-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathjanice.device.nut
1050 lines (908 loc) · 37.5 KB
/
janice.device.nut
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright (C) 2013 electric imp, inc.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* Janice Sprinkler Controller Device Firmware
* Tom Byrne
* 1/7/14
*/
/* CONSTS and GLOBAL VARS ====================================================*/
const WIFI_TIMEOUT = 30; // time in seconds to allow a connection attempt to wait
const RECONNECT_PERIOD = 1; // time between reconnect attempts (minutes)
/* GLOBAL CLASS AND FUNCTION DEFINITIONS =====================================*/
/* Squirrel Object serializer/deserializer class.
* From Electric Imp Github Examples Repo:
* https://github.com/electricimp/reference/blob/master/hardware/serializer/
*/
class serializer {
// Serialize a variable of any type into a blob
function serialize (obj) {
// Take a guess at the initial size
local b = blob(2000);
// Write dummy data for len and crc late
b.writen(0, 'b');
b.writen(0, 'b');
b.writen(0, 'b');
// Serialise the object
_serialize(b, obj);
// Shrink it down to size
b.resize(b.tell());
// Go back and add the len and CRC
local len = b.len()-3;
b[0] = len >> 8 & 0xFF;
b[1] = len & 0xFF;
b[2] = CRC(b, 3);
return b;
}
function _serialize (b, obj) {
switch (typeof obj) {
case "integer":
return _write(b, 'i', format("%d", obj));
case "float":
local f = format("%0.7f", obj).slice(0,9);
while (f[f.len()-1] == '0') f = f.slice(0, -1);
return _write(b, 'f', f);
case "null":
case "function": // Silently setting this to null
return _write(b, 'n');
case "bool":
return _write(b, 'b', obj ? "\x01" : "\x00");
case "blob":
return _write(b, 'B', obj);
case "string":
return _write(b, 's', obj);
case "table":
case "array":
local t = (typeof obj == "table") ? 't' : 'a';
_write(b, t, obj.len());
foreach ( k,v in obj ) {
_serialize(b, k);
_serialize(b, v);
}
return;
default:
throw ("Can't serialize " + typeof obj);
// server.log("Can't serialize " + typeof obj);
}
}
function _write(b, type, payload = null) {
// Calculate the lengths
local payloadlen = 0;
switch (type) {
case 'n':
case 'b':
payloadlen = 0;
break;
case 'a':
case 't':
payloadlen = payload;
break;
default:
payloadlen = payload.len();
}
// Update the blob
b.writen(type, 'b');
if (payloadlen > 0) {
b.writen(payloadlen >> 8 & 0xFF, 'b');
b.writen(payloadlen & 0xFF, 'b');
}
if (typeof payload == "string" || typeof payload == "blob") {
foreach (ch in payload) {
b.writen(ch, 'b');
}
}
}
// Deserialize a string into a variable
function deserialize (s) {
// Read and check the header
s.seek(0);
local len = s.readn('b') << 8 | s.readn('b');
local crc = s.readn('b');
if (s.len() != len+3) throw "Expected exactly " + len + " bytes in this blob";
// Check the CRC
local _crc = CRC(s, 3);
if (crc != _crc) throw format("CRC mismatch: 0x%02x != 0x%02x", crc, _crc);
// Deserialise the rest
return _deserialize(s, 3).val;
}
function _deserialize (s, p = 0) {
for (local i = p; i < s.len(); i++) {
local t = s[i];
switch (t) {
case 'n': // Null
return { val = null, len = 1 };
case 'i': // Integer
local len = s[i+1] << 8 | s[i+2];
s.seek(i+3);
local val = s.readblob(len).tostring().tointeger();
