-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathget_robot.py
212 lines (175 loc) · 8.6 KB
/
get_robot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#|
#| Copyright (C) 2021-2023 Learning Algorithms and Systems Laboratory, EPFL, Switzerland
#| Authors: Harshit Khurana (maintainer)
#|
#| email: [email protected]
#|
#| website: lasa.epfl.ch
#|
#| This file is part of iam_dual_arm_control.
#| This work was supported by the European Community's Horizon 2020 Research and Innovation
#| programme (call: H2020-ICT-09-2019-2020, RIA), grant agreement 871899 Impact-Aware Manipulation.
#|
#| iam_dual_arm_control is free software: you can redistribute it and/or modify it under the terms
#| of the GNU General Public License as published by the Free Software Foundation,
#| either version 3 of the License, or (at your option) any later version.
#|
#| iam_dual_arm_control is distributed in the hope that it will be useful,
#| but WITHOUT ANY WARRANTY; without even the implied warranty of
#| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#| GNU General Public License for more details.
#|
import pybullet as p
import pybullet_data
import numpy as np
import math
from functions import get_stein_divergence
class sim_robot_env:
def __init__(self, use_sim, box_object):
self.physicsClient = p.connect(p.GUI)
p.setAdditionalSearchPath(pybullet_data.getDataPath())
p.resetSimulation()
plane = p.loadURDF("plane_transparent.urdf")
p.changeVisualShape(plane, -1, rgbaColor=[0, 0, 0, 0])
startPos = [0, 0, 0]
startOrientation = p.getQuaternionFromEuler([0, 0, 0])
p.setGravity(0, 0, -9.81)
p.setTimeStep(0.005)
p.setRealTimeSimulation(use_sim)
p.resetDebugVisualizerCamera(cameraDistance=1.60, cameraYaw=200, cameraPitch=-25.00,
cameraTargetPosition=[0, 0, 0])
self.robot = p.loadURDF("kuka_iiwa/model.urdf",
startPos, startOrientation, useFixedBase=1)
'''
Create a scene too
the environment with the box and table for the different scenarios I would like in the simulation
'''
self.box = p.loadURDF("descriptions/robot_descriptions/objects_description/objects/simple_box.urdf",
[0.5, 0.3, 0.5], globalScaling=1.0, useFixedBase=0)
tableOrientation = p.getQuaternionFromEuler([0, 0, math.pi / 2])
self.table = p.loadURDF("descriptions/robot_descriptions/objects_description/objects/table.urdf",
[1.15, 0.45, 0.0], tableOrientation, globalScaling=1.0, useFixedBase=1)
p.changeDynamics(self.box, -1, mass=box_object.mass, linearDamping=0.04, angularDamping=0.04, rollingFriction=0.01,
spinningFriction=0.02, restitution=0, lateralFriction=0.1)
p.changeDynamics(self.table, 1, mass=10, linearDamping=0.04, angularDamping=0.04, rollingFriction=0.01,
spinningFriction=0.02, restitution=0, lateralFriction=0.1)
self.numJoints = p.getNumJoints(self.robot)
self.ee_id = 6
self.zeros = [0.0] * 7
self.relative_ee = [0, 0, 0]
self.q_dot_ul = np.array([1.48, 1.48, 1.74, 1.30, 2.26, 2.35, 2.35])
self.q_dot_ll = -np.array([1.48, 1.48, 1.74, 1.30, 2.26, 2.35, 2.35])
self.q_ll = -np.array([2.96, 2.09, 2.96, 2.09, 2.96, 2.09, 3.05])
self.q_ul = np.array([2.96, 2.09, 2.96, 2.09, 2.96, 2.09, 3.05])
def step(self):
p.stepSimulation()
def get_IK_joint_position(self, x):
return p.calculateInverseKinematics(self.robot, self.ee_id, x)
def set_to_joint_position(self, q):
for i in range(self.numJoints):
p.resetJointState(self.robot, i, q[i])
def move_with_joint_velocities(self, q_dot):
p.stepSimulation()
p.setJointMotorControlArray(self.robot, range(self.numJoints), controlMode=p.VELOCITY_CONTROL,
targetVelocities=q_dot.tolist())
def move_to_joint_position(self, q, q_dot):
p.stepSimulation()
for i in range(self.numJoints):
p.setJointMotorControl2(self.robot, jointIndex=i, controlMode=p.POSITION_CONTROL,
