From 6cc0fdcb0da4a0aaa6edaaba430019b0b8898873 Mon Sep 17 00:00:00 2001 From: Alexander Schlaich Date: Mon, 2 Oct 2023 21:48:51 +0200 Subject: [PATCH] Add new tutorial on ICC/ELC/ELC-IC Co-authored-by: keerthirk --- doc/tutorials/CMakeLists.txt | 1 + doc/tutorials/electrodes/CMakeLists.txt | 26 + doc/tutorials/electrodes/NotesForTutor.md | 31 + .../electrodes/electrodes_part1.ipynb | 500 +++++++ .../electrodes/electrodes_part2.ipynb | 1240 +++++++++++++++++ testsuite/scripts/tutorials/CMakeLists.txt | 2 + .../scripts/tutorials/test_electrodes_1.py | 40 + .../scripts/tutorials/test_electrodes_2.py | 68 + 8 files changed, 1908 insertions(+) create mode 100644 doc/tutorials/electrodes/CMakeLists.txt create mode 100644 doc/tutorials/electrodes/NotesForTutor.md create mode 100644 doc/tutorials/electrodes/electrodes_part1.ipynb create mode 100644 doc/tutorials/electrodes/electrodes_part2.ipynb create mode 100644 testsuite/scripts/tutorials/test_electrodes_1.py create mode 100644 testsuite/scripts/tutorials/test_electrodes_2.py diff --git a/doc/tutorials/CMakeLists.txt b/doc/tutorials/CMakeLists.txt index 508bda4caf7..479f3491e53 100644 --- a/doc/tutorials/CMakeLists.txt +++ b/doc/tutorials/CMakeLists.txt @@ -114,6 +114,7 @@ add_subdirectory(visualization) add_subdirectory(ferrofluid) add_subdirectory(constant_pH) add_subdirectory(widom_insertion) +add_subdirectory(electrodes) configure_file(Readme.md ${CMAKE_CURRENT_BINARY_DIR} COPYONLY) configure_file(convert.py ${CMAKE_CURRENT_BINARY_DIR}) diff --git a/doc/tutorials/electrodes/CMakeLists.txt b/doc/tutorials/electrodes/CMakeLists.txt new file mode 100644 index 00000000000..4ba4352845b --- /dev/null +++ b/doc/tutorials/electrodes/CMakeLists.txt @@ -0,0 +1,26 @@ +# +# Copyright (C) 2020-2022 The ESPResSo project +# +# This file is part of ESPResSo. +# +# ESPResSo is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# ESPResSo is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see . +# + +configure_tutorial_target(TARGET tutorial_electrodes DEPENDS + electrodes_part1.ipynb electrodes_part2.ipynb) + +nb_export(TARGET tutorial_electrodes SUFFIX "1" FILE "electrodes_part1.ipynb" + HTML_RUN) +nb_export(TARGET tutorial_electrodes SUFFIX "2" FILE "electrodes_part2.ipynb" + HTML_RUN) diff --git a/doc/tutorials/electrodes/NotesForTutor.md b/doc/tutorials/electrodes/NotesForTutor.md new file mode 100644 index 00000000000..3c87bb760b8 --- /dev/null +++ b/doc/tutorials/electrodes/NotesForTutor.md @@ -0,0 +1,31 @@ +# Simulations of electrodes in ESPResSO + +## Physics learning goals + +### Part 1 + +* Give a short recap about image charges, dielectric media, ... +* Nano-confinement can exhibit a broad variety of interesting effects that can + be studied with computer simulations! +* Electrostatics in nano-confinement: concept of a Green's function +* Discrete image charges: ICC* + +## Part 2 +* Nano-confined charged liquids as super-capacitors +* Advanced Poisson-Boltzmann theory: Gouy-Chapman, Graham equation +* Limits of PB: finite ion size, correlations, ... +* Coarse-grained view: Surface charge density via ELC-IC +* How to apply a potential difference in the simulation. + +After the tutorial, students should be able to: + +* Explain how ESPResSo implements 2d periodic electrostatics. +* What are the limitations of the mean-field PB description. +* How to evaluate the differential capacitance from simulations. +* The basic idea of super-ionic states. + +## ESPResSo learning goals + +* Setting up ELC, ICC and ELC-IC simulations +* Why is choosing the ELC-gap a crucial parameter? +* Setting up observables and accumulators for the density profiles. diff --git a/doc/tutorials/electrodes/electrodes_part1.ipynb b/doc/tutorials/electrodes/electrodes_part1.ipynb new file mode 100644 index 00000000000..06146bdf413 --- /dev/null +++ b/doc/tutorials/electrodes/electrodes_part1.ipynb @@ -0,0 +1,500 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Basic simulation of electrodes in ESPResSo part I:\n", + "# Ion-pair in a narrow metallic slit-like confinement using ICC $\\star$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "\n", + "To work with this tutorial, you should be familiar with the following topics:\n", + "\n", + "- Setting up and running simulations in ESPResSo - creating particles,\n", + " incorporating interactions.\n", + " If you are unfamiliar with this, you can go through the respective tutorial\n", + " in the `lennard_jones` folder.\n", + "- Basic knowledge of classical electrostatics:\n", + " Dipoles, surface and image charges\n", + "- Reduced units, as described in the **ESPResSo** [user guide](https://espressomd.github.io/doc/introduction.html#on-units)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction\n", + "\n", + "This tutorial introduces some basic concepts for simulating charges close to an\n", + "electrode interface using **ESPResSo**.