-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsequence2structure.py
executable file
·301 lines (267 loc) · 11.2 KB
/
sequence2structure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
from modeller import *
from modeller.automodel import *
from modeller.scripts import complete_pdb
from Bio import PDB as pdb
import re
import csv
"""
sequence2structure.py
This program takes a given kinase domain sequence and determines its sequence
based on aligning multiple templates.
KNOWN ISSUES:
1) Paths are hard coded
TO DO:
1) Modify program so that information is automatically read in
2) Currently works in split up sections, but not all together -- need to fix this ASAP
"""
#Methods
"""
def get_codes(template):
log.verbose()
env = environ()
env.io.atom_files_directory = './'
#add chain information, just make it 'A'
aln = alignment(env)
for (code, chain) in ((template, 'A'), (template, 'A')):
mdl = model(env, file = code, model_segment = ('FIRST:' + chain, 'LAST:' + chain))
aln.append_model(mdl, atom_files = code, align_codes = code + chain)
def build_tree(protein):
for (weights, write_fit, whole) in (((1., 0., 0., 0., 1., 0.), False, True),
((1., 0.5, 1., 1., 1., 0.), False, True),
((1., 1., 1., 1., 1., 0.), True, False)):
aln.salign(rms_cutoff=3.5, normalize_pp_scores=False,
rr_file='$(LIB)/as1.sim.mat', overhang=30,
gap_penalties_1d=(-450, -50),
gap_penalties_3d=(0, 3), gap_gap_score=0, gap_residue_score=0,
dendrogram_file=protein_name+i+'.tree',
alignment_type='tree', # If 'progresive', the tree is not
# computed and all structues will be
# aligned sequentially to the first
feature_weights=weights, # For a multiple sequence alignment only
# the first feature needs to be non-zero
improve_alignment=True, fit=True, write_fit=write_fit,
write_whole_pdb=whole, output='ALIGNMENT QUALITY')
def salign():
pdb_code = (pdb_name.split("-"[0]))
name = pdb_code[0] #changed this from hard coded 4F7S; it does not seem like this variable is used anywhere else
chain = str(pdb_code[1])
PIR = open('active.ali','w')
PIR.write(">P1;{0}\n".format(pdb_name))
PIR.write("structureX:{0}".format(header))
PIR.write("{0}*\n\n".format(structure_sequence.strip()))
PIR.write(">P1;{0}\n".format(protein_name))
PIR.write("sequence:{0}".format(header))
PIR.write("{0}*\n\n".format(full_sequence.strip()))
PIR.close()
aln.write(file=protein_name+i+'.pap', alignment_format='PAP')
aln.write(file=protein_name+i+'.ali', alignment_format='PIR')
aln.salign(rms_cutoff=1.0, normalize_pp_scores=False,
rr_file='$(LIB)/as1.sim.mat', overhang=30,
gap_penalties_1d=(-450, -50), gap_penalties_3d=(0, 3),
gap_gap_score=0, gap_residue_score=0, dendrogram_file='1is3A.tree',
alignment_type='progressive', feature_weights=[0]*6,
improve_alignment=False, fit=False, write_fit=True,
write_whole_pdb=False, output='QUALITY')
"""
class PDB_info(object):
#This class is used to assign meaning to specific elements in a given row of the .csv file
def __init__(self, row):
self.id = row[0] #id number of the pdb file
self.protein = row[1] #protein name the pdb file is associated with
self.complete = row[2] #yes or give missing residues
self.conformation = row[3] #active or inactive?
self.mutation = row[4] #is there a mutation? If so, what are the details?
class Best_Template(object):
def __init__(self,row):
self.protein = row[0]
self.template = row[1]
datafile = open('./JAK2_test.csv', 'r') #Opens the structures file for reading
datafile2 = open('./structures.csv', 'r')
datafile3 = open('./protein2template', 'r')
datareader = csv.reader(datafile2) #reads structures file
data = [] #initializes a list called data
for row in datareader:
data.append(row) #adds an element to data for each row in structures.csv
datareader3 = csv.reader(datafile3) #reads structures file
data3 = [] #initializes a list called data
for row in datareader3:
data3.append(row) #adds an element to data for each row in structures.csv
pdb_info = [PDB_info(item) for item in data]
template_info = [Best_Template(item) for item in data3]
"""
for i in range(len(template_info)):
protein = template_info[i].protein
template = template_info[i].template
act = 0
inact = 0
for j in range(1, len(pdb_info)):
if pdb_info[j].protein == template:
if pdb_info[j].conformation == 'active':
act = 1
if pdb_info[j].conformation == 'inactive':
inact = 1
if act == 1 and inact == 1:
print protein + ', good to go'
elif act == 0 and inact == 1:
print protein + ', missing active template'
elif act == 1 and inact == 0:
print protein + ', missing inactive template'
elif act == 0 and inact == 0:
print protein + ', fuck'
"""
# need something that if "fuck," will search for the next closest sequence and use that as the template
# step 1: if "fuck," then look at the third highest
clustal_lines = datafile.readlines()
index_line = clustal_lines[0]
index = index_line.split(',')
del index[0]
big_dict = {}
"""
def get_best_template():
values_lines = clustal_lines[i]
values = values_lines.split(',')
protein_name = values[0]
del values[0]
num_values = [float(x) for x in values]
#index = [protein_name + ':' + s for s in index]
# put in hash to zip index and protein name
small_dict = dict(zip(index, num_values))
