-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathbftq.py
335 lines (289 loc) · 14.5 KB
/
bftq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
"""
Adapted from the original implementation by Nicolas Carrara <https://github.com/ncarrara>.
"""
from rl_agents.agents.budgeted_ftq.graphics import plot_values_histograms, plot_frontier
from rl_agents.agents.common.utils import choose_device
__author__ = "Edouard Leurent"
__credits__ = ["Nicolas Carrara"]
from multiprocessing.pool import Pool
from pathlib import Path
import numpy as np
import torch
import logging
from rl_agents.agents.budgeted_ftq.greedy_policy import TransitionBFTQ, pareto_frontier, \
optimal_mixture
from rl_agents.agents.common.optimizers import loss_function_factory, optimizer_factory
from rl_agents.utils import near_split
from rl_agents.agents.common.memory import ReplayMemory
logger = logging.getLogger(__name__)
class BudgetedFittedQ(object):
def __init__(self, value_network, config, writer=None):
self.config = config
# Load configs
self.betas_for_duplication = parse(self.config["betas_for_duplication"])
self.betas_for_discretisation = parse(self.config["betas_for_discretisation"])
self.loss_function = loss_function_factory(self.config["loss_function"])
self.loss_function_c = loss_function_factory(self.config["loss_function_c"])
self.device = choose_device(self.config["device"])
# Load network
self._value_network = value_network
self._value_network = self._value_network.to(self.device)
self.n_actions = self._value_network.predict.out_features // 2
self.writer = writer
if writer:
self.writer.add_graph(self._value_network,
input_to_model=torch.tensor(np.zeros((1, 1, self._value_network.size_state + 1),
dtype=np.float32)).to(self.device))
self.memory = ReplayMemory(transition_type=TransitionBFTQ, config=self.config)
self.optimizer = None
self.batch = 0
self.epoch = 0
self.reset()
def push(self, state, action, reward, next_state, terminal, cost, beta=None):
"""
Push a transition into the replay memory.
"""
action = torch.tensor([[action]], dtype=torch.long)
reward = torch.tensor([reward], dtype=torch.float)
terminal = torch.tensor([terminal], dtype=torch.bool)
cost = torch.tensor([cost], dtype=torch.float)
state = torch.tensor([[state]], dtype=torch.float)
next_state = torch.tensor([[next_state]], dtype=torch.float)
# Data augmentation for (potentially missing) budget values
if np.size(self.betas_for_duplication):
for beta_d in self.betas_for_duplication:
if beta: # If the transition already has a beta, augment data by altering it.
beta_d = torch.tensor([[[beta_d * beta]]], dtype=torch.float)
else: # Otherwise, simply set new betas
beta_d = torch.tensor([[[beta_d]]], dtype=torch.float)
self.memory.push(state, action, reward, next_state, terminal, cost, beta_d)
else:
beta = torch.tensor([[[beta]]], dtype=torch.float)
self.memory.push(state, action, reward, next_state, terminal, cost, beta)
def run(self):
"""
Run BFTQ on the batch of transitions in memory.
We fit a model for the optimal reward-cost state-budget-action values Qr and Qc.
The BFTQ epoch is repeated until convergence or timeout.
:return: the obtained value network Qr*, Qc*
"""
logger.info("Run")
self.batch += 1
for self.epoch in range(self.config["epochs"]):
self._epoch()
return self._value_network
def _epoch(self):
"""
Run a single epoch of BFTQ.
This is similar to a fitted value iteration:
1. Bootstrap the targets for Qr, Qc using the Budgeted Bellman Optimality operator
2. Fit the Qr, Qc model to the targets
"""
logger.debug("Epoch {}/{}".format(self.epoch + 1, self.config["epochs"]))
states_betas, actions, rewards, costs, next_states, betas, terminals = self._zip_batch()
target_r, target_c = self.compute_targets(rewards, costs, next_states, betas, terminals)
self._fit(states_betas, actions, target_r, target_c)
plot_values_histograms(self._value_network, (target_r, target_c), states_betas, actions, self.writer, self.epoch, self.batch)
def _zip_batch(self):
"""
Convert the batch of transitions to several tensors of states, actions, rewards, etc.