targetPosition=q[i],
targetVelocity=q_dot[i],
force=500,
positionGain=1,
velocityGain=1)
def get_joint_position(self):
joint_state = p.getJointStates(self.robot, range(self.numJoints))
joint_position = [state[0] for state in joint_state]
return joint_position
def get_ee_position(self):
return p.getLinkState(self.robot, self.ee_id)[0]
def get_trans_jacobian(self):
q = self.get_joint_position()
jac_t_fn, jac_r_fn = p.calculateJacobian(
self.robot, self.ee_id, self.relative_ee, q, self.zeros, self.zeros)
return jac_t_fn
def get_rot_jacobian(self):
q = self.get_joint_position()
jac_t_fn, jac_r_fn = p.calculateJacobian(
self.robot, self.ee_id, self.relative_ee, q, self.zeros, self.zeros)
return jac_r_fn
def get_trans_jacobian_specific(self, q_specific):
jac_t_fn, jac_r_fn = p.calculateJacobian(
self.robot, self.ee_id, self.relative_ee, q_specific, self.zeros, self.zeros)
return jac_t_fn
def get_rot_jacobian_specific(self, q_specific):
jac_t_fn, jac_r_fn = p.calculateJacobian(
self.robot, self.ee_id, self.relative_ee, q_specific, self.zeros, self.zeros)
return jac_r_fn
def get_mass_matrix_specific(self, q):
return p.calculateMassMatrix(self.robot, q)
def get_mass_matrix(self):
q = self.get_joint_position()
return p.calculateMassMatrix(self.robot, q)
def get_inertia_matrix_specific(self, q):
J = self.get_trans_jacobian_specific(q)
M = self.get_mass_matrix_specific(q)
return np.array(np.linalg.inv(np.array(J) @ np.linalg.inv(np.array(M)) @ np.array(J).T))
def get_inertia_matrix(self):
q = self.get_joint_position()
J = self.get_trans_jacobian()
M = self.get_mass_matrix()
return np.array(np.linalg.inv(np.array(J) @ np.linalg.inv(np.array(M)) @ np.array(J).T))
def get_stein_divergence_joint_gradient(self, g_current, A_d):
num_joints = self.numJoints
dg_dq = np.zeros((num_joints, 1))
dq = 0.01
q_current = self.get_joint_position()
for l in range(num_joints):
q_new = q_current.copy()
q_new[l] = q_new[l] + dq
jac_t_fn = self.get_trans_jacobian_specific(q_new)
mass_fn = p.calculateMassMatrix(self.robot, q_new)
A_new = np.array(np.linalg.inv(
np.array(jac_t_fn) @ np.linalg.inv(np.array(mass_fn)) @ np.array(jac_t_fn).T))
g_new = get_stein_divergence(A_new, A_d)
dg_dq[l] = ((g_new - g_current) / dq)
return dg_dq
def get_ee_velocity_current(self):
return p.getLinkState(self.robot, self.ee_id, computeLinkVelocity=True)[6]
def get_directional_inertia_gradient(self, direction):
num_joints = self.numJoints
dL_dq_dir = np.zeros((num_joints, 1))
dq = 0.001
q_current = self.get_joint_position()
A_current = self.get_inertia_matrix_specific(q_current)
for l in range(num_joints):
q_new = q_current.copy()
q_new[l] = q_new[l] + dq
A_new = self.get_inertia_matrix_specific(q_new)
dL_dq = (A_new - A_current) / dq
dL_dq_dir[l] = direction.T @ dL_dq @ direction
return dL_dq_dir
def get_directional_inertia_gradient_SPD(self, direction):
return 0
def get_velocity_manipulability_metric(self):
jac = self.get_trans_jacobian()
m = np.sqrt(np.linalg.det(np.array(jac) @ np.array(jac).T))
return m
def reset_box(self, box_position, box_orientation):
p.resetBasePositionAndOrientation(
self.box, box_position, box_orientation)
return 0
def get_box_position_orientation(self):
return p.getBasePositionAndOrientation(self.box)
def get_box_velocity(self):
return p.getBaseVelocity(self.box)[0]
def get_box_speed(self):
return np.linalg.norm(np.array(p.getBaseVelocity(self.box)[0]))
def get_collision_points(self):
p.performCollisionDetection(self.physicsClient)
return np.array(p.getContactPoints(self.robot, self.box), dtype=object)
def get_collision_position(self):
collision_points = self.get_collision_points()
return collision_points[0][5]
def get_mesh_vertices(self):
return p.getMeshData(self.box)