-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasurementdata.go
1024 lines (914 loc) · 29.6 KB
/
measurementdata.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package xsens
import (
"bytes"
"encoding/binary"
"fmt"
"math"
"strconv"
"time"
)
// MeasurementData is a generic interface for any measurement data produced by an Xsens device.
type MeasurementData interface {
UnmarshalMTData2Packet(MTData2Packet) error
MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error)
}
// Scalar contains a single scalar value.
type Scalar float64
// String returns a string representation of the scalar.
func (s *Scalar) String() string {
return strconv.FormatFloat(float64(*s), 'f', -1, 64)
}
func (s *Scalar) UnmarshalMTData2Packet(packet MTData2Packet) error {
var err error
switch packet.Identifier().Precision {
case PrecisionFloat32:
var value float32
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &value); err == nil {
*s = Scalar(value)
}
case PrecisionFP1220:
var value FP1220
if err = value.fromBinary(packet.Data()); err == nil {
*s = Scalar(value.Float64())
}
case PrecisionFP1632:
var value FP1632
if err = value.fromBinary(packet.Data()); err == nil {
*s = Scalar(value.Float64())
}
case PrecisionFloat64:
err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, s)
default:
err = fmt.Errorf("invalid precision: %v", packet.Identifier().Precision)
}
if err != nil {
return fmt.Errorf("precision %v: %w", packet.Identifier().Precision, err)
}
return nil
}
func (s *Scalar) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(id.Precision.Size(), id)
switch id.Precision {
case PrecisionFloat32:
binary.BigEndian.PutUint32(packet.Data(), math.Float32bits(float32(*s)))
case PrecisionFP1220:
var f FP1220
f.FromFloat64(float64(*s))
f.toBinary(packet.Data())
case PrecisionFP1632:
var f FP1632
f.FromFloat64(float64(*s))
f.toBinary(packet.Data())
case PrecisionFloat64:
binary.BigEndian.PutUint64(packet.Data(), math.Float64bits(float64(*s)))
}
return packet, nil
}
// VectorXYZ contains a vector with x, y and z-components.
type VectorXYZ struct {
X, Y, Z float64
}
func (t *VectorXYZ) UnmarshalMTData2Packet(packet MTData2Packet) error {
var err error
switch packet.Identifier().Precision {
case PrecisionFloat32:
fields := struct {
X, Y, Z float32
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.X = float64(fields.X)
t.Y = float64(fields.Y)
t.Z = float64(fields.Z)
}
case PrecisionFP1220:
fields := struct {
X, Y, Z FP1220
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.X = fields.X.Float64()
t.Y = fields.Y.Float64()
t.Z = fields.Z.Float64()
}
case PrecisionFP1632:
fields := struct {
X, Y, Z FP1632
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.X = fields.X.Float64()
t.Y = fields.Y.Float64()
t.Z = fields.Z.Float64()
}
case PrecisionFloat64:
err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, t)
default:
err = fmt.Errorf("invalid precision: %v", packet.Identifier().Precision)
}
if err != nil {
return fmt.Errorf("precision %v: %w", packet.Identifier().Precision, err)
}
return nil
}
func (t *VectorXYZ) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(id.Precision.Size()*3, id)
switch id.Precision {
case PrecisionFloat32:
binary.BigEndian.PutUint32(packet.Data(), math.Float32bits(float32(t.X)))
binary.BigEndian.PutUint32(packet.Data()[id.Precision.Size()*1:], math.Float32bits(float32(t.Y)))
binary.BigEndian.PutUint32(packet.Data()[id.Precision.Size()*2:], math.Float32bits(float32(t.Z)))
case PrecisionFP1220:
var x, y, z FP1220
x.FromFloat64(t.X)
y.FromFloat64(t.Y)
z.FromFloat64(t.Z)
x.toBinary(packet.Data())
y.toBinary(packet.Data()[id.Precision.Size():])
z.toBinary(packet.Data()[id.Precision.Size()*2:])
case PrecisionFP1632:
var x, y, z FP1632
x.FromFloat64(t.X)
y.FromFloat64(t.Y)
z.FromFloat64(t.Z)
x.toBinary(packet.Data())
y.toBinary(packet.Data()[id.Precision.Size():])
z.toBinary(packet.Data()[id.Precision.Size()*2:])
case PrecisionFloat64:
binary.BigEndian.PutUint64(packet.Data(), math.Float64bits((t.X)))
binary.BigEndian.PutUint64(packet.Data()[id.Precision.Size()*1:], math.Float64bits((t.Y)))
binary.BigEndian.PutUint64(packet.Data()[id.Precision.Size()*2:], math.Float64bits((t.Z)))
}
return packet, nil
}
// Quaternion contains a quaternion with q0, q1, q2 and q3-components.