return { val = val, len = 3+len };
case 'f': // Float
local len = s[i+1] << 8 | s[i+2];
s.seek(i+3);
local val = s.readblob(len).tostring().tofloat();
return { val = val, len = 3+len };
case 'b': // Bool
local val = s[i+1];
return { val = (val == 1), len = 2 };
case 'B': // Blob
local len = s[i+1] << 8 | s[i+2];
local val = blob(len);
for (local j = 0; j < len; j++) {
val[j] = s[i+3+j];
}
return { val = val, len = 3+len };
case 's': // String
local len = s[i+1] << 8 | s[i+2];
s.seek(i+3);
local val = s.readblob(len).tostring();
return { val = val, len = 3+len };
case 't': // Table
case 'a': // Array
local len = 0;
local nodes = s[i+1] << 8 | s[i+2];
i += 3;
local tab = null;
if (t == 'a') {
// server.log("Array with " + nodes + " nodes");
tab = [];
}
if (t == 't') {
// server.log("Table with " + nodes + " nodes");
tab = {};
}
for (; nodes > 0; nodes--) {
local k = _deserialize(s, i);
// server.log("Key = '" + k.val + "' (" + k.len + ")");
i += k.len;
len += k.len;
local v = _deserialize(s, i);
// server.log("Val = '" + v.val + "' [" + (typeof v.val) + "] (" + v.len + ")");
i += v.len;
len += v.len;
if (t == 'a') tab.push(v.val);
else tab[k.val] <- v.val;
}
return { val = tab, len = len+3 };
default:
throw format("Unknown type: 0x%02x at %d", t, i);
}
}
}
function CRC (data, offset = 0) {
local LRC = 0x00;
for (local i = offset; i < data.len(); i++) {
LRC = (LRC + data[i]) & 0xFF;
}
return ((LRC ^ 0xFF) + 1) & 0xFF;
}
}
/* General Base Class for SX150X I/O Expander Family
* http://www.semtech.com/images/datasheet/sx150x_789.pdf
*/
class SX150x{
//Private variables
_i2c = null;
_addr = null;
_callbacks = null;
//Pass in pre-configured I2C since it may be used by other devices
constructor(i2c, address = 0x40) {
_i2c = i2c;
_addr = address; //8-bit address
_callbacks = [];
}
function readReg(register) {
local data = _i2c.read(_addr, format("%c", register), 1);
if (data == null) {
server.error("I2C Read Failure. Device: "+_addr+" Register: "+register);
return -1;
}
return data[0];
}
function writeReg(register, data) {
_i2c.write(_addr, format("%c%c", register, data));
}
function writeBit(register, bitn, level) {
local value = readReg(register);
value = (level == 0)?(value & ~(1<<bitn)):(value | (1<<bitn));
writeReg(register, value);
}
function writeMasked(register, data, mask) {
local value = readReg(register);
value = (value & ~mask) | (data & mask);
writeReg(register, value);
}
// set or clear a selected GPIO pin, 0-16
function setPin(gpio, level) {
writeBit(bank(gpio).REGDATA, gpio % 8, level ? 1 : 0);
}
// configure specified GPIO pin as input(0) or output(1)
function setDir(gpio, output) {
writeBit(bank(gpio).REGDIR, gpio % 8, output ? 0 : 1);
}
// enable or disable internal pull up resistor for specified GPIO
function setPullUp(gpio, enable) {
writeBit(bank(gpio).REGPULLUP, gpio % 8, enable ? 1 : 0);
}
// enable or disable internal pull down resistor for specified GPIO
function setPullDn(gpio, enable) {
writeBit(bank(gpio).REGPULLDN, gpio % 8, enable ? 1 : 0);
}
// configure whether specified GPIO will trigger an interrupt
function setIrqMask(gpio, enable) {
writeBit(bank(gpio).REGINTMASK, gpio % 8, enable ? 0 : 1);
}
// clear interrupt on specified GPIO
function clearIrq(gpio) {
writeBit(bank(gpio).REGINTMASK, gpio % 8, 1);
}
// get state of specified GPIO
function getPin(gpio) {
return ((readReg(bank(gpio).REGDATA) & (1<<(gpio%8))) ? 1 : 0);
}
//configure which callback should be called for each pin transition
function setCallback(gpio, callback){
_callbacks.insert(gpio,callback);
}
function callback(){
local irq = getIrq();
clearAllIrqs();
for (local i = 0; i < 16; i++){
if ( (irq & (1 << i)) && (typeof _callbacks[i] == "function")){
_callbacks[i]();
}
}
}
}
/* Class for the SX1505 8-channel GPIO Expander. */
class SX1505 extends SX150x{
// I/O Expander internal registers
BANK_A = { REGDATA = 0x00
REGDIR = 0x01
REGPULLUP = 0x02
REGPULLDN = 0x03
REGINTMASK = 0x05
REGSNSHI = 0x06
REGSNSLO = 0x07
REGINTSRC = 0x08
}
constructor(i2c, address=0x20){
base.constructor(i2c, address);
_callbacks.resize(8,null);
this.reset();
this.clearAllIrqs();
}
//Write registers to default values
function reset(){
writeReg(BANK_A.REGDIR, 0xFF);
writeReg(BANK_A.REGDATA, 0xFF);
writeReg(BANK_A.REGPULLUP, 0x00);
writeReg(BANK_A.REGPULLDN, 0x00);
writeReg(BANK_A.REGINTMASK, 0xFF);
writeReg(BANK_A.REGSNSHI, 0x00);
writeReg(BANK_A.REGSNSLO, 0x00);
}
function bank(gpio){ return BANK_A; }
// configure whether edges trigger an interrupt for specified GPIO
function setIrqEdges( gpio, rising, falling) {
local mask = 0x03 << ((gpio & 3) << 1);
local data = (2*falling + rising) << ((gpio & 3) << 1);
writeMasked(gpio >= 4 ? BANK_A.REGSNSHI : BANK_A.REGSNSLO, data, mask);
}
function clearAllIrqs() {
writeReg(BANK_A.REGINTSRC,0xff);
}
function getIrq(){
return (readReg(BANK_A.REGINTSRC) & 0xFF);
}
}
/* GPIO class for using GPIO pins on an I/O expander as if they were imp pins */
class ExpGPIO{
_expander = null; //Instance of an Expander class
_gpio = null; //Pin number of this GPIO pin
constructor(expander, gpio) {
_expander = expander;
_gpio = gpio;
}
//Optional initial state (defaults to 0 just like the imp)
function configure(mode, callback_initialstate = null) {
// set the pin direction and configure the internal pullup resistor, if applicable
if (mode == DIGITAL_OUT) {
_expander.setDir(_gpio,1);
_expander.setPullUp(_gpio,0);
if(callback_initialstate != null){
_expander.setPin(_gpio, callback_initialstate);
}else{
_expander.setPin(_gpio, 0);
}
return this;
}
if (mode == DIGITAL_IN) {
_expander.setDir(_gpio,0);
_expander.setPullUp(_gpio,0);
} else if (mode == DIGITAL_IN_PULLUP) {
_expander.setDir(_gpio,0);
_expander.setPullUp(_gpio,1);
}
// configure the pin to throw an interrupt, if necessary
if (typeof callback_initialstate == "function") {
_expander.setIrqMask(_gpio,1);
_expander.setIrqEdges(_gpio,1,1);
_expander.setCallback(_gpio, callback_initialstate.bindenv(this));
} else {
_expander.setIrqMask(_gpio,0);
_expander.setIrqEdges(_gpio,0,0);
_expander.setCallback(_gpio,null);
}
return this;
}
function write(state) { _expander.setPin(_gpio,state); }
function read() { return _expander.getPin(_gpio); }
}
/* I2C Display Module */
class st7036{
_i2c = null;
_addr = null;
constructor(i2c, addr = 0x78){
_i2c = i2c;
_addr = addr;
//This magical line came straight from the datasheet code example
// 0x38 = 2-lines, Single Height, Instruction 00 = ??
// 0x39 = 2-lines, Single Height, Instruction 01 = Bias Set
// 0x14 = Bias Set = 1/4 Bias
// 0x78 =
_i2c.write(_addr, format("%c%c%c%c%c%c%c%c%c%c", 0x00, 0x38, 0x39, 0x14, 0x78, 0x5E, 0x6D, 0x0C, 0x01, 0x06));
}
function write(str){
_i2c.write(0x78, format("%c%s", 0x40,str));
}
}
/* PCF8563 Real-Time Clock/Calendar
* http://www.nxp.com/documents/data_sheet/PCF8563.pdf
*/
const CTRL_REG_1 = 0x00;
const CTRL_REG_2 = 0x01;
const VL_SEC_REG = 0x02;
const MINS_REG = 0x03;
const HOURS_REG = 0x04;
const DAYS_REG = 0x05;
const WKDAY_REG = 0x06;
const CNTRY_MONTHS_REG = 0x07;
const YEARS_REG = 0x08;
const MINS_ALARM_REG = 0x09;
const HOURS_ALARM_REG = 0x0A;
const DAY_ALARM_REG = 0x0B;
const WKDAY_ALARM_REG = 0x0C;
const CLKOUT_CTRL_REG = 0x0D;
const TIMER_CTRL_REG = 0x0E;
const TIMER_REG = 0x0F;
class pcf8563 {
_i2c = null;
_addr = null;
constructor(i2c, addr = 0xA2) {
_i2c = i2c;
_addr = addr;
}
function readReg(register) {
local data = _i2c.read(_addr, format("%c", register), 1);
if (data == null) {
server.error(format("I2C Read Failure. Device: 0x%02x Register: 0x%02x",_addr,register));
return -1;
}
return data[0];
}
function writeReg(register,data) {
_i2c.write(_addr, format("%c%c",register,data));
}
/* The first bit of the VL_SEC_REG is a Voltage Low flag (VL)
* If this flag is set, the internal voltage detector has detected a
* low-voltage event and the clock integrity is not guaranteed.
* The flag remains set until it is manually cleared.
* This is provided because the RTC is often run on a secondary cell
* or supercap as a backup.
*/
function clkGood() {
if (0x80 & readReg(VL_SEC_REG)) {
return 0;
}
return 1;
}
/* Clear the Voltage Low flag. */
function clearVL() {
local data = 0x7F & readReg(VL_SEC_REG);
this.writeReg(VL_SEC_REG, data);
}
function sec() {
local data = readReg(VL_SEC_REG)
return (((data & 0x70) >> 4) * 10 + (data & 0x0F));
}
function min() {
local data = readReg(MINS_REG);
return (((data & 0x70) >> 4) * 10 + (data & 0x0F));
}
function hour() {
local data = readReg(HOURS_REG);
return (((data & 0x30) >> 4) * 10 + (data & 0x0F));
}
function day() {
local data = readReg(DAYS_REG);
return (((data & 0x30) >> 4) * 10 + (data & 0x0F));
}
function weekday() {
return (readReg(WKDAY_REG) & 0x07);
}
function month() {
local data = readReg(CNTRY_MONTHS_REG);
return (((data & 0x10) >> 4) * 10 + (data & 0x0F));
}
function year() {
local data = readReg(YEARS_REG);
return (((data & 0xF0) >> 4) * 10 + (data & 0x0F));
}
/* Return a date object based on the RTC's current time */
function rtcdate() {
local now = {};
now.year <- this.year();
now.month <- this.month();
now.wday <- this.weekday();
now.day <- this.day();
now.hour <- this.hour();
now.min <- this.min()
now.sec <- this.sec();
return now;
}
/*
* Set the RTC to match the imp's RTC.
* Note that if the imp's RTC is off, this will not correct the imp. You
* will simply be left to two clocks that don't tell the correct time.
* The imp's RTC is re-synced on server connect, so syncing right after a
* server connect is recommended.
