gw
Py_ssize_t jmax = Gr.dims.nlg[1] - Gr.dims.gw
Py_ssize_t kmax = Gr.dims.nlg[2] - Gr.dims.gw
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t ishift, jshift, ijk
Py_ssize_t t_shift = DV.get_varshift(Gr, 'temperature')
double [:] entropy_tendency = np.zeros((Gr.dims.npg,), dtype=np.double, order='c')
double [:] tmp
# Now update entropy tendencies
with nogil:
for i in xrange(gw,imax):
ishift = i * istride
for j in xrange(gw,jmax):
jshift = j * jstride
for k in xrange(gw,kmax):
ijk = ishift + jshift + k
entropy_tendency[ijk] = self.heating_rate[ijk] * Ref.alpha0_half[k] / DV.values[ijk + t_shift]
tmp = Pa.HorizontalMean(Gr, &self.heating_rate[0])
NS.write_profile('radiative_heating_rate', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMean(Gr, &entropy_tendency[0])
NS.write_profile('radiative_entropy_tendency', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
tmp = Pa.HorizontalMean(Gr, &self.dTdt_rad[0])
NS.write_profile('radiative_temperature_tendency', tmp[Gr.dims.gw:-Gr.dims.gw], Pa)
NS.write_ts('srf_lw_flux_up',self.srf_lw_up, Pa ) # Units are W/m^2
NS.write_ts('srf_lw_flux_down', self.srf_lw_down, Pa)
NS.write_ts('srf_sw_flux_up', self.srf_sw_up, Pa)
NS.write_ts('srf_sw_flux_down', self.srf_sw_down, Pa)
return
cdef class RadiationNone(RadiationBase):
def __init__(self):
return
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cpdef initialize_profiles(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
Surface.SurfaceBase Sur,TimeStepping.TimeStepping TS, ParallelMPI.ParallelMPI Pa):
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cdef class RadiationDyCOMS_RF01(RadiationBase):
def __init__(self, namelist):
self.alpha_z = 1.0
self.kap = 85.0
try:
self.f0 = namelist['radiation']['dycoms_f0']
except:
self.f0 = 70.0
self.f1 = 22.0
self.divergence = 3.75e-6
return
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
RadiationBase.initialize(self, Gr, NS, Pa)
return
cpdef initialize_profiles(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
Surface.SurfaceBase Sur,TimeStepping.TimeStepping TS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t imin = Gr.dims.gw
Py_ssize_t jmin = Gr.dims.gw
Py_ssize_t kmin = Gr.dims.gw
Py_ssize_t imax = Gr.dims.nlg[0] - Gr.dims.gw
Py_ssize_t jmax = Gr.dims.nlg[1] - Gr.dims.gw
Py_ssize_t kmax = Gr.dims.nlg[2] - Gr.dims.gw
Py_ssize_t pi, i, j, k, ijk, ishift, jshift
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t ql_shift = DV.get_varshift(Gr, 'ql')
Py_ssize_t qt_shift = PV.get_varshift(Gr, 'qt')
Py_ssize_t s_shift
Py_ssize_t thli_shift
Py_ssize_t t_shift = DV.get_varshift(Gr, 'temperature')
Py_ssize_t gw = Gr.dims.gw
double [:, :] ql_pencils = self.z_pencil.forward_double(&Gr.dims, Pa, &DV.values[ql_shift])
double [:, :] qt_pencils = self.z_pencil.forward_double(&Gr.dims, Pa, &PV.values[qt_shift])
double[:, :] f_rad = np.empty((self.z_pencil.n_local_pencils, Gr.dims.n[2] + 1), dtype=np.double, order='c')
double[:, :] f_heat = np.empty((self.z_pencil.n_local_pencils, Gr.dims.n[2]), dtype=np.double, order='c')
double q_0
double q_1
double zi
double rhoi
double dz = Gr.dims.dx[2]
double dzi = Gr.dims.dxi[2]
double[:] z = Gr.zp
double[:] rho = Ref.rho0
double[:] rho_half = Ref.rho0_half
double cbrt_z = 0
with nogil:
for pi in xrange(self.z_pencil.n_local_pencils):
# Compute zi (level of 8.0 g/kg isoline of qt)
for k in xrange(Gr.dims.n[2]):
if qt_pencils[pi, k] > 8e-3:
zi = z[gw + k]
rhoi = rho_half[gw + k]
# Now compute the third term on RHS of Stevens et al 2005
# (equation 3)
f_rad[pi, 0] = 0.0
for k in xrange(Gr.dims.n[2]):
if z[gw + k] >= zi:
cbrt_z = cbrt(z[gw + k] - zi)
f_rad[pi, k + 1] = rhoi * cpd * self.divergence * self.alpha_z * (pow(cbrt_z,4) / 4.0
+ zi * cbrt_z)
else:
f_rad[pi, k + 1] = 0.0
# Compute the second term on RHS of Stevens et al. 2005
# (equation 3)
q_1 = 0.0
f_rad[pi, 0] += self.f1 * exp(-q_1)
for k in xrange(1, Gr.dims.n[2] + 1):
q_1 += self.kap * \
rho_half[gw + k - 1] * ql_pencils[pi, k - 1] * Gr.dims.dzpl_half[gw+k-1]
f_rad[pi, k] += self.f1 * exp(-q_1)
# Compute the first term on RHS of Stevens et al. 2005
# (equation 3)
q_0 = 0.0
f_rad[pi, Gr.dims.n[2]] += self.f0 * exp(-q_0)
for k in xrange(Gr.dims.n[2] - 1, -1, -1):