#big_dict.update((protein_name, small_dict))
sorted_small_dict = sorted(small_dict, key=small_dict.get)
act = 0
inact = 0
inact_struc = []
act_struc = []
"""
for i in range(1, len(clustal_lines)):
values_lines = clustal_lines[i]
values = values_lines.split(',')
protein_name = values[0]
del values[0]
num_values = [float(x) for x in values]
#index = [protein_name + ':' + s for s in index]
# put in hash to zip index and protein name
small_dict = dict(zip(index, num_values))
#big_dict.update((protein_name, small_dict))
sorted_small_dict = sorted(small_dict, key=small_dict.get)
print sorted_small_dict
act = 0
inact = 0
inact_struc = []
act_struc = []
for j in range(1, 50):
next_best_name = sorted_small_dict[-j]
for k in range(0, 260):
match = re.match(next_best_name, pdb_info[k].protein)
if match != False and pdb_info[k].conformation == 'inactive':
if inact != 1:
inact_struc.append(next_best_name + '_inactive')
inact = 1
print 'yo'
else: continue
elif match != False and pdb_info[k].conformation == 'active':
if act != 1:
act_struc.append(next_best_name + '_active')
act = 1
print 'yo'
else:
continue
else:
continue
if act == 1 and inact == 1:
break
else:
continue
print protein_name + ':' + next_best_name
print small_dict[next_best_name]
print inact_struc
print act_struc
# possible solution: a hash where the values are private hashes; each key in the hash is a protein; key = protein1 vs protein 2; value = sim score
# editconf to fill in chain name
# to verify --> make structure from sequence, compare to a full structure
if act_struc[0] != protein_name:
#salign.py
log.verbose()
env = environ()
env.io.atom_files_directory = './'
#add chain information, just make it 'A'
aln = alignment(env)
for (code, chain) in ((next_best_name, 'A'), (next_best_name, 'A')):
mdl = model(env, file = code, model_segment = ('FIRST:' + chain, 'LAST:' + chain))
aln.append_model(mdl, atom_files = code, align_codes = code + chain)
for (weights, write_fit, whole) in (((1., 0., 0., 0., 1., 0.), False, True),
((1., 0.5, 1., 1., 1., 0.), False, True),
((1., 1., 1., 1., 1., 0.), True, False)):
aln.salign(rms_cutoff=3.5, normalize_pp_scores=False,
rr_file='$(LIB)/as1.sim.mat', overhang=30,
gap_penalties_1d=(-450, -50),
gap_penalties_3d=(0, 3), gap_gap_score=0, gap_residue_score=0,
dendrogram_file=protein_name+i+'.tree',
alignment_type='tree', # If 'progresive', the tree is not
# computed and all structues will be
# aligned sequentially to the first
feature_weights=weights, # For a multiple sequence alignment only
# the first feature needs to be non-zero
improve_alignment=True, fit=True, write_fit=write_fit,
write_whole_pdb=whole, output='ALIGNMENT QUALITY')
pdb_code = (pdb_name.split("-"[0]))
name = pdb_code[0] #changed this from hard coded 4F7S; it does not seem like this variable is used anywhere else
chain = str(pdb_code[1])
PIR = open('active.ali','w')
PIR.write(">P1;{0}\n".format(pdb_name))
PIR.write("structureX:{0}".format(header))
PIR.write("{0}*\n\n".format(structure_sequence.strip()))
PIR.write(">P1;{0}\n".format(protein_name))
PIR.write("sequence:{0}".format(header))
PIR.write("{0}*\n\n".format(full_sequence.strip()))
PIR.close()
aln.write(file=protein_name+i+'.pap', alignment_format='PAP')
aln.write(file=protein_name+i+'.ali', alignment_format='PIR')
aln.salign(rms_cutoff=1.0, normalize_pp_scores=False,
rr_file='$(LIB)/as1.sim.mat', overhang=30,
gap_penalties_1d=(-450, -50), gap_penalties_3d=(0, 3),
gap_gap_score=0, gap_residue_score=0, dendrogram_file='1is3A.tree',
alignment_type='progressive', feature_weights=[0]*6,
improve_alignment=False, fit=False, write_fit=True,
write_whole_pdb=False, output='QUALITY')
#align2d_mult.py
log.verbose()
env = environ()
env.libs.topology.read(file='$(LIB)/top_heav.lib')
# Read aligned structure(s):
aln = alignment(env)
aln.append(file=protein_name+i+'.ali', align_codes='all')
aln_block = len(aln)
# Read aligned sequence(s):
aln.append(file=protein_name + '.ali', align_codes=protein_name)
# Structure sensitive variable gap penalty sequence-sequence alignment:
aln.salign(output='', max_gap_length=20,
gap_function=True, # to use structure-dependent gap penalty
alignment_type='PAIRWISE', align_block=aln_block,
feature_weights=(1., 0., 0., 0., 0., 0.), overhang=0,
gap_penalties_1d=(-450, 0),
gap_penalties_2d=(0.35, 1.2, 0.9, 1.2, 0.6, 8.6, 1.2, 0., 0.),
similarity_flag=True)
aln.write(file=protein_name+'-mult.ali', alignment_format='PIR')
aln.write(file=protein_name+'-mult.pap', alignment_format='PAP')
#model_mult.py
env = environ()
a = automodel(env, alnfile=protein_name+'-mult.ali',
knowns=(next_best_name), sequence=protein_name)
a.starting_model = 1
a.ending_model = 5
a.make()
#evaluate_model.py
log.verbose() # request verbose output
env = environ()
env.libs.topology.read(file='$(LIB)/top_heav.lib') # read topology
env.libs.parameters.read(file='$(LIB)/par.lib') # read parameters
# read model file
mdl = complete_pdb(env, protein_name+'.B99990001.pdb')
# Assess all atoms with DOPE:
s = selection(mdl)
s.assess_dope(output='ENERGY_PROFILE NO_REPORT', file=protein_name+'.profile',
normalize_profile=True, smoothing_window=15)
elif inact_struc != protein_name:
continue
else: continue