:return: state-beta, state, action, reward, constraint, next_state, beta, terminal batches
"""
batch = self.memory.memory
self.size_batch = len(batch)
zipped = TransitionBFTQ(*zip(*batch))
actions = torch.cat(zipped.action).to(self.device)
rewards = torch.cat(zipped.reward).to(self.device)
terminals = torch.cat(zipped.terminal).to(self.device)
costs = torch.cat(zipped.cost).to(self.device)
betas = torch.cat(zipped.beta).to(self.device)
states = torch.cat(zipped.state).to(self.device)
next_states = torch.cat(zipped.next_state).to(self.device)
states_betas = torch.cat((states, betas), dim=2).to(self.device)
# Batch normalization
mean = torch.mean(states_betas, 0).to(self.device)
std = torch.std(states_betas, 0).to(self.device)
self._value_network.set_normalization_params(mean, std)
return states_betas, actions, rewards, costs, next_states, betas, terminals
def compute_targets(self, rewards, costs, next_states, betas, terminals):
"""
Compute target values by applying the Budgeted Bellman Optimality operator
:param rewards: batch of rewards
:param costs: batch of costs
:param next_states: batch of next states
:param betas: batch of budgets
:param terminals: batch of terminations
:return: target values
"""
logger.debug("Compute targets")
with torch.no_grad():
next_rewards, next_costs = self.boostrap_next_values(next_states, betas, terminals)
target_r = rewards + self.config["gamma"] * next_rewards
target_c = costs + self.config["gamma_c"] * next_costs
if self.config["clamp_qc"] is not None:
target_c = torch.clamp(target_c, min=self.config["clamp_qc"][0], max=self.config["clamp_qc"][1])
torch.cuda.empty_cache()
return target_r, target_c
def boostrap_next_values(self, next_states, betas, terminals):
"""
Boostrap the (Vr, Vc) values at next states by following the greedy policy.
The model is evaluated for optimal one-step mixtures of actions & budgets that fulfill the cost constraints.
:param next_states: batch of next states
:param betas: batch of budgets
:param terminals: batch of terminations
:return: Vr and Vc at the next states, following optimal mixtures
"""
# Initialisation
next_rewards = torch.zeros(len(next_states), device=self.device)
next_costs = torch.zeros(len(next_states), device=self.device)
if self.epoch == 0:
return next_rewards, next_costs
# Greedy policy computation pi(a'|s')
# 1. Select non-final next states
next_states_nf = next_states[~terminals]
betas_nf = betas[~terminals]
# 2. Forward pass of the model Qr, Qc
q_values = self.compute_next_values(next_states_nf)
# 3. Compute Pareto-optimal frontiers F of {(Qc, Qr)}_AB at all states
hulls = self.compute_all_frontiers(q_values, len(next_states_nf))
# 4. Compute optimal mixture policies satisfying budget constraint: max E[Qr] s.t. E[Qc] < beta
mixtures = self.compute_all_optimal_mixtures(hulls, betas_nf)
# Expected value Vr,Vc of the greedy policy at s'
next_rewards_nf = torch.zeros(len(next_states_nf), device=self.device)
next_costs_nf = torch.zeros(len(next_states_nf), device=self.device)
for i, mix in enumerate(mixtures):
next_rewards_nf[i] = (1 - mix.probability_sup) * mix.inf.qr + mix.probability_sup * mix.sup.qr
next_costs_nf[i] = (1 - mix.probability_sup) * mix.inf.qc + mix.probability_sup * mix.sup.qc
next_rewards[~terminals] = next_rewards_nf
next_costs[~terminals] = next_costs_nf
torch.cuda.empty_cache()
return next_rewards, next_costs
def compute_next_values(self, next_states):
"""
Compute Q(S, B) with a single forward pass.
