-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_meta_transfer.py
134 lines (109 loc) · 4.59 KB
/
model_meta_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import json
import os
import tempfile
from airflow.decorators import dag, task
from airflow.models import Variable
from airflow.models.param import Param
from airflow.operators.python import PythonOperator
import pendulum
from decors import get_connection, remove, setup
from utils import file_exist, ssh_download
@dag(
schedule=None,
start_date=pendulum.today("UTC"),
tags=["example", "model repo"],
params={
"location": Param("/tmp/", type="string", description="location of attrs.json with 'metrics', 'params', and 'artifacts' fields"),
"vault_id": Param(default="", type="string"),
"host": Param(default="", type="string"),
"port": Param(type="integer", default=22),
"login": Param(default="", type="string"),
},
)
def mlflow_upload_model():
@task(multiple_outputs=True)
def download_artifacts(connection_id, **context):
parms = context["params"]
location = parms["location"]
target = Variable.get("working_dir", default_var="/tmp/")
temp_dir = tempfile.mkdtemp(dir=target)
ssh_hook = get_connection(conn_id=connection_id, **context)
sftp_client = ssh_hook.get_conn().open_sftp()
content = {}
if file_exist(sftp=sftp_client, name=os.path.join(location, "attrs.json")):
print(f"Downloading attributes ({location}/attrs.json)")
ssh_download(
sftp_client=sftp_client,
remote=os.path.join(location, "attrs.json"),
local=os.path.join(temp_dir, "attrs.json"),
)
# why not parse it
with open(os.path.join(temp_dir, "attrs.json"), "r") as f:
content = json.load(f)
print("Got json content: ", content)
else:
print(f"No model attributes found {location}/attrs.json")
local_arts = []
if not 'artifacts' in content:
print("No artifacts specified")
else:
for art in content['artifacts']:
if not file_exist(sftp=sftp_client, name=art):
print(f"Artifact {art} not found. Skipping")
continue
print(f"Downloading model {art})")
ssh_download(
sftp_client=sftp_client,
remote=art,
local=os.path.join(temp_dir, os.path.basename(art)),
)
local_arts.append(os.path.join(temp_dir, os.path.basename(art)))
content['temp_dir'] = temp_dir
content['artifacts'] = local_arts
return content
#@task.virtualenv(requirements=["mlflow==2.3.2"])
@task
def uploat_to_mlflow(attrs):
from utils import get_mlflow_client, upload_metrics
import shutil
import tempfile
client = get_mlflow_client()
if "metrics" or "artifacts" in attrs:
name = attrs.get(
"name", f"experiment_{next(tempfile._get_candidate_names())}"
)
experiment = client.get_experiment_by_name(name)
if experiment:
experiment_id = experiment.experiment_id
else:
print("Experiment with given name was not found, creating new")
experiment_id = client.create_experiment(name)
run = client.create_run(experiment_id)
print(f"Uploading to experiment {name}/{experiment_id}/{run.info.run_id}")
if "metrics" or "params" in attrs:
print("Uploading metrics client")
upload_metrics(mlflow_client=client, metadata=attrs, runid=run.info.run_id)
if "artifacts" in attrs:
print("Uploading model")
for art in attrs['artifacts']:
print(f"Uploading model -> model/{os.path.basename(art)}")
client.log_artifact(
run_id=run.info.run_id,
local_path=art,
artifact_path=f"model",
)
#client.log_text(
# run_id=run.info.run_id,
# text="This experiment was created by DLS",
# artifact_file="model/meta.txt",
#)
if 'temp_dir' in attrs:
shutil.rmtree(path=attrs["temp_dir"])
setup_task = PythonOperator(python_callable=setup, task_id="setup_connection")
a_id = setup_task.output["return_value"]
attrs = download_artifacts(connection_id=a_id)
cleanup_task = PythonOperator(
python_callable=remove, op_kwargs={"conn_id": a_id}, task_id="cleanup"
)
setup_task >> attrs >> uploat_to_mlflow(attrs) >> cleanup_task
dag = mlflow_upload_model()