q_0 += self.kap * rho_half[gw + k] * ql_pencils[pi, k] * Gr.dims.dzpl_half[gw+k]
f_rad[pi, k] += self.f0 * exp(-q_0)
for k in xrange(Gr.dims.n[2]):
f_heat[pi, k] = - \
(f_rad[pi, k + 1] - f_rad[pi, k]) * dzi * Gr.dims.imet_half[k] / rho_half[k]
# Now transpose the flux pencils
self.z_pencil.reverse_double(&Gr.dims, Pa, f_heat, &self.heating_rate[0])
# Now update entropy tendencies
if 's' in PV.name_index:
s_shift = PV.get_varshift(Gr, 's')
with nogil:
for i in xrange(imin, imax):
ishift = i * istride
for j in xrange(jmin, jmax):
jshift = j * jstride
for k in xrange(kmin, kmax):
ijk = ishift + jshift + k
PV.tendencies[
s_shift + ijk] += self.heating_rate[ijk] / DV.values[ijk + t_shift]
self.dTdt_rad[ijk] = self.heating_rate[ijk] / cpm_c(PV.values[ijk + qt_shift])
else:
thli_shift = PV.get_varshift(Gr, 'thli')
with nogil:
for i in xrange(imin, imax):
ishift = i * istride
for j in xrange(jmin, jmax):
jshift = j * jstride
for k in xrange(kmin, kmax):
ijk = ishift + jshift + k
PV.tendencies[
thli_shift + ijk] += self.heating_rate[ijk] / cpd / exner_c(Ref.p0_half[k])
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
RadiationBase.stats_io(self, Gr, Ref, DV, NS, Pa)
return
cdef class RadiationSmoke(RadiationBase):
'''
Radiation for the smoke cloud case
Bretherton, C. S., and coauthors, 1999:
An intercomparison of radiatively- driven entrainment and turbulence in a smoke cloud,
as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391-423. Full text copy.
'''
def __init__(self):
self.f0 = 60.0
self.kap = 0.02
return
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
RadiationBase.initialize(self, Gr, NS, Pa)
return
cpdef initialize_profiles(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
Surface.SurfaceBase Sur, TimeStepping.TimeStepping TS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t imin = Gr.dims.gw
Py_ssize_t jmin = Gr.dims.gw
Py_ssize_t kmin = Gr.dims.gw
Py_ssize_t imax = Gr.dims.nlg[0] - Gr.dims.gw
Py_ssize_t jmax = Gr.dims.nlg[1] - Gr.dims.gw
Py_ssize_t kmax = Gr.dims.nlg[2] - Gr.dims.gw
Py_ssize_t pi, i, j, k, ijk, ishift, jshift
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t s_shift = PV.get_varshift(Gr, 's')
Py_ssize_t t_shift = DV.get_varshift(Gr, 'temperature')
Py_ssize_t smoke_shift = PV.get_varshift(Gr, 'smoke')
Py_ssize_t gw = Gr.dims.gw
double [:, :] smoke_pencils = self.z_pencil.forward_double(&Gr.dims, Pa, &PV.values[smoke_shift])
double[:, :] f_rad = np.zeros((self.z_pencil.n_local_pencils, Gr.dims.n[2] + 1), dtype=np.double, order='c')
double[:, :] f_heat = np.zeros((self.z_pencil.n_local_pencils, Gr.dims.n[2]), dtype=np.double, order='c')
double q_0
double zi
double rhoi
double dz = Gr.dims.dx[2]
double dzi = Gr.dims.dxi[2]
double[:] z = Gr.zp
double[:] rho = Ref.rho0
double[:] rho_half = Ref.rho0_half
double cbrt_z = 0
Py_ssize_t kk
with nogil:
for pi in xrange(self.z_pencil.n_local_pencils):
q_0 = 0.0
f_rad[pi, Gr.dims.n[2]] = self.f0 * exp(-q_0)
for k in xrange(Gr.dims.n[2] - 1, -1, -1):
q_0 += self.kap * rho_half[gw + k] * smoke_pencils[pi, k] * Gr.dims.dzpl_half[gw+k]
f_rad[pi, k] = self.f0 * exp(-q_0)
for k in xrange(Gr.dims.n[2]):
f_heat[pi, k] = - \
(f_rad[pi, k + 1] - f_rad[pi, k]) * dzi * Gr.dims.imet_half[k] / rho_half[k]
# Now transpose the flux pencils
self.z_pencil.reverse_double(&Gr.dims, Pa, f_heat, &self.heating_rate[0])
# Now update entropy tendencies
with nogil:
for i in xrange(imin, imax):
ishift = i * istride
for j in xrange(jmin, jmax):
jshift = j * jstride
for k in xrange(kmin, kmax):
ijk = ishift + jshift + k
PV.tendencies[
s_shift + ijk] += self.heating_rate[ijk] / DV.values[ijk + t_shift] * Ref.alpha0_half[k]
self.dTdt_rad[ijk] = self.heating_rate[ijk] / cpd * Ref.alpha0_half[k]
return
cpdef stats_io(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
RadiationBase.stats_io(self, Gr, Ref, DV, NS, Pa)
return
# Note: the RRTM modules are compiled in the 'RRTMG' directory:
cdef extern:
void c_rrtmg_lw_init(double *cpdair)
void c_rrtmg_lw (
int *ncol ,int *nlay ,int *icld ,int *idrv ,
double *play ,double *plev ,double *tlay ,double *tlev ,double *tsfc ,
double *h2ovmr ,double *o3vmr ,double *co2vmr ,double *ch4vmr ,double *n2ovmr ,double *o2vmr,
