-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy patholop.py
200 lines (164 loc) · 7.39 KB
/
olop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import logging
import numpy as np
from rl_agents.agents.common.factory import safe_deepcopy_env
from rl_agents.agents.tree_search.abstract import Node, AbstractTreeSearchAgent, AbstractPlanner
from rl_agents.utils import kl_upper_bound
logger = logging.getLogger(__name__)
class OLOP(AbstractPlanner):
"""
An implementation of Open Loop Optimistic Planning.
"""
def __init__(self, env, config=None):
self.leaves = None
self.env = env
super().__init__(config)
@classmethod
def default_config(cls):
cfg = super(OLOP, cls).default_config()
cfg.update(
{
"upper_bound":
{
"type": "hoeffding",
"time": "global",
"threshold": "4*np.log(time)"
},
"continuation_type": "zeros"
}
)
return cfg
def reset(self):
if "horizon" not in self.config:
self.allocate_budget()
self.root = OLOPNode(parent=None, planner=self)
self.leaves = [self.root]
@staticmethod
def horizon(episodes, gamma):
return max(int(np.ceil(np.log(episodes) / (2 * np.log(1 / gamma)))), 1)
def allocate_budget(self):
budget = max(self.env.action_space.n, self.config["budget"])
self.config["episodes"], self.config["horizon"] = self.allocation(budget, self.config["gamma"])
@staticmethod
def allocation(budget, gamma):
"""
Allocate the computational budget into M episodes of fixed horizon L.
"""
for episodes in range(1, int(budget)):
if episodes * OLOP.horizon(episodes, gamma) > budget:
episodes = max(episodes - 1, 1)
horizon = OLOP.horizon(episodes, gamma)
break
else:
raise ValueError("Could not split budget {} with gamma {}".format(budget, gamma))
return episodes, horizon
def run(self, state):
"""
Run an OLOP episode.
Find the leaf with highest upper bound value, and sample the corresponding action sequence.
:param state: the initial environment state
"""
# We need randomness
state.seed(self.np_random.randint(2**30))
# Follow selection policy, expand tree if needed, collect rewards and update confidence bounds.
node = self.root
for h in range(self.config["horizon"]):
# Select action
if not node.children: # Break ties at leaves
node.expand(state)
action = self.np_random.choice(list(node.children.keys())) \
if self.config["continuation_type"] == "uniform" else 0
else: # Run UCB elsewhere
action, _ = max([child for child in node.children.items()], key=lambda c: c[1].value_upper)
# Perform transition
observation, reward, done, _ = self.step(state, action)
node = node.children[action]
node.update(reward, done)
# Backup global statistics
node.backup_to_root()
def plan(self, state, observation):
for self.episode in range(self.config['episodes']):
if (self.episode+1) % max(self.config['episodes'] // 10, 1) == 0:
logger.debug('{} / {}'.format(self.episode+1, self.config['episodes']))
self.run(safe_deepcopy_env(state))
return self.get_plan()
class OLOPNode(Node):
STOP_ON_ANY_TERMINAL_STATE = False
def __init__(self, parent, planner):
super(OLOPNode, self).__init__(parent, planner)
self.cumulative_reward = 0
""" Sum of all rewards received at this node. """
self.mu_ucb = np.infty
""" Upper bound of the node mean reward. """
if self.planner.config["upper_bound"]["type"] == "kullback-leibler":
self.mu_ucb = 1
gamma = self.planner.config["gamma"]
self.depth = self.parent.depth + 1 if self.parent is not None else 0
self.value_upper = (1 - gamma ** (self.planner.config["horizon"] + 1 - self.depth)) / (1 - gamma)
self.done = False
""" Is this node a terminal node, for all random realizations (!)"""
def selection_rule(self):
# Tie best counts by best value upper bound
actions = list(self.children.keys())
counts = Node.all_argmax([self.children[a].count for a in actions])
return actions[max(counts, key=(lambda i: self.children[actions[i]].value_upper))]
def update(self, reward, done):
if not 0 <= reward <= 1:
raise ValueError("This planner assumes that all rewards are normalized in [0, 1]")
if done or (self.parent and self.parent.done) and OLOPNode.STOP_ON_ANY_TERMINAL_STATE:
self.done = True
if self.done:
reward = 0
self.cumulative_reward += reward
self.count += 1
self.compute_reward_ucb()
def compute_reward_ucb(self):
if self.planner.config["upper_bound"]["time"] == "local":
time = self.planner.episode + 1
elif self.planner.config["upper_bound"]["time"] == "global":
time = self.planner.config["episodes"]
else:
time = np.nan
logger.error("Unknown upper-bound time reference")
# if self.planner.config["upper_bound"]["type"] == "hoeffding":
# self.mu_ucb = hoeffding_upper_bound(self.cumulative_reward, self.count, time,
# c=self.planner.config["upper_bound"]["c"])
# elif self.planner.config["upper_bound"]["type"] == "laplace":
# self.mu_ucb = laplace_upper_bound(self.cumulative_reward, self.count, time,
# c=self.planner.config["upper_bound"]["c"])
if self.planner.config["upper_bound"]["type"] == "kullback-leibler":
threshold = eval(self.planner.config["upper_bound"]["threshold"])
self.mu_ucb = kl_upper_bound(self.cumulative_reward, self.count, threshold)
else:
logger.error("Unknown upper-bound type")
def expand(self, state):
if state is None:
raise Exception("The state should be set before expanding a node")
try:
actions = state.get_available_actions()
except AttributeError:
actions = range(state.action_space.n)
for action in actions:
self.children[action] = type(self)(self,
self.planner)
# Replace the former leaf by its children, but keep the ordering
idx = self.planner.leaves.index(self)
self.planner.leaves = self.planner.leaves[:idx] + \
list(self.children.values()) + \
self.planner.leaves[idx+1:]
def backup_to_root(self):
"""
Bellman V(s) = max_a Q(s,a)
"""
if self.children:
gamma = self.planner.config["gamma"]
self.value_upper = self.mu_ucb + gamma * np.amax([c.value_upper for c in self.children.values()])
else:
assert self.depth == self.planner.config["horizon"]
self.value_upper = self.mu_ucb
if self.parent:
self.parent.backup_to_root()
class OLOPAgent(AbstractTreeSearchAgent):
"""
An agent that uses Open Loop Optimistic Planning to plan a sequence of actions in an MDP.
"""
PLANNER_TYPE = OLOP