type Quaternion struct {
Q0, Q1, Q2, Q3 float64
}
func (t *Quaternion) UnmarshalMTData2Packet(packet MTData2Packet) error {
var err error
switch packet.Identifier().Precision {
case PrecisionFloat32:
fields := struct {
Q0, Q1, Q2, Q3 float32
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.Q0 = float64(fields.Q0)
t.Q1 = float64(fields.Q1)
t.Q2 = float64(fields.Q2)
t.Q3 = float64(fields.Q3)
}
case PrecisionFP1220:
fields := struct {
Q0, Q1, Q2, Q3 FP1220
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.Q0 = fields.Q0.Float64()
t.Q1 = fields.Q1.Float64()
t.Q2 = fields.Q2.Float64()
t.Q3 = fields.Q3.Float64()
}
case PrecisionFP1632:
fields := struct {
Q0, Q1, Q2, Q3 FP1632
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.Q0 = fields.Q0.Float64()
t.Q1 = fields.Q1.Float64()
t.Q2 = fields.Q2.Float64()
t.Q3 = fields.Q3.Float64()
}
case PrecisionFloat64:
err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, t)
default:
err = fmt.Errorf("invalid precision: %v", packet.Identifier().Precision)
}
if err != nil {
return fmt.Errorf("precision %v: %w", packet.Identifier().Precision, err)
}
return nil
}
func (t *Quaternion) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(id.Precision.Size()*4, id)
switch id.Precision {
case PrecisionFloat32:
binary.BigEndian.PutUint32(packet.Data(), math.Float32bits(float32(t.Q0)))
binary.BigEndian.PutUint32(packet.Data()[id.Precision.Size()*1:], math.Float32bits(float32(t.Q1)))
binary.BigEndian.PutUint32(packet.Data()[id.Precision.Size()*2:], math.Float32bits(float32(t.Q2)))
binary.BigEndian.PutUint32(packet.Data()[id.Precision.Size()*3:], math.Float32bits(float32(t.Q3)))
case PrecisionFP1220:
var q0, q1, q2, q3 FP1220
q0.FromFloat64(t.Q0)
q1.FromFloat64(t.Q1)
q2.FromFloat64(t.Q2)
q3.FromFloat64(t.Q3)
q0.toBinary(packet.Data())
q1.toBinary(packet.Data()[id.Precision.Size():])
q2.toBinary(packet.Data()[id.Precision.Size()*2:])
q3.toBinary(packet.Data()[id.Precision.Size()*3:])
case PrecisionFP1632:
var q0, q1, q2, q3 FP1632
q0.FromFloat64(t.Q0)
q1.FromFloat64(t.Q1)
q2.FromFloat64(t.Q2)
q3.FromFloat64(t.Q3)
q0.toBinary(packet.Data())
q1.toBinary(packet.Data()[id.Precision.Size():])
q2.toBinary(packet.Data()[id.Precision.Size()*2:])
q3.toBinary(packet.Data()[id.Precision.Size()*3:])
case PrecisionFloat64:
binary.BigEndian.PutUint64(packet.Data(), math.Float64bits((t.Q0)))
binary.BigEndian.PutUint64(packet.Data()[id.Precision.Size()*1:], math.Float64bits((t.Q1)))
binary.BigEndian.PutUint64(packet.Data()[id.Precision.Size()*2:], math.Float64bits((t.Q2)))
binary.BigEndian.PutUint64(packet.Data()[id.Precision.Size()*3:], math.Float64bits((t.Q3)))
}
return packet, nil
}
// DeltaV contains the delta velocity value of the SDI output in m/s.
type DeltaV = VectorXYZ
// Acceleration contains the calibrated acceleration vector in x, y, and z axes in m/s 2 .
type Acceleration = VectorXYZ
// FreeAcceleration contains the free acceleration vector in x, y, and z axes in m/s 2 .
type FreeAcceleration = VectorXYZ
// AccelerationHR contains the high-resolution calibrated acceleration vector in x, y, and z axes in m/s 2 .
//
// For the MTi 1-series, with the exception of the MTi-7, the output data rate is 1000 Hz
// based on the internal clock of the IMU which is not aligned with other data; data has
// not been processed in the SDI algorithm. It has been calibrated with the Xsens
// calibration parameters (except for g-sensitivity).
//
// For the MTi-7, the output data is 800 Hz based on the internal clock of the IMUs
// which are not aligned with other data; data has not been processed in the SDI
// algorithm. It has been calibrated with the Xsens calibration parameters (except for g-sensitivity).
//
// For the MTi 100-series and MTi-G-710, the output data is 1000 Hz, synchronized with
// the internal clock of the MTi 100-series (10 ppm; 1 ppm with GNSS ClockSync). The
// data has been processed in the SDI algorithm. Note that AccelerationHR is not
// grouped with messages coming out at the same time.
type AccelerationHR = VectorXYZ
// DeltaQ contains the delta quaternion value of the SDI output.
type DeltaQ = Quaternion
// RateOfTurn contains the calibrated rate of turn vector in x, y, and z axes in rad/s.
type RateOfTurn = VectorXYZ
// RateOfTurnHR contains the high-resolution calibrated rate of turn vector in x, y, and z axes in rad/s.
//
// For the MTi 1-series, with the exception of the MTi-7, the output data rate is 1000 Hz
// based on the internal clock of the IMU which is not aligned with other data; data has
// not been processed in the SDI algorithm. It has been calibrated with the Xsens
// calibration parameters (except for g-sensitivity).
//
// For the MTi-7, the output data is 800 Hz based on the internal clock of the IMUs
// which are not aligned with other data; data has not been processed in the SDI
// algorithm. It has been calibrated with the Xsens calibration parameters (except for g-
// sensitivity).
//
// For the MTi 100-series and MTi-G-710, the output data is 1000 Hz, synchronized with
// the internal clock of the MTi 100-series (10 ppm; 1 ppm with GNSS ClockSync). The
// data has been processed in the SDI algorithm. Note that RateOfTurnHR is not
// grouped with messages coming out at the same time.
type RateOfTurnHR = VectorXYZ
// EulerAngles contains the three Euler angles in degrees that represent the orientation of the device.
type EulerAngles = VectorXYZ
// Temperature contains the internal temperature of the sensor in degrees Celsius.
type Temperature = Scalar
// AltitudeEllipsoid contains the altitude of the MTi-G in meters above the WGS-84 Ellipsoid.
type AltitudeEllipsoid = Scalar
// PositionECEF contains the position of the MTi-G in the Earth-Centered, Earth-Fixed (ECEF) coordinate
// system in meters.
//
// Note that position in ECEF cannot be represented in Fixed Point values because of the limited range of fixed point
// representations. Use double or float representation instead.
type PositionECEF = VectorXYZ
// VelocityXYZ contains the X, Y and Z components of the MTi-G velocity in m/s.
type VelocityXYZ = VectorXYZ
// MagneticField contains the magnetic field value in x, y, and z axes in arbitrary units.
