-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathBoutOnsetDifferentiation.m
234 lines (207 loc) · 8.87 KB
/
BoutOnsetDifferentiation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
% Emily Mackevicius 1/14/2015, heavily copied from Hannah Payne's code
% which builds off Ila Fiete's model, with help from Michale Fee and Tatsuo
% Okubo.
% Code to generate figure EDF10 a-d, which shows bout onset differentiation
clear all;
%% Bout-onset differentiation: network parameters
% fixed parameters
seed = 1009;
p.seed = seed; % seed random number generator
p.n = 100; % n neurons
p.trainint = 10; % Time interval between inputs
p.nsteps = 500; % time-steps to simulate --
% each time-step is 1 burst duration.
p.pin = .01; % probability of external stimulation
% of at least one neuron at any time
k = 10; % number of training neurons
p.trainingInd = 1:k; % index of training neurons
p.beta = .13; % strength of feedforward inhibition
p.alpha = 30; % strength of neural adaptation
p.eta = .05; % learning rate parameter
p.epsilon = .14; % relative strength of heterosynaptic LTD
p.tau = 4; % time constant of adaptation
gammaStart = .01; % strength of recurrent inhibition
gammaSplit = .04; % increased strength of recurrent inhibition
% to induce splitting
wmaxStart = 1; % single synapse hard bound
wmaxSplit = 2; % single synapse hard bound to induce splitting
% (increased to encourage fewer stronger synapses)
mStart = 5; % desired number of synapses per neuron
% (wmax = Wmax/m)
Wmax = mStart*wmaxStart;% soft bound for weights of each neuron
mSplit = Wmax/wmaxSplit;% keep Wmax constant, change m & wmax
% to induce fewer stronger synapses
HowClamped = 10; % give training neurons higher threshold
HowOn = 10; % higher inputs to bout onset training neurons
HowOnPsylStart = HowOn; % inputs to protosyllable training neurons
HowOnPsylSplit = 1; % decrease input to protosyllable training neurons
% during splitting
% how many iterations to run before plotting
nIterEarly = 5; % early protosyllable stage
nIterProto = 100; % end of protosyllable stage
nIterPlotSplit1 = 30; % number of splitting iterations before plotting
% intermediate splitting phase
nIterPlotSplit2 = 500; % total number of splitting iterations
% parameters that change over development
protosyllableStage = [true(1,nIterProto) false(1,nIterPlotSplit2)];
splittingStage = [false(1,nIterProto) true(1,nIterPlotSplit2)];
gammas(protosyllableStage) = gammaStart;
gammas(splittingStage) = gammaSplit * sigmf(1:nIterPlotSplit2,[1/200 250]);
wmaxs(protosyllableStage) = wmaxStart;
wmaxs(splittingStage) = wmaxSplit;
ms(protosyllableStage) = mStart;
ms(splittingStage) = mSplit;
HowOnPsyl(protosyllableStage) = HowOnPsylStart;
HowOnPsyl(splittingStage) = HowOnPsylSplit;
% params for training inputs
CyclesPerBout = 5;
bOnOffset = 3;
%% Bout-onset differentiation: run simulation
% random initial weights
rng(seed);
w = 2*rand(p.n)*Wmax/p.n;
bOnOffsetVar = [1 randperm(20)]; % variable inter-bout-interval
% learning stages
for t = 1:(nIterProto+nIterPlotSplit2)
p.w = w;
% set parameters that change over development
p.gamma = gammas(t);
p.wmax = wmaxs(t);
p.m = ms(t);
% Construct input
Input = -HowClamped*ones(k, p.nsteps); % clamp training neurons
bOnOffsetVar = [1 randperm(20)]; % variable inter-bout-interval
% initializing
indPsyl = []; indBstart = []; indOff = []; prevPsylEnd = 1;
for i = 1:(p.nsteps/CyclesPerBout/p.trainint)
istart = (i-1)*CyclesPerBout*p.trainint+1+bOnOffsetVar(i)+bOnOffset;
indBstart = [indBstart istart-bOnOffset]; % bout onset times
indPsyl = [indPsyl ...
istart istart+p.trainint istart+2*p.trainint]; % 3psyls/bout
indOff = [indOff ...
prevPsylEnd:(istart-bOnOffset-1)]; % will clamp all neurons
% between bouts
prevPsylEnd = istart+3*p.trainint; % keep track of when bout ends,
% to clamp neurons between bouts
end
indPsyl = indPsyl(indPsyl<=p.nsteps);
indBstart = indBstart(indBstart<=p.nsteps);
Input(1:k/2,indBstart) = HowOn; % input to bout onset neurons
Input((k/2+1):k,indPsyl) = HowOnPsyl(t); % input to psyl neurons
bdyn = double(rand(p.n,p.nsteps)>=(1-p.pin)); % Random activation
bdyn(1:k,:) = Input;
bdyn(:,indOff) = -HowClamped; % clamp all neurons between bouts
p.input = bdyn;
% run one iteration
[w xdyn] = HVCIter(p);
% save certain iterations for plotting later
switch t
case nIterEarly
wEarly = w;
xdynEarly = xdyn;
trainingNeuronsEarly{1}.tind = indBstart+bOnOffset;
trainingNeuronsEarly{2}.tind = ...
