diff --git a/codes/classical/analog/other/real_block.yml b/codes/classical/analog/other/real_block.yml index 6f56e59d0..62c0c0ef3 100644 --- a/codes/classical/analog/other/real_block.yml +++ b/codes/classical/analog/other/real_block.yml @@ -8,8 +8,11 @@ physical: reals logical: reals name: 'Real-number block code' -introduced: '\cite{doi:10.1109/TCOM.1983.1095820,doi:10.1109/JSAC.1984.1146063}' +introduced: '\cite[pg. 321]{preset:MacSlo}\cite{doi:10.1109/TCOM.1983.1095820,doi:10.1109/JSAC.1984.1146063}' +alternative_names: + - 'Real code' +# MacSlo description: | A block code encoding a \(k\)-dimensional vector of real or complex numbers into an \(n\)-dimensional real or complex vector space. diff --git a/codes/quantum/qubits/small_distance/quantum_repetition.yml b/codes/quantum/qubits/small_distance/quantum_repetition.yml index 7f853b4fb..27c1bd3fe 100644 --- a/codes/quantum/qubits/small_distance/quantum_repetition.yml +++ b/codes/quantum/qubits/small_distance/quantum_repetition.yml @@ -56,7 +56,13 @@ realizations: - 'Trapped ions: 3-qubit bit-flip code by Wineland group \cite{doi:10.1038/nature03074}, and 3-qubit phase-flip algorithm implemented in 3 cycles on high fidelity gate operations \cite{doi:10.1126/science.1203329}. Both phase- and bit-flip codes for 31 qubits and their stabilizer measurements have been realized by Quantinuum \cite{arxiv:2305.03828}. Multiple rounds of Steane error correction \cite{arxiv:2312.09745}.' - - 'Superconducting circuits: 3-qubit phase-flip and bit-flip code by Schoelkopf group \cite{arxiv:1004.4324,arxiv:1109.4948}; 3-qubit bit-flip code \cite{arxiv:1411.5542}; 3-qubit phase-flip code up to 3 cycles of error correction \cite{arxiv:1508.01388}; IBM 15-qubit device \cite{arxiv:1709.00990}; IBM Rochester device using 43-qubit code \cite{arxiv:2004.11037}; Google system performing up to 8 error-correction cycles on 5 and 9 qubits \cite{arxiv:1411.7403}; Google Quantum AI Sycamore utilizing up to 11 physical qubits and running 50 correction rounds \cite{arxiv:2102.06132}; Google Quantum AI Sycamore utilizing up to 25 qubits for comparison of logical error scaling with a quantum code \cite{arxiv:2207.06431} (see also \cite{arxiv:2211.04728}). Google Quantum AI follow-up experiment on codes up to (classical) distance 29, demonstrating exponential suppression to an error floor of \(10^{-10}\) \cite{arxiv:2408.13687}. Ising-model Nishimori phase transition realized for GHZ states on 54 qubits on a 127 qubit IBM device \cite{arxiv:2309.02863}. GHZ state on 75 qubits made on an IBM device \cite{arxiv:2411.14638}. Implementation of planar decoder for codes with distances between 3 and 11 on 72-qubit superconducting device \cite{arxiv:2501.03582}.' + - | + Superconducting circuits: 3-qubit phase-flip and bit-flip code by Schoelkopf group \cite{arxiv:1004.4324,arxiv:1109.4948}; 3-qubit bit-flip code \cite{arxiv:1411.5542}; 3-qubit phase-flip code up to 3 cycles of error correction \cite{arxiv:1508.01388}; IBM 15-qubit device \cite{arxiv:1709.00990}; IBM Rochester device using 43-qubit code \cite{arxiv:2004.11037}; Google system performing up to 8 error-correction cycles on 5 and 9 qubits \cite{arxiv:1411.7403}; Google Quantum AI Sycamore utilizing up to 11 physical qubits and running 50 correction rounds \cite{arxiv:2102.06132}; Google Quantum AI Sycamore utilizing up to 25 qubits for comparison of logical error scaling with a quantum code \cite{arxiv:2207.06431} (see also \cite{arxiv:2211.04728}). + Google Quantum AI follow-up experiment on codes up to (classical) distance 29, demonstrating exponential suppression to an error floor of \(10^{-10}\) \cite{arxiv:2408.13687}. + Ising-model Nishimori phase transition realized for GHZ states on 54 qubits on a 127 qubit IBM device \cite{arxiv:2309.02863}. + GHZ state on 75 qubits made on an IBM device \cite{arxiv:2411.14638}. + Implementation of planar decoder for codes with distances between 3 and 11 on 72-qubit superconducting device \cite{arxiv:2501.03582}. + Lattice surgery on the surface-17 code has been realized by splitting the code into two repetition codes by the Wallraff group \cite{arxiv:2501.04612}. - 'Continuous error correction protocols have been implemented on a 3-qubit superconducting qubit device \cite{arxiv:2107.11398}.' - 'Semiconductor spin-qubit devices: 3-qubit devices at RIKEN \cite{arxiv:2201.08581} and Delft \cite{arxiv:2202.11530}.' - 'Nitrogen-vacancy centers in diamond: 3-qubit phase-flip code \cite{arxiv:1309.6424,doi:10.1038/s42005-022-00875-6} (see also Ref. \cite{arxiv:1309.5452}).' diff --git a/codes/quantum/qubits/stabilizer/topological/surface/2d_surface/surface-17.yml b/codes/quantum/qubits/stabilizer/topological/surface/2d_surface/surface-17.yml index 6984df347..e1de04186 100644 --- a/codes/quantum/qubits/stabilizer/topological/surface/2d_surface/surface-17.yml +++ b/codes/quantum/qubits/stabilizer/topological/surface/2d_surface/surface-17.yml @@ -42,6 +42,7 @@ realizations: \cite{arxiv:2112.03708} and on the Zuchongzhi 2.1 superconducting quantum processor \cite{arxiv:2112.13505}. Both experimental error rates are above the \hyperref[topic:pseudo-threshold]{pseudo-threshold} for this code relative to a single qubit; see Physics viewpoint for a summary \cite{doi:10.1103/Physics.15.103}. Magic state have been created on the latter processor \cite{arxiv:2305.15972}. + Lattice surgery on the surface-17 code has been realized by splitting the code into two repetition codes by the Wallraff group \cite{arxiv:2501.04612}. relations: parents: