forked from wbenbihi/hourglasstensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
77 lines (45 loc) · 1.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
#
# path and dataset parameter
#
DATA_PATH = 'data'
PASCAL_PATH = os.path.join(DATA_PATH, 'pascal_voc')
CACHE_PATH = os.path.join(PASCAL_PATH, 'cache')
OUTPUT_DIR = os.path.join(PASCAL_PATH, 'output')
WEIGHTS_DIR = os.path.join(PASCAL_PATH, 'weights')
WEIGHTS_FILE = None
# WEIGHTS_FILE = os.path.join(DATA_PATH, 'weights', 'YOLO_small.ckpt')
CLASSES = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant', 'sheep', 'sofa',
'train', 'tvmonitor']
FLIPPED = True
#
# model parameter
#
IMAGE_SIZE = 448
CELL_SIZE = 7
BOXES_PER_CELL = 2
ALPHA = 0.1
DISP_CONSOLE = False
OBJECT_SCALE = 1.0
NOOBJECT_SCALE = 1.0
CLASS_SCALE = 2.0
COORD_SCALE = 5.0
#
# solver parameter
#
GPU = ''
LEARNING_RATE = 0.0001
DECAY_STEPS = 30000
DECAY_RATE = 0.1
STAIRCASE = True
BATCH_SIZE = 45
MAX_ITER = 15000
SUMMARY_ITER = 10
SAVE_ITER = 1000
#
# test parameter
#
THRESHOLD = 0.2
IOU_THRESHOLD = 0.5