double *cfc11vmr,double *cfc12vmr,double *cfc22vmr,double *ccl4vmr ,double *emis ,
int *inflglw ,int *iceflglw,int *liqflglw,double *cldfr ,
double *taucld ,double *cicewp ,double *cliqwp ,double *reice ,double *reliq ,
double *tauaer ,
double *uflx ,double *dflx ,double *hr ,double *uflxc ,double *dflxc, double *hrc,
double *duflx_dt,double *duflxc_dt )
void c_rrtmg_sw_init(double *cpdair)
void c_rrtmg_sw (int *ncol ,int *nlay ,int *icld ,int *iaer ,
double *play ,double *plev ,double *tlay ,double *tlev ,double *tsfc ,
double *h2ovmr ,double *o3vmr ,double *co2vmr ,double *ch4vmr ,double *n2ovmr ,double *o2vmr,
double *asdir ,double *asdif ,double *aldir ,double *aldif ,
double *coszen ,double *adjes ,int *dyofyr ,double *scon ,
int *inflgsw ,int *iceflgsw,int *liqflgsw,double *cldfr ,
double *taucld ,double *ssacld ,double *asmcld ,double *fsfcld ,
double *cicewp ,double *cliqwp ,double *reice ,double *reliq ,
double *tauaer ,double *ssaaer ,double *asmaer ,double *ecaer ,
double *swuflx ,double *swdflx ,double *swhr ,double *swuflxc ,double *swdflxc ,double *swhrc)
cdef class RadiationRRTM(RadiationBase):
def __init__(self, namelist, LatentHeat LH, ParallelMPI.ParallelMPI Pa):
# Required for surface energy budget calculations, can also be used for stats io
self.srf_lw_down = 0.0
self.srf_sw_down = 0.0
self.srf_lw_up = 0.0
self.srf_sw_up = 0.0
casename = namelist['meta']['casename']
self.modified_adiabat = False
if casename == 'SHEBA':
self.profile_name = 'sheba'
elif casename == 'DYCOMS_RF01':
self.profile_name = 'cgils_ctl_s12'
elif casename == 'CGILS':
loc = namelist['meta']['CGILS']['location']
is_p2 = namelist['meta']['CGILS']['P2']
if is_p2:
self.profile_name = 'cgils_p2_s'+str(loc)
else:
self.profile_name = 'cgils_ctl_s'+str(loc)
elif casename == 'ZGILS':
loc = namelist['meta']['ZGILS']['location']
self.profile_name = 'cgils_ctl_s'+str(loc)
self.modified_adiabat = True
self.reference_profile = AdjustedMoistAdiabat(namelist, LH, Pa)
self.Tg_adiabat = 295.0
self.Pg_adiabat = 1000.0e2
self.RH_adiabat = 0.3
else:
Pa.root_print('RadiationRRTM: Case ' + casename + ' has no known extension profile')
Pa.kill()
# Namelist options related to the profile extension
try:
self.n_buffer = namelist['radiation']['RRTM']['buffer_points']
except:
self.n_buffer = 0
try:
self.stretch_factor = namelist['radiation']['RRTM']['stretch_factor']
except:
self.stretch_factor = 1.0
try:
self.patch_pressure = namelist['radiation']['RRTM']['patch_pressure']
except:
self.patch_pressure = 1000.00*100.0
# Namelist options related to gas concentrations
try:
self.co2_factor = namelist['radiation']['RRTM']['co2_factor']
except:
self.co2_factor = 1.0
try:
self.h2o_factor = namelist['radiation']['RRTM']['h2o_factor']
except:
self.h2o_factor = 1.0
# Namelist options related to insolation
try:
self.dyofyr = namelist['radiation']['RRTM']['dyofyr']
except:
self.dyofyr = 0
try:
self.adjes = namelist['radiation']['RRTM']['adjes']
except:
Pa.root_print('Insolation adjustive factor not set so RadiationRRTM takes default value: adjes = 0.5 (12 hour of daylight).')
self.adjes = 0.5
try:
self.scon = namelist['radiation']['RRTM']['solar_constant']
except:
Pa.root_print('Solar Constant not set so RadiationRRTM takes default value: scon = 1360.0 .')
self.scon = 1360.0
try:
self.coszen =namelist['radiation']['RRTM']['coszen']
except:
Pa.root_print('Mean Daytime cos(SZA) not set so RadiationRRTM takes default value: coszen = 2.0/pi .')
self.coszen = 2.0/pi
try:
self.adif = namelist['radiation']['RRTM']['adif']
except:
Pa.root_print('Surface diffusive albedo not set so RadiationRRTM takes default value: adif = 0.06 .')
self.adif = 0.06
try:
self.adir = namelist['radiation']['RRTM']['adir']
except:
if (self.coszen > 0.0):
self.adir = (.026/(self.coszen**1.7 + .065)+(.15*(self.coszen-0.10)*(self.coszen-0.50)*(self.coszen- 1.00)))
else:
self.adir = 0.0
Pa.root_print('Surface direct albedo not set so RadiationRRTM computes value: adif = %5.4f .'%(self.adir))
try:
self.uniform_reliq = namelist['radiation']['RRTM']['uniform_reliq']
except:
Pa.root_print('uniform_reliq not set so RadiationRRTM takes default value: uniform_reliq = False.')