setdiff(indPsyl, indBstart+bOnOffset);
case nIterProto;
wProto = w;
xdynProto = xdyn;
trainingNeuronsProto{1}.tind = indBstart+bOnOffset;
trainingNeuronsProto{2}.tind = ...
setdiff(indPsyl, indBstart+bOnOffset);
case nIterProto + nIterPlotSplit1;
wSplit1 = w;
xdynSplit1 = xdyn;
trainingNeuronsSplit1{1}.tind = indBstart+bOnOffset;
trainingNeuronsSplit1{2}.tind = ...
setdiff(indPsyl, indBstart+bOnOffset);
case nIterProto + nIterPlotSplit2;
wSplit2 = w;
xdynSplit2 = xdyn;
trainingNeuronsSplit2{1}.tind = indBstart+bOnOffset;
trainingNeuronsSplit2{2}.tind = ...
setdiff(indPsyl, indBstart+bOnOffset);
end
end
%% Bout-onset differentiation: plotting parameters
figure(2)
isEPS = 0;
clf
set(gcf, 'color', ones(1,3));
if isEPS
PlottingParams.msize = 8; % change to what is best for EPS figure
PlottingParams.linewidth = .25;
set(0,'defaultAxesFontName', 'Arial')
set(0,'defaultTextFontName', 'Arial')
PlottingParams.labelFontSize = 7;
set(gcf, 'units','centimeters', 'position', [5 5 13.5 6])
else
PlottingParams.msize = 10;
PlottingParams.linewidth = .25;
PlottingParams.labelFontSize = 7;
end
PlottingParams.SeedColor = [.95 .5 1];
PlottingParams.Syl1Color = [0 0 1];
PlottingParams.Syl2Color = [1 0 0];
PlottingParams.Syl1BarColor = [0 0 1];
PlottingParams.Syl2BarColor = [1 0 0];
PlottingParams.numFontSize = 5;
PlottingParams.wplotmin = 0;
PlottingParams.wplotmax = 2; % this should be wmaxSplit
PlottingParams.wprctile = 0; % plot all weights above this percentile.
PlottingParams.totalPanels = 4;
PlottingParams.thisPanel = 1;
PlottingParams.sortby = 'weightMatrix';
%% Bout-onset differentiation: plotting early network activity
trainingNeuronsEarly{1}.nIDs = 1:k/2;
trainingNeuronsEarly{2}.nIDs = (k/2+1):k;
trainingNeuronsEarly{1}.candLat = (-bOnOffset+1):p.trainint;
trainingNeuronsEarly{2}.candLat = 1:p.trainint;
trainingNeuronsEarly{1}.thres = 4;
trainingNeuronsEarly{2}.thres = 6;
PlottingParams.thisPanel = 1;
PlottingParams.Hor = 0;
pp1 = PlottingParams;
pp1.Syl1BarColor = [1 1 1];
pp1.Syl2BarColor = [.5 .5 .5];
plotHVCnet_boutOnset(wEarly, xdynEarly, trainingNeuronsEarly, pp1)
PlottingParams.Hor = 1;
%% Bout-onset differentiation: plotting protosyllable
trainingNeuronsProto{1}.nIDs = 1:k/2;
trainingNeuronsProto{2}.nIDs = (k/2+1):k;
trainingNeuronsProto{1}.candLat = (-bOnOffset+1):p.trainint;
trainingNeuronsProto{2}.candLat = 1:p.trainint;
trainingNeuronsProto{1}.thres = 4;
trainingNeuronsProto{2}.thres = 6;
PlottingParams.thisPanel = 2;
plotHVCnet_boutOnset(wProto, xdynProto, ...
trainingNeuronsProto, PlottingParams)
%% Bout-onset differentiation: plotting splitting stages
trainingNeuronsSplit1{1}.nIDs = 1:k/2;
trainingNeuronsSplit1{2}.nIDs = (k/2+1):k;
trainingNeuronsSplit1{1}.candLat = (-bOnOffset+1):p.trainint;
trainingNeuronsSplit1{2}.candLat = 1:p.trainint;
trainingNeuronsSplit1{1}.thres = 4;
trainingNeuronsSplit1{2}.thres = 6;
PlottingParams.thisPanel = 3;
plotHVCnet_boutOnset(wSplit1, xdynSplit1, ...
trainingNeuronsSplit1, PlottingParams)
trainingNeuronsSplit2{1}.nIDs = 1:k/2;
trainingNeuronsSplit2{2}.nIDs = (k/2+1):k;
trainingNeuronsSplit2{1}.candLat = (-bOnOffset+1):p.trainint;
trainingNeuronsSplit2{2}.candLat = 1:p.trainint;
trainingNeuronsSplit2{1}.thres = 4;
trainingNeuronsSplit2{2}.thres = 6;
PlottingParams.thisPanel = 4;
plotHVCnet_boutOnset(wSplit2, xdynSplit2, ...
trainingNeuronsSplit2, PlottingParams)
%% Bout-onset differentiation: exporting
if isEPS
cd('Z:\Fee_lab\Papers\HVC_differentiation\Figures\EPS_files');
export_fig(2,'Figure5h.eps','-transparent','-eps','-painters');
else
figw = 6;
figh = 4;
set(gcf, 'color', [1 1 1],...
'papersize', [figw figh], 'paperposition', [0 0 figw*.9 figh])
%print -dmeta -r150
end