S: set of states
B: set of budgets (discretised)
:param next_states: batch of next state
:return: Q values at next states
"""
logger.debug("-Forward pass")
# Compute the cartesian product sb of all next states s with all budgets b
ss = next_states.squeeze().repeat((1, len(self.betas_for_discretisation))) \
.view((len(next_states) * len(self.betas_for_discretisation), self._value_network.size_state))
bb = torch.from_numpy(self.betas_for_discretisation).float().unsqueeze(1).to(device=self.device)
bb = bb.repeat((len(next_states), 1))
sb = torch.cat((ss, bb), dim=1).unsqueeze(1)
# To avoid spikes in memory, we actually split the batch in several minibatches
batch_sizes = near_split(x=len(sb), num_bins=self.config["split_batches"])
q_values = []
for minibatch in range(self.config["split_batches"]):
mini_batch = sb[sum(batch_sizes[:minibatch]):sum(batch_sizes[:minibatch + 1])]
q_values.append(self._value_network(mini_batch))
torch.cuda.empty_cache()
return torch.cat(q_values).detach().cpu().numpy()
def compute_all_frontiers(self, q_values, states_count):
"""
Parallel computing of pareto-optimal frontiers F
"""
logger.debug("-Compute frontiers")
n_beta = len(self.betas_for_discretisation)
hull_params = [(q_values[state * n_beta: (state + 1) * n_beta],
self.betas_for_discretisation,
self.config["hull_options"],
self.config["clamp_qc"])
for state in range(states_count)]
if self.config["processes"] == 1:
results = [pareto_frontier(*param) for param in hull_params]
else:
with Pool(self.config["processes"]) as p:
results = p.starmap(pareto_frontier, hull_params)
frontiers, all_points = zip(*results)
torch.cuda.empty_cache()
for s in [0, -1]:
plot_frontier(frontiers[s], all_points[s], self.writer, self.epoch, title="agent/Hull {} batch {}".format(s, self.batch))
return frontiers
def compute_all_optimal_mixtures(self, frontiers, betas):
"""
Parallel computing of optimal mixtures
"""
logger.debug("-Compute optimal mixtures")
params = [(frontiers[i], beta.detach().item()) for i, beta in enumerate(betas)]
if self.config["processes"] == 1:
optimal_policies = [optimal_mixture(*param) for param in params]
else:
with Pool(self.config["processes"]) as p:
optimal_policies = p.starmap(optimal_mixture, params)
return optimal_policies
def _fit(self, states_betas, actions, target_r, target_c):
"""
Fit a network Q(state, action, beta) = (Qr, Qc) to target values
:param states_betas: batch of states and betas
:param actions: batch of actions
:param target_r: batch of target reward-values
:param target_c: batch of target cost-values
:return: the Bellman residual delta between the model and target values
"""
logger.debug("Fit model")
# Initial Bellman residual
with torch.no_grad():
delta = self._compute_loss(states_betas, actions, target_r, target_c).detach().item()
torch.cuda.empty_cache()
# Reset network
if self.config["reset_network_each_epoch"]:
self.reset_network()
# Gradient descent
losses = []
for nn_epoch in range(self.config["regression_epochs"]):
loss = self._gradient_step(states_betas, actions, target_r, target_c)
losses.append(loss)
torch.cuda.empty_cache()
return delta
def _compute_loss(self, states_betas, actions, target_r, target_c):
"""
Compute the loss between the model values and target values
:param states_betas: input state-beta batch
:param actions: input actions batch
:param target_r: target qr
:param target_c: target qc
:return: the weighted loss for expected rewards and costs
"""
values = self._value_network(states_betas)
qr = values.gather(1, actions)
qc = values.gather(1, actions + self.n_actions)
loss_qc = self.loss_function_c(qc, target_c.unsqueeze(1))
loss_qr = self.loss_function(qr, target_r.unsqueeze(1))
w_r, w_c = self.config["weights_losses"]
loss = w_c * loss_qc + w_r * loss_qr
return loss
def _gradient_step(self, states_betas, actions, target_r, target_c):
loss = self._compute_loss(states_betas, actions, target_r, target_c)
self.optimizer.zero_grad()
loss.backward()
for param in self._value_network.parameters():
param.grad.data.clamp_(-1, 1)
self.optimizer.step()
return loss.detach().item()
def save_network(self, path=None):
path = Path(path) if path else Path("policy.pt")
torch.save(self._value_network, path)
return path
def load_network(self, path=None):
path = Path(path) if path else Path("policy.pt")
self._value_network = torch.load(path, map_location=self.device)
return self._value_network
def reset_network(self):
self._value_network.reset()
def reset(self, reset_weight=True):
torch.cuda.empty_cache()
if reset_weight:
self.reset_network()
self.optimizer = optimizer_factory(self.config["optimizer"]["type"],
self._value_network.parameters(),
self.config["optimizer"]["learning_rate"],
self.config["optimizer"]["weight_decay"])
self.epoch = 0
def parse(value):
try:
return eval(value)
except ValueError:
return value