*/
function sync() {
local now = date(time(),'u');
local secStr = format("%02d",now.sec);
local minStr = format("%02d",now.min);
local hourStr = format("%02d",now.hour);
local dayStr = format("%02d",now.day);
local monStr = format("%02d",now.month+1);
local yearStr = format("%02d",now.year).slice(2,4);
local wkdayStr = format("%d",now.wday);
this.writeReg(VL_SEC_REG, (((secStr[0] & 0x07) << 4) + (secStr[1] & 0x0F)));
this.writeReg(MINS_REG, (((minStr[0] & 0x07) << 4) + (minStr[1] & 0x0F)));
this.writeReg(HOURS_REG, (((hourStr[0] & 0x03) << 4) + (hourStr[1] & 0x0F)));
this.writeReg(DAYS_REG, (((dayStr[0] & 0x03) << 4) + (dayStr[1] & 0x0F)));
this.writeReg(CNTRY_MONTHS_REG, (((monStr[0] & 0x01) << 4) + (monStr[1] & 0x0F)));
this.writeReg(YEARS_REG, (((yearStr[0] & 0x0F) << 4) + (yearStr[1] & 0x0F)));
this.writeReg(WKDAY_REG, (secStr[0] & 0x07));
}
}
/* I2C EEPROM
* CAT24C Family
* http://www.onsemi.com/pub_link/Collateral/CAT24C02-D.PDF
*/
const PAGE_LEN = 16; // page length in bytes
const WRITE_TIME = 0.005; // max write cycle time in seconds
class cat24c {
_i2c = null;
_addr = null;
constructor(i2c, addr=0xA0) {
_i2c = i2c;
_addr = addr;
}
function read(len, offset) {
// "Selective Read" by preceding the read with a "dummy write" of just the offset (no data)
_i2c.write(_addr, format("%c",offset));
local data = _i2c.read(_addr, "", len);
if (data == null) {
server.error(format("I2C Read Failure. Device: 0x%02x Register: 0x%02x",_addr,offset));
return -1;
}
return data;
}
function write(data, offset) {
local dataIndex = 0;
if (typeof data == "integer") {data = format("%c",data);}
while(dataIndex < data.len()) {
// chunk of data we will send per I2C write. Can be up to 1 page long.
local chunk = format("%c",offset);
// check if this is the first page, and if we'll hit the boundary
local leftOnPage = PAGE_LEN - (offset % PAGE_LEN);
// set the chunk length equal to the space left on the page
local chunkLen = leftOnPage;
// check if this is the last page we need to write, and adjust the chunk size if it is
if ((data.len() - dataIndex) < leftOnPage) { chunkLen = (data.len() - dataIndex); }
// now fill the chunk with a slice of data and write it
for (local chunkIndex = 0; chunkIndex < chunkLen; chunkIndex++) {
chunk += format("%c",data[dataIndex++]);
}
_i2c.write(_addr, chunk);
offset += chunkLen;
// write takes a finite (and rather long) amount of time. Subsequent writes
// before the write cycle is completed fail silently. You must wait.
imp.sleep(WRITE_TIME);
}
}
}
/* Log wrapper to redirect log messages if we're disconnected.
* If this wrapper detects that we do not have a display object,
* it will return silently.
*/
function log(msg) {
// test if we're connected to wifi
if (server.isconnected()) {
server.log(msg);
// if we're not on wifi, test if we have a display object instantiated
} else if ("disp" in this) {
disp.write(msg);
// if we have no way to log, give up
} else {
return;
}
}
/* Class for a status LED. Different patterns can be set for different states.
* Constructor takes an pre-configured LED pin.
*
* As shown, statusLed.set takes a single argument: any of the elements of the
* STATUS enum below.