self.uniform_reliq = False
try:
self.radiation_frequency = namelist['radiation']['RRTM']['frequency']
except:
Pa.root_print('radiation_frequency not set so RadiationRRTM takes default value: radiation_frequency = 0.0 (compute at every step).')
self.radiation_frequency = 0.0
self.next_radiation_calculate = 0.0
return
cpdef initialize(self, Grid.Grid Gr, NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
RadiationBase.initialize(self, Gr, NS, Pa)
return
cpdef initialize_profiles(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref, DiagnosticVariables.DiagnosticVariables DV,
NetCDFIO_Stats NS, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t qv_shift = DV.get_varshift(Gr, 'qv')
Py_ssize_t t_shift = DV.get_varshift(Gr, 'temperature')
double [:,:] qv_pencils = self.z_pencil.forward_double(&Gr.dims, Pa, &DV.values[qv_shift])
double [:,:] t_pencils = self.z_pencil.forward_double(&Gr.dims, Pa, &DV.values[t_shift])
Py_ssize_t nz = Gr.dims.n[2]
Py_ssize_t gw = Gr.dims.gw
Py_ssize_t i,k
Py_ssize_t n_adiabat
double [:] pressures_adiabat
# Construct the extension of the profiles, including a blending region between the given profile and LES domain (if desired)
if self.modified_adiabat:
# pressures = profile_data[self.profile_name]['pressure'][:]
pressures = np.arange(25*100, 1015*100, 10*100)
pressures = np.array(pressures[::-1], dtype=np.double)
n_adiabat = np.shape(pressures)[0]
self.reference_profile.initialize(Pa, pressures, n_adiabat, self.Pg_adiabat, self.Tg_adiabat, self.RH_adiabat)
temperatures =np.array( self.reference_profile.temperature)
vapor_mixing_ratios = np.array(self.reference_profile.rv)
else:
pressures = profile_data[self.profile_name]['pressure'][:]
temperatures = profile_data[self.profile_name]['temperature'][:]
vapor_mixing_ratios = profile_data[self.profile_name]['vapor_mixing_ratio'][:]
# Sanity check that patch_pressure < minimum LES domain pressure
dp = np.abs(Ref.p0_half_global[nz + gw -1] - Ref.p0_half_global[nz + gw -2])
self.patch_pressure = np.minimum(self.patch_pressure, Ref.p0_half_global[nz + gw -1] - dp )
#n_profile = len(pressures[pressures<=self.patch_pressure]) # nprofile = # of points in the fixed profile to use
# above syntax tends to cause problems so use a more robust way
n_profile = 0
for pressure in pressures:
if pressure <= self.patch_pressure:
n_profile += 1
self.n_ext = n_profile + self.n_buffer # n_ext = total # of points to add to LES domain (buffer portion + fixed profile portion)
# Create the space for the extensions (to be tacked on to top of LES pencils)
# we declare these as class members in case we want to modify the buffer zone during run time
# i.e. if there is some drift to top of LES profiles
self.p_ext = np.zeros((self.n_ext,),dtype=np.double)
self.t_ext = np.zeros((self.n_ext,),dtype=np.double)
self.rv_ext = np.zeros((self.n_ext,),dtype=np.double)
cdef Py_ssize_t count = 0
for k in xrange(len(pressures)-n_profile, len(pressures)):
self.p_ext[self.n_buffer+count] = pressures[k]
self.t_ext[self.n_buffer+count] = temperatures[k]
self.rv_ext[self.n_buffer+count] = vapor_mixing_ratios[k]
count += 1
# Now create the buffer zone
if self.n_buffer > 0:
dp = np.abs(Ref.p0_half_global[nz + gw -1] - Ref.p0_half_global[nz + gw -2])
self.p_ext[0] = Ref.p0_half_global[nz + gw -1] - dp
for i in range(1,self.n_buffer):
self.p_ext[i] = self.p_ext[i-1] - (i+1.0)**self.stretch_factor * dp
# Sanity check the buffer zone
if self.p_ext[self.n_buffer-1] < self.p_ext[self.n_buffer]:
Pa.root_print('Radiation buffer zone extends too far')
Pa.kill()
# Pressures of "data" points for interpolation, must be INCREASING pressure
xi = np.array([self.p_ext[self.n_buffer+1],self.p_ext[self.n_buffer],Ref.p0_half_global[nz + gw -1],Ref.p0_half_global[nz + gw -2] ],dtype=np.double)
# interpolation for temperature
ti = np.array([self.t_ext[self.n_buffer+1],self.t_ext[self.n_buffer], t_pencils[0,nz-1],t_pencils[0,nz-2] ], dtype = np.double)
# interpolation for vapor mixing ratio
rv_m2 = qv_pencils[0, nz-2]/ (1.0 - qv_pencils[0, nz-2])
rv_m1 = qv_pencils[0,nz-1]/(1.0-qv_pencils[0,nz-1])
ri = np.array([self.rv_ext[self.n_buffer+1],self.rv_ext[self.n_buffer], rv_m1, rv_m2 ], dtype = np.double)
for i in xrange(self.n_buffer):
self.rv_ext[i] = pchip_interpolate(xi, ri, self.p_ext[i] )
self.t_ext[i] = pchip_interpolate(xi,ti, self.p_ext[i])