//
// Magnetic field is normalized to 1.0 during calibration.
type MagneticField = VectorXYZ
// RotationMatrix contains the rotation matrix (DCM) that represents the orientation of the MT.
type RotationMatrix struct {
A, B, C, D, E, F, G, H, I float64
}
func (t *RotationMatrix) UnmarshalMTData2Packet(packet MTData2Packet) error {
var err error
switch packet.Identifier().Precision {
case PrecisionFloat32:
fields := struct {
A, B, C, D, E, F, G, H, I float32
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.A = float64(fields.A)
t.B = float64(fields.B)
t.C = float64(fields.C)
t.D = float64(fields.D)
t.E = float64(fields.E)
t.F = float64(fields.F)
t.G = float64(fields.G)
t.H = float64(fields.H)
t.I = float64(fields.I)
}
case PrecisionFP1220:
fields := struct {
A, B, C, D, E, F, G, H, I FP1220
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.A = fields.A.Float64()
t.B = fields.B.Float64()
t.C = fields.C.Float64()
t.D = fields.D.Float64()
t.E = fields.E.Float64()
t.F = fields.F.Float64()
t.G = fields.G.Float64()
t.H = fields.H.Float64()
t.I = fields.I.Float64()
}
case PrecisionFP1632:
fields := struct {
A, B, C, D, E, F, G, H, I FP1632
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.A = fields.A.Float64()
t.B = fields.B.Float64()
t.C = fields.C.Float64()
t.D = fields.D.Float64()
t.E = fields.E.Float64()
t.F = fields.F.Float64()
t.G = fields.G.Float64()
t.H = fields.H.Float64()
t.I = fields.I.Float64()
}
case PrecisionFloat64:
err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, t)
default:
err = fmt.Errorf("invalid precision: %v", packet.Identifier().Precision)
}
if err != nil {
return fmt.Errorf("precision %v: %w", packet.Identifier().Precision, err)
}
return nil
}
func (t *RotationMatrix) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(id.Precision.Size()*9, id)
vals := []float64{t.A, t.B, t.C, t.D, t.E, t.F, t.G, t.H, t.I}
switch id.Precision {
case PrecisionFloat32:
for i, v := range vals {
binary.BigEndian.PutUint32(packet.Data()[id.Precision.Size()*uint8(i):], math.Float32bits(float32(v)))
}
case PrecisionFP1220:
for i, v := range vals {
var temp FP1220
temp.FromFloat64(v)
temp.toBinary(packet.Data()[id.Precision.Size()*uint8(i):])
}
case PrecisionFP1632:
for i, v := range vals {
var temp FP1632
temp.FromFloat64(v)
temp.toBinary(packet.Data()[id.Precision.Size()*uint8(i):])
}
case PrecisionFloat64:
for i, v := range vals {
binary.BigEndian.PutUint64(packet.Data()[id.Precision.Size()*uint8(i):], math.Float64bits(v))
}
}
return packet, nil
}
// LatLon contains the latitude and longitude in degrees of the MTi-G position.
type LatLon struct {
Lat, Lon float64
}
func (t *LatLon) UnmarshalMTData2Packet(packet MTData2Packet) error {
var err error
switch packet.Identifier().Precision {
case PrecisionFloat32:
fields := struct {
Lat, Lon float32
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.Lat = float64(fields.Lat)
t.Lon = float64(fields.Lon)
}
case PrecisionFP1220:
fields := struct {
Lat, Lon FP1220
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.Lat = fields.Lat.Float64()
t.Lon = fields.Lon.Float64()
}
case PrecisionFP1632:
fields := struct {
Lat, Lon FP1632
}{}
if err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, &fields); err == nil {
t.Lat = fields.Lat.Float64()
t.Lon = fields.Lon.Float64()
}
case PrecisionFloat64:
err = binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, t)
default:
err = fmt.Errorf("invalid precision: %v", packet.Identifier().Precision)
}
if err != nil {
return fmt.Errorf("precision %v: %w", packet.Identifier().Precision, err)
}
return nil
}
func (t *LatLon) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(id.Precision.Size()*2, id)
vals := []float64{t.Lat, t.Lon}
switch id.Precision {
case PrecisionFloat32:
for i, v := range vals {
binary.BigEndian.PutUint32(packet.Data()[id.Precision.Size()*uint8(i):], math.Float32bits(float32(v)))
}
case PrecisionFP1220:
for i, v := range vals {
var temp FP1220
temp.FromFloat64(v)
temp.toBinary(packet.Data()[id.Precision.Size()*uint8(i):])
}
case PrecisionFP1632:
for i, v := range vals {
var temp FP1632
temp.FromFloat64(v)
temp.toBinary(packet.Data()[id.Precision.Size()*uint8(i):])
}
case PrecisionFloat64:
for i, v := range vals {
binary.BigEndian.PutUint64(packet.Data()[id.Precision.Size()*uint8(i):], math.Float64bits(v))
}
}
return packet, nil
}
// StatusByte contains the 8bit status byte which is equal to bits 0-7 of an MTData2 StatusWord packet.
