forked from dhuertas/AES
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aes.c
465 lines (378 loc) · 11.2 KB
/
aes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/*
* Advanced Encryption Standard
* @author Dani Huertas
* @email [email protected]
*
* Based on the document FIPS PUB 197
*/
#include "aes.h"
/*
* Addition in GF(2^8)
* http://en.wikipedia.org/wiki/Finite_field_arithmetic
*/
uint8_t gadd(uint8_t a, uint8_t b) {
return a^b;
}
/*
* Subtraction in GF(2^8)
* http://en.wikipedia.org/wiki/Finite_field_arithmetic
*/
uint8_t gsub(uint8_t a, uint8_t b) {
return a^b;
}
/*
* Multiplication in GF(2^8)
* http://en.wikipedia.org/wiki/Finite_field_arithmetic
* Irreducible polynomial m(x) = x8 + x4 + x3 + x + 1
*/
uint8_t gmult(uint8_t a, uint8_t b) {
uint8_t p = 0, i = 0, hbs = 0;
for (i = 0; i < 8; i++) {
if (b & 1) {
p ^= a;
}
hbs = a & 0x80;
a <<= 1;
if (hbs) a ^= 0x1b; // 0000 0001 0001 1011
b >>= 1;
}
return (uint8_t)p;
}
/*
* Addition of 4 byte words
* m(x) = x4+1
*/
void coef_add(uint8_t a[], uint8_t b[], uint8_t d[]) {
d[0] = a[0]^b[0];
d[1] = a[1]^b[1];
d[2] = a[2]^b[2];
d[3] = a[3]^b[3];
}
/*
* Multiplication of 4 byte words
* m(x) = x4+1
*/
void coef_mult(uint8_t *a, uint8_t *b, uint8_t *d) {
d[0] = gmult(a[0],b[0])^gmult(a[3],b[1])^gmult(a[2],b[2])^gmult(a[1],b[3]);
d[1] = gmult(a[1],b[0])^gmult(a[0],b[1])^gmult(a[3],b[2])^gmult(a[2],b[3]);
d[2] = gmult(a[2],b[0])^gmult(a[1],b[1])^gmult(a[0],b[2])^gmult(a[3],b[3]);
d[3] = gmult(a[3],b[0])^gmult(a[2],b[1])^gmult(a[1],b[2])^gmult(a[0],b[3]);
}
/*
* The cipher Key.
*/
int K;
/*
* Number of columns (32-bit words) comprising the State. For this
* standard, Nb = 4.
*/
int Nb = 4;
/*
* Number of 32-bit words comprising the Cipher Key. For this
* standard, Nk = 4, 6, or 8.
*/
int Nk;
/*
* Number of rounds, which is a function of Nk and Nb (which is
* fixed). For this standard, Nr = 10, 12, or 14.
*/
int Nr;
/*
* S-box transformation table
*/
static uint8_t s_box[256] = {
// 0 1 2 3 4 5 6 7 8 9 a b c d e f
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, // 0
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, // 1
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, // 2
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, // 3
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, // 4
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, // 5
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, // 6
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, // 7
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, // 8
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, // 9
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, // a
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, // b
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, // c
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, // d
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, // e
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};// f
/*
* Inverse S-box transformation table
*/
static uint8_t inv_s_box[256] = {
// 0 1 2 3 4 5 6 7 8 9 a b c d e f
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, // 0
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, // 1
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, // 2
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, // 3
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, // 4
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, // 5
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, // 6
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, // 7
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, // 8
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, // 9
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, // a
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, // b
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, // c
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, // d
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, // e
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};// f
/*
* Generates the round constant Rcon[i]
*/
uint8_t R[] = {0x02, 0x00, 0x00, 0x00};
uint8_t * Rcon(uint8_t i) {
if (i == 1) {
R[0] = 0x01; // x^(1-1) = x^0 = 1
} else if (i > 1) {
R[0] = 0x02;
i--;
while (i-1 > 0) {
R[0] = gmult(R[0], 0x02);
i--;
}
}
return R;
}
/*
* Transformation in the Cipher and Inverse Cipher in which a Round
* Key is added to the State using an XOR operation. The length of a
* Round Key equals the size of the State (i.e., for Nb = 4, the Round
* Key length equals 128 bits/16 bytes).