#--- Plotting to evaluate implementation of buffer zone
#--- Comment out when not running locally
for i in xrange(Gr.dims.nlg[2]):
qv_pencils[0,i] = qv_pencils[0, i]/ (1.0 - qv_pencils[0, i])
#
# Plotting to evaluate implementation of buffer zone
# plt.figure(1)
# plt.plot(self.rv_ext,self.p_ext,'or')
# plt.plot(vapor_mixing_ratios, pressures)
# plt.plot(qv_pencils[0,:], Ref.p0_half_global[gw:-gw],'ob')
# plt.gca().invert_yaxis()
# plt.figure(2)
# plt.plot(self.t_ext,self.p_ext,'-or')
# plt.plot(temperatures,pressures)
# plt.plot(t_pencils[0,:], Ref.p0_half_global[gw:-gw],'-ob')
# plt.gca().invert_yaxis()
# plt.show()
#---END Plotting to evaluate implementation of buffer zone
self.p_full = np.zeros((self.n_ext+nz,), dtype=np.double)
self.pi_full = np.zeros((self.n_ext+1+nz,),dtype=np.double)
self.p_full[0:nz] = Ref.p0_half_global[gw:nz+gw]
self.p_full[nz:]=self.p_ext[:]
self.pi_full[0:nz] = Ref.p0_global[gw:nz+gw]
for i in range(nz,self.n_ext+nz):
self.pi_full[i] = (self.p_full[i] + self.p_full[i-1]) * 0.5
self.pi_full[self.n_ext + nz] = 2.0 * self.p_full[self.n_ext + nz -1 ] - self.pi_full[self.n_ext + nz -1]
# try to get ozone
try:
o3_trace = profile_data[self.profile_name]['o3_vmr'][:] # O3 VMR (from SRF to TOP)
o3_pressure = profile_data[self.profile_name]['pressure'][:]/100.0 # Pressure (from SRF to TOP) in hPa
# can't do simple interpolation... Need to conserve column path !!!
use_o3in = True
except:
try:
o3_trace = profile_data[self.profile_name]['o3_mmr'][:]*28.97/47.9982 # O3 MR converted to VMR
o3_pressure = profile_data[self.profile_name]['pressure'][:]/100.0 # Pressure (from SRF to TOP) in hPa
# can't do simple interpolation... Need to conserve column path !!!
use_o3in = True
except:
Pa.root_print('O3 profile not set so default RRTM profile will be used.')
use_o3in = False
#Initialize rrtmg_lw and rrtmg_sw
cdef double cpdair = np.float64(cpd)
c_rrtmg_lw_init(&cpdair)
c_rrtmg_sw_init(&cpdair)
# Read in trace gas data
lw_input_file = './RRTMG/lw/data/rrtmg_lw.nc'
lw_gas = nc.Dataset(lw_input_file, "r")
lw_pressure = np.asarray(lw_gas.variables['Pressure'])
lw_absorber = np.asarray(lw_gas.variables['AbsorberAmountMLS'])
lw_absorber = np.where(lw_absorber>2.0, np.zeros_like(lw_absorber), lw_absorber)
lw_ngas = lw_absorber.shape[1]
lw_np = lw_absorber.shape[0]
# 9 Gases: O3, CO2, CH4, N2O, O2, CFC11, CFC12, CFC22, CCL4
# From rad_driver.f90, lines 546 to 552
trace = np.zeros((9,lw_np),dtype=np.double,order='F')
for i in xrange(lw_ngas):
gas_name = ''.join(lw_gas.variables['AbsorberNames'][i,:])
if 'O3' in gas_name:
trace[0,:] = lw_absorber[:,i].reshape(1,lw_np)
elif 'CO2' in gas_name:
trace[1,:] = lw_absorber[:,i].reshape(1,lw_np)*self.co2_factor
elif 'CH4' in gas_name:
trace[2,:] = lw_absorber[:,i].reshape(1,lw_np)
elif 'N2O' in gas_name:
trace[3,:] = lw_absorber[:,i].reshape(1,lw_np)
elif 'O2' in gas_name:
trace[4,:] = lw_absorber[:,i].reshape(1,lw_np)
elif 'CFC11' in gas_name:
trace[5,:] = lw_absorber[:,i].reshape(1,lw_np)
elif 'CFC12' in gas_name:
trace[6,:] = lw_absorber[:,i].reshape(1,lw_np)
elif 'CFC22' in gas_name:
trace[7,:] = lw_absorber[:,i].reshape(1,lw_np)
elif 'CCL4' in gas_name:
trace[8,:] = lw_absorber[:,i].reshape(1,lw_np)
# From rad_driver.f90, lines 585 to 620
trpath = np.zeros((nz + self.n_ext + 1, 9),dtype=np.double,order='F')
# plev = self.pi_full[:]/100.0
for i in xrange(1, nz + self.n_ext + 1):
trpath[i,:] = trpath[i-1,:]
if (self.pi_full[i-1]/100.0 > lw_pressure[0]):
trpath[i,:] = trpath[i,:] + (self.pi_full[i-1]/100.0 - np.max((self.pi_full[i]/100.0,lw_pressure[0])))/g*trace[:,0]
for m in xrange(1,lw_np):
plow = np.min((self.pi_full[i-1]/100.0,np.max((self.pi_full[i]/100.0, lw_pressure[m-1]))))
pupp = np.min((self.pi_full[i-1]/100.0,np.max((self.pi_full[i]/100.0, lw_pressure[m]))))
if (plow > pupp):
pmid = 0.5*(plow+pupp)
wgtlow = (pmid-lw_pressure[m])/(lw_pressure[m-1]-lw_pressure[m])
wgtupp = (lw_pressure[m-1]-pmid)/(lw_pressure[m-1]-lw_pressure[m])
trpath[i,:] = trpath[i,:] + (plow-pupp)/g*(wgtlow*trace[:,m-1] + wgtupp*trace[:,m])
if (self.pi_full[i]/100.0 < lw_pressure[lw_np-1]):
trpath[i,:] = trpath[i,:] + (np.min((self.pi_full[i-1]/100.0,lw_pressure[lw_np-1]))-self.pi_full[i]/100.0)/g*trace[:,lw_np-1]
tmpTrace = np.zeros((nz + self.n_ext,9),dtype=np.double,order='F')
for i in xrange(9):
for k in xrange(nz + self.n_ext):
tmpTrace[k,i] = g*100.0/(self.pi_full[k]-self.pi_full[k+1])*(trpath[k+1,i]-trpath[k,i])
if use_o3in == False:
self.o3vmr = np.array(tmpTrace[:,0],dtype=np.double, order='F')
else:
# o3_trace, o3_pressure
trpath_o3 = np.zeros(nz + self.n_ext+1, dtype=np.double, order='F')
# plev = self.pi_full/100.0
o3_np = o3_trace.shape[0]
for i in xrange(1, nz + self.n_ext+1):
trpath_o3[i] = trpath_o3[i-1]
if (self.pi_full[i-1]/100.0 > o3_pressure[0]):
trpath_o3[i] = trpath_o3[i] + (self.pi_full[i-1]/100.0 - np.max((self.pi_full[i]/100.0,o3_pressure[0])))/g*o3_trace[0]
for m in xrange(1,o3_np):
plow = np.min((self.pi_full[i-1]/100.0,np.max((self.pi_full[i]/100.0, o3_pressure[m-1]))))
pupp = np.min((self.pi_full[i-1]/100.0,np.max((self.pi_full[i]/100.0, o3_pressure[m]))))
if (plow > pupp):
pmid = 0.5*(plow+pupp)
wgtlow = (pmid-o3_pressure[m])/(o3_pressure[m-1]-o3_pressure[m])
wgtupp = (o3_pressure[m-1]-pmid)/(o3_pressure[m-1]-o3_pressure[m])
trpath_o3[i] = trpath_o3[i] + (plow-pupp)/g*(wgtlow*o3_trace[m-1] + wgtupp*o3_trace[m])
if (self.pi_full[i]/100.0 < o3_pressure[o3_np-1]):
trpath_o3[i] = trpath_o3[i] + (np.min((self.pi_full[i-1]/100.0,o3_pressure[o3_np-1]))-self.pi_full[i]/100.0)/g*o3_trace[o3_np-1]
tmpTrace_o3 = np.zeros( nz + self.n_ext, dtype=np.double, order='F')
for k in xrange(nz + self.n_ext):
tmpTrace_o3[k] = g *100.0/(self.pi_full[k]-self.pi_full[k+1])*(trpath_o3[k+1]-trpath_o3[k])
self.o3vmr = np.array(tmpTrace_o3[:],dtype=np.double, order='F')
self.co2vmr = np.array(tmpTrace[:,1],dtype=np.double, order='F')
self.ch4vmr = np.array(tmpTrace[:,2],dtype=np.double, order='F')
self.n2ovmr = np.array(tmpTrace[:,3],dtype=np.double, order='F')
self.o2vmr = np.array(tmpTrace[:,4],dtype=np.double, order='F')
self.cfc11vmr = np.array(tmpTrace[:,5],dtype=np.double, order='F')
self.cfc12vmr = np.array(tmpTrace[:,6],dtype=np.double, order='F')
self.cfc22vmr = np.array( tmpTrace[:,7],dtype=np.double, order='F')
self.ccl4vmr = np.array(tmpTrace[:,8],dtype=np.double, order='F')
return
cpdef update(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref,
PrognosticVariables.PrognosticVariables PV, DiagnosticVariables.DiagnosticVariables DV,
Surface.SurfaceBase Sur, TimeStepping.TimeStepping TS,
ParallelMPI.ParallelMPI Pa):
if TS.rk_step == 0:
if self.radiation_frequency <= 0.0:
self.update_RRTM(Gr, Ref, PV, DV,Sur, Pa)
elif TS.t >= self.next_radiation_calculate:
self.update_RRTM(Gr, Ref, PV, DV, Sur, Pa)
self.next_radiation_calculate = (TS.t//self.radiation_frequency + 1.0) * self.radiation_frequency
cdef:
Py_ssize_t imin = Gr.dims.gw
Py_ssize_t jmin = Gr.dims.gw
Py_ssize_t kmin = Gr.dims.gw
Py_ssize_t imax = Gr.dims.nlg[0] - Gr.dims.gw
Py_ssize_t jmax = Gr.dims.nlg[1] - Gr.dims.gw
Py_ssize_t kmax = Gr.dims.nlg[2] - Gr.dims.gw
Py_ssize_t i, j, k, ijk, ishift, jshift
Py_ssize_t istride = Gr.dims.nlg[1] * Gr.dims.nlg[2]
Py_ssize_t jstride = Gr.dims.nlg[2]
Py_ssize_t s_shift = PV.get_varshift(Gr, 's')
Py_ssize_t t_shift = DV.get_varshift(Gr, 'temperature')
Py_ssize_t qt_shift = PV.get_varshift(Gr, 'qt')
# Now update entropy tendencies
with nogil:
for i in xrange(imin, imax):
ishift = i * istride
for j in xrange(jmin, jmax):
jshift = j * jstride
for k in xrange(kmin, kmax):
ijk = ishift + jshift + k
PV.tendencies[
s_shift + ijk] += self.heating_rate[ijk] / DV.values[ijk + t_shift] * Ref.alpha0_half[k]
self.dTdt_rad[ijk] = self.heating_rate[ijk] * Ref.alpha0_half[k]/cpm_c(PV.values[ijk + qt_shift])
return
cdef update_RRTM(self, Grid.Grid Gr, ReferenceState.ReferenceState Ref, PrognosticVariables.PrognosticVariables PV,
DiagnosticVariables.DiagnosticVariables DV, Surface.SurfaceBase Sur, ParallelMPI.ParallelMPI Pa):
cdef:
Py_ssize_t nz = Gr.dims.n[2]
Py_ssize_t nz_full = self.n_ext + nz
Py_ssize_t n_pencils = self.z_pencil.n_local_pencils
Py_ssize_t t_shift = DV.get_varshift(Gr, 'temperature')
Py_ssize_t qv_shift = DV.get_varshift(Gr, 'qv')
Py_ssize_t ql_shift = DV.get_varshift(Gr, 'ql')
Py_ssize_t qi_shift
double [:,:] t_pencil = self.z_pencil.forward_double(&Gr.dims, Pa, &DV.values[t_shift])
double [:,:] qv_pencil = self.z_pencil.forward_double(&Gr.dims, Pa, &DV.values[qv_shift])
double [:,:] ql_pencil = self.z_pencil.forward_double(&Gr.dims, Pa, &DV.values[ql_shift])
double [:,:] qi_pencil = np.zeros((n_pencils,nz),dtype=np.double, order='c')
double [:,:] rl_full = np.zeros((n_pencils,nz_full), dtype=np.double, order='F')
