-
Notifications
You must be signed in to change notification settings - Fork 2
/
cloth.go
164 lines (139 loc) · 4.69 KB
/
cloth.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
package main
import (
"image/color"
"math"
"gioui.org/f32"
"gioui.org/layout"
"gioui.org/op/clip"
"gioui.org/op/paint"
)
const lineWidth = 0.6
type Cloth struct {
constraints []*Constraint
particles []*Particle
width int
height int
spacing int
friction float64
color color.NRGBA
isInitialized bool
}
// NewCloth creates a new cloth which dimension is calculated based on
// the application window width and height and the spacing between the sticks.
func NewCloth(width, height, spacing int, col color.NRGBA) *Cloth {
return &Cloth{
width: width,
height: height,
spacing: spacing,
color: col,
}
}
// Init initializes the cloth where the `posX` and `posY`
// are the {x, y} position of the cloth's the top-left side.
func (c *Cloth) Init(posX, posY int, hud *Hud) {
clothX := c.width / c.spacing
clothY := c.height / c.spacing
// Skip the cloth initialization when the window is resized.
if c.isInitialized {
return
}
for y := 0; y <= clothY; y++ {
for x := 0; x <= clothX; x++ {
px := posX + x*c.spacing
py := posY + y*c.spacing
particle := NewParticle(float64(px), float64(py), hud, c.color)
particle.friction = c.friction
// Connect the particles with sticks but skip the particles from the first column and row.
// We connect the particles from the second row and column onward to the particles before.
if y != 0 {
top := c.particles[x+(y-1)*(clothX+1)]
constraint := NewConstraint(top, particle, float64(c.spacing), c.color)
c.constraints = append(c.constraints, constraint)
}
if x != 0 {
left := c.particles[len(c.particles)-1]
constraint := NewConstraint(left, particle, float64(c.spacing), c.color)
c.constraints = append(c.constraints, constraint)
}
pinX := x % (clothX / 10)
if y == 0 && pinX == 0 {
particle.pinX = true
}
c.particles = append(c.particles, particle)
}
}
c.isInitialized = true
}
// Update updates the cloth particles invoked on each frame event of the Gio internal window calls.
// The cloth contraints are solved by using the Verlet integration formulas.
func (cloth *Cloth) Update(gtx layout.Context, mouse *Mouse, hud *Hud, dt float64) {
dragForce := float32(mouse.getForce() * 0.1)
clothColor := color.NRGBA{R: 0x55, A: 0xff}
// Convert the RGB color to HSL based on the applied force over the mouse focus area.
col := LinearFromSRGB(clothColor).HSLA().Lighten(dragForce).RGBA().SRGB()
for _, p := range cloth.particles {
p.Update(gtx, mouse, hud, dt)
}
for _, c := range cloth.constraints {
if c.p1.isActive && c.p2.isActive {
c.Update(gtx, cloth, mouse)
}
}
var path clip.Path
path.Begin(gtx.Ops)
// For performance reasons we draw the sticks as a single clip path instead of multiple clips paths.
// The performance improvement is considerable compared of drawing each clip path separately.
for _, c := range cloth.constraints {
if c.p1.isActive && c.p2.isActive {
a := f32.Pt(float32(c.p1.x), float32(c.p1.y))
b := f32.Pt(float32(c.p2.x), float32(c.p2.y))
addSegment(&path, a, b, lineWidth)
}
}
// We are using `clip.Outline` instead of `clip.Stroke`, because the performance gains
// are much better, but we need to draw the full outline of the stroke.
paint.FillShape(gtx.Ops, cloth.color, clip.Outline{
Path: path.End(),
}.Op())
// Here we are drawing the mouse focus area in a separate clip path,
// because the color used for highlighting the selected area
// should be different than the cloth's default color.
for _, c := range cloth.constraints {
if (c.p1.isActive && c.p1.highlighted) &&
(c.p2.isActive && c.p2.highlighted) {
c.color = color.NRGBA{R: col.R, A: col.A}
path.Begin(gtx.Ops)
a := f32.Pt(float32(c.p1.x), float32(c.p1.y))
b := f32.Pt(float32(c.p2.x), float32(c.p2.y))
addSegment(&path, a, b, lineWidth)
paint.FillShape(gtx.Ops, c.color, clip.Outline{
Path: path.End(),
}.Op())
}
}
}
// Reset resets the cloth to the initial state.
func (c *Cloth) Reset(startX, startY int, hud *Hud) {
c.constraints = nil
c.particles = nil
c.isInitialized = false
c.Init(startX, startY, hud)
}
func addSegment(p *clip.Path, a, b f32.Point, w float32) {
n := normal(a, b, w)
p.MoveTo(a.Add(n))
p.LineTo(b.Add(n))
p.LineTo(b.Sub(n))
p.LineTo(a.Sub(n))
p.Close()
}
// Calculate the scaled normal vector.
func normal(a, b f32.Point, w float32) f32.Point {
dir := b.Sub(a)
dir.X, dir.Y = +dir.Y, -dir.X
d := math.Hypot(float64(dir.X), float64(dir.Y))
if math.Abs(d) < 1e-5 {
return f32.Point{}
}
return dir.Mul(w / float32(d))
}