-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
84 lines (66 loc) · 2.79 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import cohere
import os
import ast
from dotenv import load_dotenv
load_dotenv()
co = cohere.Client(os.environ["CO_API_KEY"])
df = pd.read_parquet('embeddings_ecom.parquet')
# columns in data: name, description,price, cover_image
def display_item_card(item):
# desc = ast.literal_eval(item['description'])
st.markdown(
f"""
<div style="background-color:#f0f0f0; padding: 10px; border-radius: 10px; box-shadow: 0px 0px 10px 0px rgba(0,0,0,0.1); flex: 0 0 20%; margin: 10px;">
<h2 style="color:#333333; text-align:center; overflow: hidden; text-overflow: ellipsis; white-space: nowrap;">{item['brand']}</h2>
<img src="{item['img']}" style="display:block; margin:auto; width:150px; border-radius:5px;">
<p style="color:green;margin-top:2em;text-align:center; font-style: italic;">{item['title']}</p>
<p style="color:#333333; text-align:center; font-weight:bold;">Price: {item['Price']}</p>
</div>
""",
unsafe_allow_html=True
)
def get_embeddings(texts,model='embed-english-v3.0', input_type = 'search_query'):
output = co.embed(
model=model,
texts=texts,
input_type = input_type
)
return output.embeddings
def get_similarity(target,candidates):
# Turn list into array
candidates = np.array(candidates)
target = np.expand_dims(np.array(target),axis=0)
# Calculate cosine similarity
sim = cosine_similarity(target,candidates)
sim = np.squeeze(sim).tolist()
sort_index = np.argsort(sim)[::-1]
sort_score = [sim[i] for i in sort_index]
similarity_scores = zip(sort_index,sort_score)
# Return similarity scores
return similarity_scores
def search(new_query):
# Get embeddings of the new query
new_query_embeds = get_embeddings([new_query])[0]
top_recommendations = list(get_similarity(new_query_embeds, df.query_embeds.tolist()))[:10]
print(top_recommendations)
returned_listings = [ df.iloc[i[0]] for i in top_recommendations ]
return pd.DataFrame(returned_listings)
# Streamlit UI
col1, col2, col3= st.columns(3)
with col1:
st.image('assets/searchy_logo.png', width = 100)
with col2:
st.markdown("# " + 'Safe Search 🔗')
st.markdown("""An advanced E-comm search engine (text+image enabled search).
This mockup is for a ecommerce store that sells female clothing""")
# Search functionality
search_query = st.text_input("Text Input", placeholder = "Search for items...", label_visibility = 'hidden')
# Filter items based on search query
filtered_df = search(search_query) if search_query else df
# Display card for each item
for index, item in filtered_df.iloc[:20].iterrows():
display_item_card(item)