Py_ssize_t k, ip
bint use_ice = False
Py_ssize_t gw = Gr.dims.gw
if 'qi' in DV.name_index:
qi_shift = DV.get_varshift(Gr, 'qi')
qi_pencil = self.z_pencil.forward_double(&Gr.dims, Pa, &DV.values[qi_shift])
use_ice = True
# Define input arrays for RRTM
cdef:
double [:,:] play_in = np.zeros((n_pencils,nz_full), dtype=np.double, order='F')
double [:,:] plev_in = np.zeros((n_pencils,nz_full + 1), dtype=np.double, order='F')
double [:,:] tlay_in = np.zeros((n_pencils,nz_full), dtype=np.double, order='F')
double [:,:] tlev_in = np.zeros((n_pencils,nz_full + 1), dtype=np.double, order='F')
double [:] tsfc_in = np.ones((n_pencils),dtype=np.double,order='F') * Sur.T_surface
double [:,:] h2ovmr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] o3vmr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] co2vmr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] ch4vmr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] n2ovmr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] o2vmr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] cfc11vmr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] cfc12vmr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] cfc22vmr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] ccl4vmr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] emis_in = np.ones((n_pencils,16),dtype=np.double,order='F') * 0.95
double [:,:] cldfr_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] cicewp_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] cliqwp_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] reice_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:,:] reliq_in = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double [:] coszen_in = np.ones((n_pencils),dtype=np.double,order='F') *self.coszen
double [:] asdir_in = np.ones((n_pencils),dtype=np.double,order='F') * self.adir
double [:] asdif_in = np.ones((n_pencils),dtype=np.double,order='F') * self.adif
double [:] aldir_in = np.ones((n_pencils),dtype=np.double,order='F') * self.adir
double [:] aldif_in = np.ones((n_pencils),dtype=np.double,order='F') * self.adif
double [:,:,:] taucld_lw_in = np.zeros((16,n_pencils,nz_full),dtype=np.double,order='F')
double [:,:,:] tauaer_lw_in = np.zeros((n_pencils,nz_full,16),dtype=np.double,order='F')
double [:,:,:] taucld_sw_in = np.zeros((14,n_pencils,nz_full),dtype=np.double,order='F')
double [:,:,:] ssacld_sw_in = np.zeros((14,n_pencils,nz_full),dtype=np.double,order='F')
double [:,:,:] asmcld_sw_in = np.zeros((14,n_pencils,nz_full),dtype=np.double,order='F')
double [:,:,:] fsfcld_sw_in = np.zeros((14,n_pencils,nz_full),dtype=np.double,order='F')
double [:,:,:] tauaer_sw_in = np.zeros((n_pencils,nz_full,14),dtype=np.double,order='F')
double [:,:,:] ssaaer_sw_in = np.zeros((n_pencils,nz_full,14),dtype=np.double,order='F')
double [:,:,:] asmaer_sw_in = np.zeros((n_pencils,nz_full,14),dtype=np.double,order='F')
double [:,:,:] ecaer_sw_in = np.zeros((n_pencils,nz_full,6),dtype=np.double,order='F')
# Output
double[:,:] uflx_lw_out = np.zeros((n_pencils,nz_full +1),dtype=np.double,order='F')
double[:,:] dflx_lw_out = np.zeros((n_pencils,nz_full +1),dtype=np.double,order='F')
double[:,:] hr_lw_out = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double[:,:] uflxc_lw_out = np.zeros((n_pencils,nz_full +1),dtype=np.double,order='F')
double[:,:] dflxc_lw_out = np.zeros((n_pencils,nz_full +1),dtype=np.double,order='F')
double[:,:] hrc_lw_out = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double[:,:] duflx_dt_out = np.zeros((n_pencils,nz_full +1),dtype=np.double,order='F')
double[:,:] duflxc_dt_out = np.zeros((n_pencils,nz_full +1),dtype=np.double,order='F')
double[:,:] uflx_sw_out = np.zeros((n_pencils,nz_full +1),dtype=np.double,order='F')
double[:,:] dflx_sw_out = np.zeros((n_pencils,nz_full +1),dtype=np.double,order='F')
double[:,:] hr_sw_out = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double[:,:] uflxc_sw_out = np.zeros((n_pencils,nz_full +1),dtype=np.double,order='F')
double[:,:] dflxc_sw_out = np.zeros((n_pencils,nz_full +1),dtype=np.double,order='F')
double[:,:] hrc_sw_out = np.zeros((n_pencils,nz_full),dtype=np.double,order='F')
double rv_to_reff = np.exp(np.log(1.2)**2.0)*10.0*1000.0
with nogil:
for k in xrange(nz, nz_full):
for ip in xrange(n_pencils):
tlay_in[ip, k] = self.t_ext[k-nz]