type StatusByte uint8
func (t *StatusByte) String() string {
return fmt.Sprintf("%08b", *t)
}
func (t *StatusByte) UnmarshalMTData2Packet(packet MTData2Packet) error {
return binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, t)
}
func (t *StatusByte) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(1, id)
packet.Data()[0] = uint8(*t)
return packet, nil
}
// StatusWord contains the 32bit status word.
//
// 0: Selftest
//
// This flag indicates if the MT passed theself-test according to eMTS.
// For an up-to-date result of the self-test, use the command RunSelftest.
//
// 1: Filter Valid
//
// This flag indicates if input into the orientation filter is reliable and / or complete.
// If for example the measurement range of internal sensors is exceeded, orientation output cannot be reliably
// estimated and the filter flag will drop to 0.
//
// For the MTi-G, the filter flag will also become invalid if the GPS status remains invalid for an extended period.
//
// 2: GNSS fix
//
// This flag indicates if the GNSS unit has a proper fix. The flag is only available in MTi-G units.
//
// 3-4: NoRotationUpdate Status
//
// This flag indicates the status of the no rotation update procedure in the filter after the SetNoRotation message
// has been sent.
//
// 11: Running with no rotation assumption
// 10: Rotation detected, no gyro bias estimation (sticky)
// 00: Estimation complete, no errors
//
// 5 Representative Motion
//
// (RepMo) Indicates if the MTi is in In-run Compass Calibration Representative Mode
//
// 6-7: Reserved Reserved for future use
//
// 8-19: Clip flags
//
// Indicates out of range values on sensors.
//
// 8: Clipflag Acc X
// 9: Clipflag Acc Y
// 10: Clipflag Acc Z
// 11: Clipflag Gyr X
// 12: Clipflag Gyr Y
// 13: Clipflag Gyr Z
// 14: Clipflag Mag X
// 15: Clipflag Mag Y
// 16: Clipflag Mag Z
// 17-18: Reserved Reserved for future use
// 19: Clipping Indication (indicates that one or more sensors are out of range)
//
// 20: Reserved Reserved for future use
//
// 21: SyncIn Marker
//
// When a SyncIn is detected, this bit will rise to 1.
//
// 22: SyncOut Marker
//
// When SyncOut is active this bit will rise to 1.
//
// 23-25: Filter Mode
//
// Indicates Filter Mode, currently only available for the MTi-G-710 and MTi-7:
//
// 000: Without GNSS (filter profile is in VRU mode)
// 001: Coasting mode (GNSS has been lost <60 sec ago)
// 011: With GNSS (default mode of MTi-G-710)
//
// 26-31: Reserved
//
// Reserved for future use.
type StatusWord uint32
// String returns a string representation of the status word.
func (t *StatusWord) String() string {
return fmt.Sprintf("%032b", *t)
}
func (t *StatusWord) UnmarshalMTData2Packet(packet MTData2Packet) error {
return binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, t)
}
func (t *StatusWord) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(4, id)
binary.BigEndian.PutUint32(packet.Data(), uint32(*t))
return packet, nil
}
// UTCTime contains the timestamp expressed as the UTC time.
type UTCTime struct {
Ns uint32
Year uint16
Month, Day, Hour, Minute, Second uint8
Valid UTCValidity
}
// String returns the UTC time on RFC3339 (including nanoseconds) format.
func (u *UTCTime) String() string {
return u.Time().Format(time.RFC3339Nano)
}
func (u *UTCTime) UnmarshalMTData2Packet(packet MTData2Packet) error {
return binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, u)
}
func (u *UTCTime) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(12, id)
binary.BigEndian.PutUint32(packet.Data(), u.Ns)
binary.BigEndian.PutUint16(packet.Data()[4:], u.Year)
packet.Data()[6] = u.Month
packet.Data()[7] = u.Day
packet.Data()[8] = u.Hour
packet.Data()[9] = u.Minute
packet.Data()[10] = u.Second
packet.Data()[11] = uint8(u.Valid)
return packet, nil
}
// Time returns the native Go representation of the UTC time.
func (u *UTCTime) Time() time.Time {
return time.Date(
int(u.Year),
time.Month(u.Month),
int(u.Day),
int(u.Hour),
int(u.Minute),
int(u.Second),
int(u.Ns),
time.UTC,
)
}
func (u *UTCTime) UnmarshalTime(ts time.Time) {
t := ts.UTC()
u.Year = uint16(t.Year())
u.Month = uint8(t.Month())
u.Day = uint8(t.Day())
u.Hour = uint8(t.Hour())
u.Minute = uint8(t.Minute())
u.Second = uint8(t.Second())
u.Ns = uint32(t.Nanosecond())
}
// PacketCounter contains the packet counter.
//
// This counter is incremented with every generated MTData2 message.
type PacketCounter uint16
// String returns a string representation of the packet counter.
func (p *PacketCounter) String() string {
return strconv.Itoa(int(*p))
}
func (p *PacketCounter) UnmarshalMTData2Packet(packet MTData2Packet) error {
return binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, p)
}
func (p *PacketCounter) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(2, id)
binary.BigEndian.PutUint16(packet.Data(), uint16(*p))
return packet, nil
}
// SampleTimeFine contains the sample time of an output expressed in 10kHz ticks.
//
// When there is no GNSS-fix in the MTi-G-710, this value is arbitrary for GNSS messages.
type SampleTimeFine uint32
// String returns a string representation of the sample time.
func (s *SampleTimeFine) String() string {
return strconv.Itoa(int(*s))
}
func (s *SampleTimeFine) UnmarshalMTData2Packet(packet MTData2Packet) error {
return binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, s)
}
func (s *SampleTimeFine) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(4, id)
binary.BigEndian.PutUint32(packet.Data(), uint32(*s))
return packet, nil
}
// SampleTimeCoarse contains the sample time of an output expressed in seconds.
//
// When there is no GNSS-fix in the MTi-G-710, this value is arbitrary for GNSS messages.
type SampleTimeCoarse uint32
// String returns a string representation of the sample time.
func (s *SampleTimeCoarse) String() string {
return strconv.Itoa(int(*s))
}
func (s *SampleTimeCoarse) UnmarshalMTData2Packet(packet MTData2Packet) error {
return binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, s)
}
func (s *SampleTimeCoarse) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(4, id)
binary.BigEndian.PutUint32(packet.Data(), uint32(*s))
return packet, nil
}
// BaroPressure contains the pressure as measured by the internal barometer expressed in Pascal.
type BaroPressure uint32
// String returns a string representation of the value.
func (b *BaroPressure) String() string {
return strconv.Itoa(int(*b))
}
func (b *BaroPressure) UnmarshalMTData2Packet(packet MTData2Packet) error {
return binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, b)
}
func (b *BaroPressure) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(4, id)
binary.BigEndian.PutUint32(packet.Data(), uint32(*b))
return packet, nil
}
// GNSSPVTData contains the current GNSS position, velocity and time data.
type GNSSPVTData struct {
// ITOW is the GPS time of week.