*
* STATUS.CONNECTED -> solid light
* STATUS.DISCONNECTED -> blinking light
* STATUS.ERROR -> light off
*/
const BLINK_INTERVAL = 0.5; // blink interval for status LED in seconds
enum STATUS {
CONNECTED,
DISCONNECTED,
ERROR
};
class statusLed {
led = null;
blinkTimerHandle = null; // handle for blinking status wakeup timer
constructor(_led) {
this.led = _led;
}
function toggle() {
blinkTimerHandle = imp.wakeup(BLINK_INTERVAL, toggle.bindenv(this));
if (this.led.read() > 0) {
this.led.write(0.0);
} else {
this.led.write(1.0)
}
}
function set(status) {
// cancel any blink timer currently running
if (blinkTimerHandle) {imp.cancelwakeup(blinkTimerHandle);}
if (status == STATUS.CONNECTED) {this.led.write(1.0);}
else if (status == STATUS.DISCONNECTED) {
blinkTimerHandle = imp.wakeup(BLINK_INTERVAL, toggle.bindenv(this));}
else if (status == STATUS.ERROR) {led.write(0.0);}
}
}
/* Class for a sprinkler schedule.
* Constructor takes pre-instantiated:
* - spi interface, sr_load pin, and sr_output_en_l pin for shift register
* - rtc: a real-time clock object; the pcf8563
* - eeprom: an eeprom object; the cat24c
* - the serializer class must be included to use this class
*/
class waterSchedule {
spi = null; // SPI interface for shift register
sr_load = null; // load Pin for shift register
sr_output_en_l = null; // output enable for shift register
rtc = null;
eeprom = null;
led = null; // status LED object
channelStates = null; // Byte to store current state of sprinkler channels
gmtoffset = null; // GMT offset in hours (positive or negative)
schedule = {};
scheduledEvents = []; // array of timer IDs for scheduled watering events.
refreshtime = "00:00" // time of day to re-schedule watering events
constructor(_spi, _sr_load, _sr_output_en_l, _eeprom, _rtc, _led) {
this.spi = _spi;
this.sr_load = _sr_load;
this.sr_output_en_l = _sr_output_en_l;
this.rtc = _rtc;
this.eeprom = _eeprom;
this.led = _led;
}
/* Set Sprinkler Channel States */
function setChannel(channel, state) {
if ((channel < 0) || channel > 8) return;
if (state) {
this.channelStates = this.channelStates | (0x01 << channel);
} else {
this.channelStates = this.channelStates & ~(0x01 << channel);
}
// dispable the output and write the data out to the shift register
this.sr_output_en_l.write(1);
this.spi.write(format("%c",this.channelStates));
// pulse the SRCLK line to load the data into the output stage
this.sr_load.write(0);
this.sr_load.write(1);
this.sr_load.write(0);
// enable the output
this.sr_output_en_l.write(0);
}
function stopAllChannels() {
this.channelStates = 0x00;
// dispable the output and write the data out to the shift register
this.sr_output_en_l.write(1);
this.spi.write(format("%c",channelStates));
// pulse the SRCLK line to load the data into the output stage
this.sr_load.write(0);
this.sr_load.write(1);
this.sr_load.write(0);
// enable the output
this.sr_output_en_l.write(0);
}
function halt() {
this.stopAllChannels();
this.cancel();
}
/* Calculate seconds from now until a given time.
* Input:
* targetStr - a 24-hour hours/minutes string, e.g. "12:34"
* Return:
* seconds as an integer until the target time will next occur
*/
function secondsTil(targetStr) {
local data = split(targetStr,":");
local target = { hour = data[0].tointeger(), min = data[1].tointeger() };
target.hour -= this.gmtoffset;
if (target.hour > 23) {
target.hour -= 24;
}
local now = null;
if (server.isconnected()) {
now = date(time(),'u');
} else {
now = this.rtc.rtcdate();
}
if ((target.hour < now.hour) || (target.hour == now.hour && target.min < now.min)) {
target.hour += 24;
}
local result = 0;
result += (target.hour - now.hour) * 3600;
result += (target.min - now.min) * 60;
return result;
}
/* Load the schedule table from the EEPROM */
function load() {
// the length of the serialized object is stored in the first 2 bytes of the eeprom
local lenstr = this.eeprom.read(2,0);
local len = (lenstr[1] << 8) + lenstr[0];
// the CRC for the stored table is in the third byte
log("Loaded "+len+" bytes, deserializing...");
local crc = this.eeprom.read(1,2)[0];
local serSchedule = this.eeprom.read(len,3);
local serBlob = blob(serSchedule.len());
serBlob.writestring(serSchedule);
if (serializer.CRC(serBlob) != crc) {
log("Error: CRC Error while loading schedule from EEPROM");
return;
} else {
local result = serializer.deserialize(serBlob);
this.gmtoffset = result.gmtoffset;
this.schedule = result.schedule;
}
}
/* Serialize, CRC, and Save the schedule table to the EEPROM
* The TZ offset is also saved as a side effect.
