Skip to content

Latest commit

 

History

History
190 lines (151 loc) · 6.91 KB

85_Sorting.asciidoc

File metadata and controls

190 lines (151 loc) · 6.91 KB

排序与相关性

默认情况下,返回的结果是按照 相关性 进行排序的——最相关的文档排在最前。 在本章的后面部分,我们会解释 相关性 意味着什么以及它是如何计算的, 不过让我们首先看看 sort 参数以及如何使用它。

排序

为了按照相关性来排序,需要将相关性表示为一个数值。在 Elasticsearch 中, 相关性得分 由一个浮点数进行表示,并在搜索结果中通过 _score 参数返回, 默认排序是 _score 降序。

有时,相关性评分对你来说并没有意义。例如,下面的查询返回所有 user_id 字段包含 1 的结果:

GET /_search
{
    "query" : {
        "bool" : {
            "filter" : {
                "term" : {
                    "user_id" : 1
                }
            }
        }
    }
}

这里没有一个有意义的分数:因为我们使用的是 filter (过滤),这表明我们只希望获取匹配 user_id: 1 的文档,并没有试图确定这些文档的相关性。 实际上文档将按照随机顺序返回,并且每个文档都会评为零分。

Note

如果评分为零对你造成了困扰,你可以使用 constant_score 查询进行替代:

GET /_search
{
    "query" : {
        "constant_score" : {
            "filter" : {
                "term" : {
                    "user_id" : 1
                }
            }
        }
    }
}

这将让所有文档应用一个恒定分数(默认为 1 )。它将执行与前述查询相同的查询,并且所有的文档将像之前一样随机返回,这些文档只是有了一个分数而不是零分。

按照字段的值排序

在这个案例中,通过时间来对 tweets 进行排序是有意义的,最新的 tweets 排在最前。 我们可以使用 sort 参数进行实现:

GET /_search
{
    "query" : {
        "bool" : {
            "filter" : { "term" : { "user_id" : 1 }}
        }
    },
    "sort": { "date": { "order": "desc" }}
}

你会注意到结果中的两个不同点:

"hits" : {
    "total" :           6,
    "max_score" :       null, (1)
    "hits" : [ {
        "_index" :      "us",
        "_type" :       "tweet",
        "_id" :         "14",
        "_score" :      null, (1)
        "_source" :     {
             "date":    "2014-09-24",
             ...
        },
        "sort" :        [ 1411516800000 ] (2)
    },
    ...
}
  1. _score 不被计算, 因为它并没有用于排序。

  2. date 字段的值表示为自 epoch (January 1, 1970 00:00:00 UTC)以来的毫秒数,通过 sort 字段的值进行返回。

首先我们在每个结果中有一个新的名为 sort 的元素,它包含了我们用于排序的值。 在这个案例中,我们按照 date 进行排序,在内部被索引为 自 epoch 以来的毫秒数 。 long 类型数 1411516800000 等价于日期字符串 2014-09-24 00:00:00 UTC

其次 _scoremax_score 字段都是 null 。计算 _score 的花销巨大,通常仅用于排序; 我们并不根据相关性排序,所以记录 _score 是没有意义的。如果无论如何你都要计算 _score , 你可以将 track_scores 参数设置为 true

Tip

一个简便方法是, 你可以指定一个字段用来排序:

    "sort": "number_of_children"

字段将会默认升序排序,而按照 _score 的值进行降序排序。

多级排序

假定我们想要结合使用 date_score 进行查询,并且匹配的结果首先按照日期排序,然后按照相关性排序:

GET /_search
{
    "query" : {
        "bool" : {
            "must":   { "match": { "tweet": "manage text search" }},
            "filter" : { "term" : { "user_id" : 2 }}
        }
    },
    "sort": [
        { "date":   { "order": "desc" }},
        { "_score": { "order": "desc" }}
    ]
}

排序条件的顺序是很重要的。结果首先按第一个条件排序,仅当结果集的第一个 sort 值完全相同时才会按照第二个条件进行排序,以此类推。

多级排序并不一定包含 _score 。你可以根据一些不同的字段进行排序,如地理距离或是脚本计算的特定值。

Note

Query-string 搜索 也支持自定义排序,可以在查询字符串中使用 sort 参数:

GET /_search?sort=date:desc&sort=_score&q=search

多值字段的排序

一种情形是字段有多个值的排序, 需要记住这些值并没有固有的顺序;一个多值的字段仅仅是多个值的包装,这时应该选择哪个进行排序呢?

对于数字或日期,你可以将多值字段减为单值,这可以通过使用 minmaxavg 或是 sum 排序模式 。 例如你可以按照每个 date 字段中的最早日期进行排序,通过以下方法:

"sort": {
    "dates": {
        "order": "asc",
        "mode":  "min"
    }
}