//
// Unit: ms
ITOW uint32
// Year (UTC).
//
// Unit: y
Year uint16
// Month (UTC).
//
// Unit: m
Month uint8
// Day of the month (UTC).
//
// Unit: d
Day uint8
// Hour of the day 0..23 (UTC).
//
// Unit: h
Hour uint8
// Minute of hour 0..59 (UTC).
//
// Unit: min
Min uint8
// Seconds of minute 0..60 (UTC).
//
// Unit: s
Sec uint8
// Valid is the validity flags.
//
// bit (0) = UTC Date is valid
// bit (1) = UTC Time of Day is valid
// bit (2) = UTC Time of Day has been fully resolved (i.e. no seconds uncertainty)
Valid UTCValidity
// TAcc is the time accuracy estimate (UTC).
//
// Unit: ns
TAcc uint32
// Nano is the fraction of second -1e-9 .. 1e-9.
//
// Unit: ns
Nano int32
// FixType is the GNSS fix type.
FixType FixType
// Flags are the fix status flags
//
// bit (0) = Valid fix (within DOP and accuracy masks)
// bit (1) = Differential corrections are applied
// bit (2) = Reserved
// bit (3) = Reserved
// bit (4) = Reserved
// bit (5) = Heading of vehicle is valid
Flags uint8
// NumSV is the number of satellites used in navigation solution.
NumSV uint8
// Reserved1 is reserved for future use.
Reserved1 uint8
// Lon is the position longitude.
//
// Scale: 1e-7
// Unit: deg
Lon int32
// Lat is the position latitude.
//
// Scale: 1e-7
// Unit: deg
Lat int32
// Height above ellipsoid.
//
// Unit: mm
Height int32
// HMSL is the height above mean sea level.
//
// Unit: mm
HMSL int32
// HAcc is the horizontal accuracy estimate.
//
// Unit: mm
HAcc uint32
// VAcc is the vertical accuracy estimate.
//
// Unit: mm
VAcc uint32
// VelN is the NED north velocity.
//
// Unit: mm/s
VelN int32
// VelE is the NED east velocity.
//
// Unit: mm/s
VelE int32
// VelD is the NED down velocity.
//
// Unit: mm/s
VelD int32
// GSpeed is the 2D ground speed.
//
// Unit: mm/s
GSpeed int32
// HeadMot is the 2D heading of motion.
//
// Scale: 1e-5
// Unit: deg
HeadMot int32
// SAcc is the speed accuracy estimate.
//
// Unit: mm/s
SAcc uint32
// HeadAcc is the heading accuracy estimate (both motion and vehicle).
//
// Unit: deg
HeadAcc uint32
// HeadVeh is the 2D heading of the vehicle.
//
// Scale: 1e-5
// Unit: deg
HeadVeh uint32
// GDOP is the Geometric DOP.
//
// Scale: 0.01
GDOP uint16
// PDOP is the Position DOP.
//
// Scale: 0.01
PDOP uint16
// PDOP is the Time DOP.
//
// Scale: 0.01
TDOP uint16
// VDOP is the Vertical DOP.
//
// Scale: 0.01
VDOP uint16
// HDOP is the Horizontal DOP.
//
// Scale: 0.01
HDOP uint16
// NDOP is the Northing DOP.
//
// Scale: 0.01
NDOP uint16
// EDOP is the Easting DOP.
//
// Scale: 0.01
EDOP uint16
}
func (g *GNSSPVTData) Time() time.Time {
return time.Date(
int(g.Year),
time.Month(g.Month),
int(g.Day),
int(g.Hour),
int(g.Min),
int(g.Sec),
int(g.Nano),
time.UTC,
)
}
func (g *GNSSPVTData) UnmarshalMTData2Packet(packet MTData2Packet) error {
return binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, g)
}
func (g *GNSSPVTData) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(94, id)
binary.BigEndian.PutUint32(packet.Data(), g.ITOW)
binary.BigEndian.PutUint16(packet.Data()[4:], g.Year)
packet.Data()[6] = g.Month
packet.Data()[7] = g.Day
packet.Data()[8] = g.Hour
packet.Data()[9] = g.Min
packet.Data()[10] = g.Sec
packet.Data()[11] = uint8(g.Valid)
binary.BigEndian.PutUint32(packet.Data()[12:], g.TAcc)
binary.BigEndian.PutUint32(packet.Data()[16:], uint32(g.Nano))
packet.Data()[20] = uint8(g.FixType)
packet.Data()[21] = g.Flags
packet.Data()[22] = g.NumSV
packet.Data()[23] = g.Reserved1
binary.BigEndian.PutUint32(packet.Data()[24:], uint32(g.Lon))
binary.BigEndian.PutUint32(packet.Data()[28:], uint32(g.Lat))
binary.BigEndian.PutUint32(packet.Data()[32:], uint32(g.Height))
binary.BigEndian.PutUint32(packet.Data()[36:], uint32(g.HMSL))
binary.BigEndian.PutUint32(packet.Data()[40:], g.HAcc)
binary.BigEndian.PutUint32(packet.Data()[44:], g.VAcc)
binary.BigEndian.PutUint32(packet.Data()[48:], uint32(g.VelN))
binary.BigEndian.PutUint32(packet.Data()[52:], uint32(g.VelE))
binary.BigEndian.PutUint32(packet.Data()[56:], uint32(g.VelD))
binary.BigEndian.PutUint32(packet.Data()[60:], uint32(g.GSpeed))
binary.BigEndian.PutUint32(packet.Data()[64:], uint32(g.HeadMot))
binary.BigEndian.PutUint32(packet.Data()[68:], g.SAcc)
binary.BigEndian.PutUint32(packet.Data()[72:], g.HeadAcc)
binary.BigEndian.PutUint32(packet.Data()[76:], g.HeadVeh)
binary.BigEndian.PutUint16(packet.Data()[80:], g.GDOP)
binary.BigEndian.PutUint16(packet.Data()[82:], g.PDOP)
binary.BigEndian.PutUint16(packet.Data()[84:], g.TDOP)
binary.BigEndian.PutUint16(packet.Data()[86:], g.VDOP)
binary.BigEndian.PutUint16(packet.Data()[88:], g.HDOP)
binary.BigEndian.PutUint16(packet.Data()[90:], g.NDOP)
binary.BigEndian.PutUint16(packet.Data()[92:], g.EDOP)
return packet, nil
}
// GNSSSatInfo contains info on the currently used GNSS satellites.
type GNSSSatInfo struct {
// ITOW is the GPS time of week.
//
// Unit: ms
ITOW uint32
// NumSVS is the number of satellites.
NumSVS uint8
// Res1 is reserved for future use.
Res1 uint8
// Res2 is reserved for future use.
Res2 uint8
// Res3 is reserved for future use.
Res3 uint8
}
func (g *GNSSSatInfo) UnmarshalMTData2Packet(packet MTData2Packet) error {
return binary.Read(bytes.NewReader(packet.Data()), binary.BigEndian, g)
}
func (g *GNSSSatInfo) MarshalMTData2Packet(id DataIdentifier) (MTData2Packet, error) {
packet := NewMTData2Package(8, id)
packet.SetIdentifier(id)
binary.BigEndian.PutUint32(packet.Data(), g.ITOW)
packet.Data()[4] = g.NumSVS
packet.Data()[5] = g.Res1
packet.Data()[6] = g.Res2
packet.Data()[7] = g.Res3
return packet, nil
}
type GNSSSat struct {
// GNSSID is the GNSS identifier.
//
// 0 = GPS
// 1 = SBAS
// 2 = Galileo
// 3 = BeiDou
// 4 = IMES
// 5 = QZSS
// 6 = GLONASS
GNSSID uint8
// SVID is the satellite identifier.
SVID uint8