*/
function save() {
local data = {"gmtoffset": this.gmtoffset, "schedule": this.schedule};
local serSchedule = serializer.serialize(data);
// write length of serialized object to first 2 bytes
this.eeprom.write(serSchedule.len() & 0xFF,0);
this.eeprom.write(serSchedule.len() & 0xFF00,1);
// write the CRC of the serialized object to the third byte
this.eeprom.write(serializer.CRC(serSchedule),2);
this.eeprom.write(serSchedule,3);
}
function set(newSchedule) {
this.schedule = newSchedule;
this.save();
this.run();
}
/* Walk the list of scheduled events and cancel them all */
function cancel() {
while (this.scheduledEvents.len() > 0) {
imp.cancelwakeup(this.scheduledEvents.pop());
}
}
/* Schedule On and Off events for each watering in the schedule table*/
function run() {
// if load() returned null, we're offline with no schedule.
// return and wait for connection to come up
if (this.schedule == null) {
log("Error: No Schedule.");
led.set(STATUS.ERROR);
return;
}
// stop watering andcancel any existing scheduled events before scheduling
this.halt();
foreach(waterevent in this.schedule) {
/* the list of channels must be local so that bindenv will hold it */
local mychannels = waterevent.channels;
/* SCHEDULE WATERING STARTS -----------------------------------------*/
/* scheduled callback handles are added to the scheduledEvents array so
* they can be later cancelled. */
local handle = imp.wakeup(secondsTil(waterevent.onat), function() {
local channelList = "";
foreach(channel in mychannels) {
channelList += format("%d ",channel);
setChannel(channel, 1);
}
log(format("Starting Scheduled Watering, Channels: %s", channelList));
/* Bindenv "binds" this callback to the current environment,
* so the channel array will be remembered */
}.bindenv(this));
this.scheduledEvents.push(handle);
/* SCHEDULE WATERING STOPS ------------------------------------------*/
handle = imp.wakeup(secondsTil(waterevent.offat), function() {
local channelList = "";
foreach(channel in mychannels) {
channelList += format("%d ",channel);
setChannel(channel, 0);
}
log(format("Ending Scheduled Watering, Channels: %s", channelList));
}.bindenv(this));
this.scheduledEvents.push(handle);
/* if we're in the middle of a watering event when the schedule is received,
* start immediately. */
if (secondsTil(waterevent.offat) < secondsTil(waterevent.onat)) {
foreach(channel in waterevent.channels) {
setChannel(channel, 1);
}
}
}
/* Schedule this function (this.run) to re-run at midnight nightly to refresh the schedule */
local refreshHandle = imp.wakeup(secondsTil(this.refreshtime)+60, function() { this.run(); }.bindenv(this));
this.scheduledEvents.push(refreshHandle);
foreach(waterevent in this.schedule) {
local channelList = "";
foreach(channel in waterevent.channels) {
channelList += format("%d ",channel);
}
log(format("On: %s, Off: %s, Channels: %s",waterevent.onat,
waterevent.offat, channelList));
}
}
/* Grab the schedule from the agent or the on-board EEPROM, depending on
* Connection status. If the schedule is received from the agent, it will be
* saved to the EEPROM for future use.
*
* If we're connected to the agent, we first request the GMT offset so that
* we have it before we attempt to set the schedule. A schedule request will
* be sent to the agent when the GMT offset is received.
