forked from GMvandeVen/brain-inspired-replay
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefine_models.py
126 lines (119 loc) · 7.43 KB
/
define_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import utils
from utils import checkattr
##-------------------------------------------------------------------------------------------------------------------##
## Function for defining auto-encoder model
def define_autoencoder(args, config, device, generator=False, convE=None):
# -import required model
from models.vae import AutoEncoder
# -create model
if (hasattr(args, "depth") and args.depth > 0):
model = AutoEncoder(
image_size=config['size'], image_channels=config['channels'], classes=config['classes'],
# -conv-layers
conv_type=args.conv_type, depth=args.g_depth if generator and hasattr(args, 'g_depth') else args.depth,
start_channels=args.channels, reducing_layers=args.rl, conv_bn=(args.conv_bn=="yes"), conv_nl=args.conv_nl,
num_blocks=args.n_blocks, convE=convE, global_pooling=False if generator else checkattr(args, 'gp'),
# -fc-layers
fc_layers=args.g_fc_lay if generator and hasattr(args, 'g_fc_lay') else args.fc_lay,
fc_units=args.g_fc_uni if generator and hasattr(args, 'g_fc_uni') else args.fc_units,
h_dim=args.g_h_dim if generator and hasattr(args, 'g_h_dim') else args.h_dim,
fc_drop=0 if generator else args.fc_drop, fc_bn=(args.fc_bn=="yes"), fc_nl=args.fc_nl, excit_buffer=True,
# -prior
prior=args.prior if hasattr(args, "prior") else "standard",
n_modes=args.n_modes if hasattr(args, "prior") else 1,
per_class=args.per_class if hasattr(args, "prior") else False,
z_dim=args.g_z_dim if generator and hasattr(args, 'g_z_dim') else args.z_dim,
# -decoder
hidden=checkattr(args, 'hidden'),
recon_loss=args.recon_loss, network_output="none" if checkattr(args, "normalize") else "sigmoid",
deconv_type=args.deconv_type if hasattr(args, "deconv_type") else "standard",
dg_gates=utils.checkattr(args, 'dg_gates'), dg_type=args.dg_type if hasattr(args, 'dg_type') else "task",
dg_prop=args.dg_prop if hasattr(args, 'dg_prop') else 0.,
tasks=args.tasks if hasattr(args, 'tasks') else None,
scenario=args.scenario if hasattr(args, 'scenario') else None, device=device,
# -classifier
classifier=False if generator else True,
classify_opt=args.classify if hasattr(args, "classify") else "beforeZ",
# -training-specific components
lamda_rcl=1. if not hasattr(args, 'rcl') else args.rcl,
lamda_vl=1. if not hasattr(args, 'vl') else args.vl,
lamda_pl=(0. if generator else 1.) if not hasattr(args, 'pl') else args.pl,
).to(device)
else:
model = AutoEncoder(
image_size=config['size'], image_channels=config['channels'], classes=config['classes'],
# -fc-layers
fc_layers=args.g_fc_lay if generator and hasattr(args, 'g_fc_lay') else args.fc_lay,
fc_units=args.g_fc_uni if generator and hasattr(args, 'g_fc_uni') else args.fc_units,
h_dim=args.g_h_dim if generator and hasattr(args, 'g_h_dim') else args.h_dim,
fc_drop=0 if generator else args.fc_drop, fc_bn=(args.fc_bn=="yes"), fc_nl=args.fc_nl, excit_buffer=True,
# -prior
prior=args.prior if hasattr(args, "prior") else "standard",
n_modes=args.n_modes if hasattr(args, "prior") else 1,
per_class=args.per_class if hasattr(args, "prior") else False,
z_dim=args.g_z_dim if generator and hasattr(args, 'g_z_dim') else args.z_dim,
# -decoder
recon_loss=args.recon_loss, network_output="none" if checkattr(args, "normalize") else "sigmoid",
deconv_type=args.deconv_type if hasattr(args, "deconv_type") else "standard",
dg_gates=utils.checkattr(args, 'dg_gates'), dg_type=args.dg_type if hasattr(args, 'dg_type') else "task",
dg_prop=args.dg_prop if hasattr(args, 'dg_prop') else 0.,
tasks=args.tasks if hasattr(args, 'tasks') else None,
scenario=args.scenario if hasattr(args, 'scenario') else None, device=device,
# -classifier
classifier=False if generator else True,
classify_opt=args.classify if hasattr(args, "classify") else "beforeZ",
# -training-specific components
lamda_rcl=1. if not hasattr(args, 'rcl') else args.rcl,
lamda_vl=1. if not hasattr(args, 'vl') else args.vl,
lamda_pl=(0. if generator else 1.) if not hasattr(args, 'pl') else args.pl,
).to(device)
# -return model
return model
##-------------------------------------------------------------------------------------------------------------------##
## Function for defining classifier model
def define_classifier(args, config, device):
# -import required model
from models.classifier import Classifier
# -create model
if (hasattr(args, "depth") and args.depth>0):
model = Classifier(
image_size=config['size'], image_channels=config['channels'], classes=config['classes'],
# -conv-layers
conv_type=args.conv_type, depth=args.depth, start_channels=args.channels, reducing_layers=args.rl,
num_blocks=args.n_blocks, conv_bn=True if args.conv_bn=="yes" else False, conv_nl=args.conv_nl,
global_pooling=checkattr(args, 'gp'),
# -fc-layers
fc_layers=args.fc_lay, fc_units=args.fc_units, h_dim=args.h_dim,
fc_drop=args.fc_drop, fc_bn=True if args.fc_bn=="yes" else False, fc_nl=args.fc_nl, excit_buffer=True,
# -training-specific components
hidden=checkattr(args, 'hidden'),
).to(device)
else:
model = Classifier(
image_size=config['size'], image_channels=config['channels'], classes=config['classes'],
# -fc-layers
fc_layers=args.fc_lay, fc_units=args.fc_units, h_dim=args.h_dim,
fc_drop=args.fc_drop, fc_bn=True if args.fc_bn=="yes" else False, fc_nl=args.fc_nl, excit_buffer=True,
).to(device)
# -return model
return model
##-------------------------------------------------------------------------------------------------------------------##
## Function for (re-)initializing the parameters of [model]
def init_params(model, args):
# - reinitialize all parameters according to default initialization
model.apply(utils.weight_reset)
# - initialize parameters according to chosen custom initialization (if requested)
if hasattr(args, 'init_weight') and not args.init_weight=="standard":
utils.weight_init(model, strategy="xavier_normal")
if hasattr(args, 'init_bias') and not args.init_bias=="standard":
utils.bias_init(model, strategy="constant", value=0.01)
# - use pre-trained weights (either for full model or just in conv-layers)?
if utils.checkattr(args, "pre_convE") and hasattr(model, 'depth') and model.depth>0:
load_name = model.convE.name if (
not hasattr(args, 'convE_ltag') or args.convE_ltag=="none"
) else "{}-{}".format(model.convE.name, args.convE_ltag)
utils.load_checkpoint(model.convE, model_dir=args.m_dir, name=load_name)
if utils.checkattr(args, "pre_convD") and hasattr(model, 'convD') and model.depth>0:
utils.load_checkpoint(model.convD, model_dir=args.m_dir)
return model
##-------------------------------------------------------------------------------------------------------------------##