*/
void add_round_key(uint8_t *state, uint8_t *w, uint8_t r) {
uint8_t c;
for (c = 0; c < Nb; c++) {
state[Nb*0+c] = state[Nb*0+c]^w[4*Nb*r+4*c+0]; //debug, so it works for Nb !=4
state[Nb*1+c] = state[Nb*1+c]^w[4*Nb*r+4*c+1];
state[Nb*2+c] = state[Nb*2+c]^w[4*Nb*r+4*c+2];
state[Nb*3+c] = state[Nb*3+c]^w[4*Nb*r+4*c+3];
}
}
/*
* Transformation in the Cipher that takes all of the columns of the
* State and mixes their data (independently of one another) to
* produce new columns.
*/
void mix_columns(uint8_t *state) {
uint8_t a[] = {0x02, 0x01, 0x01, 0x03}; // a(x) = {02} + {01}x + {01}x2 + {03}x3
uint8_t i, j, col[4], res[4];
for (j = 0; j < Nb; j++) {
for (i = 0; i < 4; i++) {
col[i] = state[Nb*i+j];
}
coef_mult(a, col, res);
for (i = 0; i < 4; i++) {
state[Nb*i+j] = res[i];
}
}
}
/*
* Transformation in the Inverse Cipher that is the inverse of
* MixColumns().
*/
void inv_mix_columns(uint8_t *state) {
uint8_t a[] = {0x0e, 0x09, 0x0d, 0x0b}; // a(x) = {0e} + {09}x + {0d}x2 + {0b}x3
uint8_t i, j, col[4], res[4];
for (j = 0; j < Nb; j++) {
for (i = 0; i < 4; i++) {
col[i] = state[Nb*i+j];
}
coef_mult(a, col, res);
for (i = 0; i < 4; i++) {
state[Nb*i+j] = res[i];
}
}
}
/*
* Transformation in the Cipher that processes the State by cyclically
* shifting the last three rows of the State by different offsets.
*/
void shift_rows(uint8_t *state) {
uint8_t i, k, s, tmp;
for (i = 1; i < 4; i++) {
// shift(1,4)=1; shift(2,4)=2; shift(3,4)=3
// shift(r, 4) = r;
s = 0;
while (s < i) {
tmp = state[Nb*i+0];
for (k = 1; k < Nb; k++) {
state[Nb*i+k-1] = state[Nb*i+k];
}
state[Nb*i+Nb-1] = tmp;
s++;
}
}
}
/*
* Transformation in the Inverse Cipher that is the inverse of
* ShiftRows().
*/
void inv_shift_rows(uint8_t *state) {
uint8_t i, k, s, tmp;
for (i = 1; i < 4; i++) {
s = 0;
while (s < i) {
tmp = state[Nb*i+Nb-1];
for (k = Nb-1; k > 0; k--) {
state[Nb*i+k] = state[Nb*i+k-1];
}
state[Nb*i+0] = tmp;
s++;
}
}
}
/*
* Transformation in the Cipher that processes the State using a non
* linear byte substitution table (S-box) that operates on each of the
* State bytes independently.
*/
void sub_bytes(uint8_t *state) {
uint8_t i, j;
uint8_t row, col;
for (i = 0; i < 4; i++) {
for (j = 0; j < Nb; j++) {
row = (state[Nb*i+j] & 0xf0) >> 4;
col = state[Nb*i+j] & 0x0f;
state[Nb*i+j] = s_box[16*row+col];
}
}
}
/*
* Transformation in the Inverse Cipher that is the inverse of
* SubBytes().