*
* If we're offline, the GMT offset will be stored in the EEPROM with the schedule.
*/
function fetch() {
if (server.isconnected()) {
// we'll call for the schedule in a moment, as soon as we have this offset
agent.send("getGMToffset",0);
} else {
// load the schedule from the eeprom
// this will load the GMT offset as a side effect
this.load();
this.run();
}
}
}
/* AGENT EVENT HANDLERS ======================================================*/
agent.on("setGMToffset", function(offset) {
mySchedule.gmtoffset = offset;
// now that we have the TZ offset, we can handle a new schedule, so ask for it.
agent.send("getSchedule",0);
});
agent.on("newSchedule", function(schedule) {
log("New Schedule Received.");
// set the new schedule, save it to the EEPROM, and start running it
mySchedule.set(schedule)
});
agent.on("halt", function(val) {
waterSchedule.halt();
});
/* RUNTIME BEGINS HERE =======================================================*/
//Initialize the I2C bus
i2c <- hardware.i2c89;
i2c.configure(CLOCK_SPEED_100_KHZ);
//Initialize IO expanders`
ioexp_int_l <- hardware.pinB;
disp_ioexp <- SX1505(i2c,0x42); //Display Board 8-Channel IO expander
//Imp Pin configuration
beeper_pin <- hardware.pin1;
disp_reset_l_pin <- hardware.pin2;
sr_output_en_l_pin <- hardware.pin6;
sr_load_pin <- hardware.pinA;
led_pin <- hardware.pinC;
rain_sns_l_pin <- hardware.pinD;
spi_ifc <- hardware.spi257;
beeper_pin.configure(PWM_OUT, 1.0/1000, 0.0);
led_pin.configure(PWM_OUT, 1.0/1000, 0.0);
led <- statusLed(led_pin);
/* Rain Sensor Handler */
function rainStateChanged() {
server.log("Rain Sensor: "+rain_sns_l.read());
}
rain_sns_l_pin.configure(DIGITAL_IN_PULLUP, rainStateChanged);
spi_ifc.configure(SIMPLEX_TX | MSB_FIRST | CLOCK_IDLE_HIGH, 4000);
sr_output_en_l_pin.configure(DIGITAL_OUT);
sr_output_en_l_pin.write(1);
sr_load_pin.configure(DIGITAL_OUT);
sr_load_pin.write(0);
// Initialize I2C Devices
// Configure the RTC
rtc <- pcf8563(i2c);
// Configure the EEPROM
eeprom <- cat24c(i2c);
// instantiate a water scheduler with our shift register, RTC, and EEPROM
mySchedule <- waterSchedule(spi_ifc, sr_load_pin, sr_output_en_l_pin, eeprom, rtc, led);
/*
//Configure the Display
disp <- st7036(i2c);
//Configure IOs on the Display Expander
btn_up <- ExpGPIO(disp_ioexp, 0).configure(DIGITAL_IN_PULLUP, function(){server.log("Btn Up:"+this.read())});
btn_left <- ExpGPIO(disp_ioexp, 1).configure(DIGITAL_IN_PULLUP, function(){server.log("Btn Left:"+this.read())});
btn_enter <- ExpGPIO(disp_ioexp, 2).configure(DIGITAL_IN_PULLUP, function(){server.log("Btn Enter:"+this.read())});
btn_right <- ExpGPIO(disp_ioexp, 3).configure(DIGITAL_IN_PULLUP, function(){server.log("Btn Right:"+this.read())});
btn_down <- ExpGPIO(disp_ioexp, 4).configure(DIGITAL_IN_PULLUP, function(){server.log("Btn Down:"+this.read())});
disp_rst_l <- ExpGPIO(disp_ioexp, 5).configure(DIGITAL_OUT, 1);
*/
//Initialize the interrupt Pin
ioexp_int_l.configure(DIGITAL_IN_PULLUP, function(){ disp_ioexp.callback(); });