h2ovmr_in[ip, k] = self.rv_ext[k-nz] * Rv/Rd * self.h2o_factor
# Assuming for now that there is no condensate above LES domain!
for k in xrange(nz):
for ip in xrange(n_pencils):
tlay_in[ip,k] = t_pencil[ip,k]
h2ovmr_in[ip,k] = qv_pencil[ip,k]/ (1.0 - qv_pencil[ip,k])* Rv/Rd * self.h2o_factor
rl_full[ip,k] = (ql_pencil[ip,k])/ (1.0 - qv_pencil[ip,k])
cliqwp_in[ip,k] = ((ql_pencil[ip,k])/ (1.0 - qv_pencil[ip,k])
*1.0e3*(self.pi_full[k] - self.pi_full[k+1])/g)
cicewp_in[ip,k] = ((qi_pencil[ip,k])/ (1.0 - qv_pencil[ip,k])
*1.0e3*(self.pi_full[k] - self.pi_full[k+1])/g)
if ql_pencil[ip,k] + qi_pencil[ip,k] > ql_threshold:
cldfr_in[ip,k] = 1.0
with nogil:
for k in xrange(nz_full):
for ip in xrange(n_pencils):
play_in[ip,k] = self.p_full[k]/100.0
o3vmr_in[ip, k] = self.o3vmr[k]
co2vmr_in[ip, k] = self.co2vmr[k]
ch4vmr_in[ip, k] = self.ch4vmr[k]
n2ovmr_in[ip, k] = self.n2ovmr[k]
o2vmr_in [ip, k] = self.o2vmr[k]
cfc11vmr_in[ip, k] = self.cfc11vmr[k]
cfc12vmr_in[ip, k] = self.cfc12vmr[k]
cfc22vmr_in[ip, k] = self.cfc22vmr[k]
ccl4vmr_in[ip, k] = self.ccl4vmr[k]
if self.uniform_reliq:
reliq_in[ip, k] = 14.0*cldfr_in[ip,k]
else:
reliq_in[ip, k] = ((3.0*self.p_full[k]/Rd/tlay_in[ip,k]*rl_full[ip,k]/
fmax(cldfr_in[ip,k],1.0e-6))/(4.0*pi*1.0e3*100.0))**(1.0/3.0)
reliq_in[ip, k] = fmin(fmax(reliq_in[ip, k]*rv_to_reff, 2.5), 60.0)
for ip in xrange(n_pencils):
tlev_in[ip, 0] = Sur.T_surface
plev_in[ip,0] = self.pi_full[0]/100.0
for k in xrange(1,nz_full):
tlev_in[ip, k] = 0.5*(tlay_in[ip,k-1]+tlay_in[ip,k])
plev_in[ip,k] = self.pi_full[k]/100.0
tlev_in[ip, nz_full] = 2.0*tlay_in[ip,nz_full-1] - tlev_in[ip,nz_full-1]
plev_in[ip,nz_full] = self.pi_full[nz_full]/100.0
cdef:
int ncol = n_pencils
int nlay = nz_full
int icld = 1
int idrv = 0
int iaer = 0
int inflglw = 2
int iceflglw = 3
int liqflglw = 1
int inflgsw = 2
int iceflgsw = 3
int liqflgsw = 1
c_rrtmg_lw (
&ncol ,&nlay ,&icld ,&idrv,
&play_in[0,0] ,&plev_in[0,0] ,&tlay_in[0,0] ,&tlev_in[0,0] ,&tsfc_in[0] ,
&h2ovmr_in[0,0] ,&o3vmr_in[0,0] ,&co2vmr_in[0,0] ,&ch4vmr_in[0,0] ,&n2ovmr_in[0,0] ,&o2vmr_in[0,0],
&cfc11vmr_in[0,0],&cfc12vmr_in[0,0],&cfc22vmr_in[0,0],&ccl4vmr_in[0,0] ,&emis_in[0,0] ,
&inflglw ,&iceflglw,&liqflglw,&cldfr_in[0,0] ,
&taucld_lw_in[0,0,0] ,&cicewp_in[0,0] ,&cliqwp_in[0,0] ,&reice_in[0,0] ,&reliq_in[0,0] ,
&tauaer_lw_in[0,0,0] ,
&uflx_lw_out[0,0] ,&dflx_lw_out[0,0] ,&hr_lw_out[0,0] ,&uflxc_lw_out[0,0] ,&dflxc_lw_out[0,0], &hrc_lw_out[0,0],
&duflx_dt_out[0,0],&duflxc_dt_out[0,0] )