*/
void inv_sub_bytes(uint8_t *state) {
uint8_t i, j;
uint8_t row, col;
for (i = 0; i < 4; i++) {
for (j = 0; j < Nb; j++) {
row = (state[Nb*i+j] & 0xf0) >> 4;
col = state[Nb*i+j] & 0x0f;
state[Nb*i+j] = inv_s_box[16*row+col];
}
}
}
/*
* Function used in the Key Expansion routine that takes a four-byte
* input word and applies an S-box to each of the four bytes to
* produce an output word.
*/
void sub_word(uint8_t *w) {
uint8_t i;
for (i = 0; i < 4; i++) {
w[i] = s_box[16*((w[i] & 0xf0) >> 4) + (w[i] & 0x0f)];
}
}
/*
* Function used in the Key Expansion routine that takes a four-byte
* word and performs a cyclic permutation.
*/
void rot_word(uint8_t *w) {
uint8_t tmp;
uint8_t i;
tmp = w[0];
for (i = 0; i < 3; i++) {
w[i] = w[i+1];
}
w[3] = tmp;
}
/*
* Key Expansion
*/
void aes_key_expansion(uint8_t *key, uint8_t *w) {
uint8_t tmp[4];
uint8_t i, j;
uint8_t len = Nb*(Nr+1);
for (i = 0; i < Nk; i++) {
w[4*i+0] = key[4*i+0];
w[4*i+1] = key[4*i+1];
w[4*i+2] = key[4*i+2];
w[4*i+3] = key[4*i+3];
}
for (i = Nk; i < len; i++) {
tmp[0] = w[4*(i-1)+0];
tmp[1] = w[4*(i-1)+1];
tmp[2] = w[4*(i-1)+2];
tmp[3] = w[4*(i-1)+3];
if (i%Nk == 0) {
rot_word(tmp);
sub_word(tmp);
coef_add(tmp, Rcon(i/Nk), tmp);
} else if (Nk > 6 && i%Nk == 4) {
sub_word(tmp);
}
w[4*i+0] = w[4*(i-Nk)+0]^tmp[0];
w[4*i+1] = w[4*(i-Nk)+1]^tmp[1];
w[4*i+2] = w[4*(i-Nk)+2]^tmp[2];
w[4*i+3] = w[4*(i-Nk)+3]^tmp[3];
}
}
/*
* Initialize AES variables and allocate memory for expanded key
*/
uint8_t *aes_init(size_t key_size) {
switch (key_size) {
default:
case 16: Nk = 4; Nr = 10; break;
case 24: Nk = 6; Nr = 12; break;
case 32: Nk = 8; Nr = 14; break;
}
return malloc(Nb*(Nr+1)*4);
}
/*
* Performs the AES cipher operation
*/
void aes_cipher(uint8_t *in, uint8_t *out, uint8_t *w) {
uint8_t state[4*Nb];
uint8_t r, i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < Nb; j++) {
state[Nb*i+j] = in[i+4*j];
}
}
add_round_key(state, w, 0);
for (r = 1; r < Nr; r++) {
sub_bytes(state);
shift_rows(state);
mix_columns(state);
add_round_key(state, w, r);
}
sub_bytes(state);
shift_rows(state);
add_round_key(state, w, Nr);
for (i = 0; i < 4; i++) {
for (j = 0; j < Nb; j++) {
out[i+4*j] = state[Nb*i+j];
}
}
}
/*
* Performs the AES inverse cipher operation
*/
void aes_inv_cipher(uint8_t *in, uint8_t *out, uint8_t *w) {
uint8_t state[4*Nb];
uint8_t r, i, j;
for (i = 0; i < 4; i++) {
for (j = 0; j < Nb; j++) {
state[Nb*i+j] = in[i+4*j];
}
}
add_round_key(state, w, Nr);
for (r = Nr-1; r >= 1; r--) {
inv_shift_rows(state);
inv_sub_bytes(state);
add_round_key(state, w, r);
inv_mix_columns(state);
}
inv_shift_rows(state);
inv_sub_bytes(state);
add_round_key(state, w, 0);
for (i = 0; i < 4; i++) {
for (j = 0; j < Nb; j++) {
out[i+4*j] = state[Nb*i+j];
}
}
}