\n", + "In this first part, we focus on the interaction of a single ion pair confined in\n", + "a narrow metallic slit pore using the ICC $\\star$-algorithm\n", + "[1] for the computation of the surface polarization.\n", + "Here, we verify the strong deviation from a Coulomb-like interaction:\n", + "In metallic confinement, the ion pair interaction energy is screened\n", + "exponentially due to the presence of induced charges on the slit walls.\n", + "[2] " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Theoretical Background \n", + "\n", + "The normal component of electric field across a surface dividing two dielectric\n", + "media yields a discontinuity, which can be expressed in terms of a finite\n", + "surface charge density \n", + "$(\\epsilon_1\\vec{E}_1 - \\epsilon_2\\vec{E}_2).\\hat{n}=-\\sigma(\\vec{r})$.\n", + "This expression describes the jump in the electric field across the material\n", + "interface going from a dielectric medium $\\epsilon_1$ to another one,\n", + "$\\epsilon_2$.\n", + "\n", + "While in the case of non-polarizable materials ($\\epsilon_1 = \\epsilon_2 = 1$),\n", + "this jump is only related to surface charges and dielectric contrast and the\n", + "potential is continuous across the interface, for polarizable materials also the\n", + "polarization field $\\vec{P}$ will give a contribution. \n", + "In order to solve the problem in presence of a jump of the dielectric constant\n", + "across an interface, one must know the electric fields on both sides. \n", + "\n", + "Another approach is to replace this two domain problem by an equivalent one\n", + "without the explicit presence of the dielectric jump.\n", + "This is achieved by introducing an additional fictitious charge i.e. an induced\n", + "charge density $\\sigma_{ind}$ on the surface. \n", + "With this well known \"method of image charges\", it is sufficient to know the\n", + "electric field on one side of the interface. \n", + "**ESPResSo** provides the \"Induced Charge Calculation with fast Coulomb Solvers\"\n", + "*(ICC $\\star$) algorithm [1] which employs a numerical\n", + "*scheme for solving the boundary integrals and the induced charge. \n", + "\n", + "*Note*: Apart from ICC $\\star$, **ESPResSo** offers the \"Electrostatic layer\n", + "correction with image charges\" (ELC-IC) method [3], for\n", + "planar 2D+h partially periodic systems with dielectric interfaces.\n", + "The tutorial on *Basic simulation of electrodes in ESPResSo part II*\n", + "addresses this in detail.\n", + "\n", + "The Green's function for two point charges in a dielectric slab can be solved\n", + "analytically [2].\n", + "In the metallic limit the dielectric contrast is\n", + "$$ \\Delta = \\frac{\\epsilon_1 - \\epsilon_2} {\\epsilon_1 + \\epsilon_2} = -1 .$$\n", + "If the ions are placed in the center of the slab of width $w$ and a distance $r$\n", + "away from each other, the Green's function accounting for all image charges\n", + "simplifies to [4] \n", + "$$ 4 \\pi \\epsilon_0 \\epsilon_r w \\mathcal{G}(x) = \\sum_{n=-\\infty}^\\infty \\frac{-1^n}{\\sqrt{x^2+n^2}} ,$$\n", + "where we have introduced the scaled separation $x = r/w$.\n", + "\n", + "For $x\\to 0$ the term for $n = 0$ dominates and one recovers\n", + "$$ \\lim_{x\\to 0} 4 \\pi \\epsilon_0 \\epsilon_r w \\mathcal{G}(x) = \\frac{1}{x},$$\n", + "which is the classical Coulomb law.\n", + "Contrary, for large distances $x \\to \\infty$ one finds\n", + "$$ \\lim_{x\\to \\infty} 4 \\pi \\epsilon_0 \\epsilon_r w \\mathcal{G}(x) = \\sqrt{\\frac{8}{x}} e^{-\\pi x},$$\n", + "i.e. the interaction decays exponentially.\n", + "Such screened electrostatic interactions might explain unusual features\n", + "concerning the nano-confined ionic liquids employed for supercapacitors referred\n", + "to 'super-ionic states'.\n", + "\n", + "We will explore this interaction numerically using ICC $^\\star$ in the following." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2D+h periodic systems, dielectric interfaces and Induced Charge Computation with ICC $\\star$\n", + "\n", + "Partially periodic ionic systems with dielectric interfaces are very often\n", + "encountered in the study of energy materials or bio-macromolecular and membrane\n", + "studies. \n", + "These systems usually exhibit a confinement along one ($z$) direction, where the\n", + "confining boundary or interface imposes a dielectric discontinuity, while the\n", + "other $x$-$y$ directions are treated periodic. \n", + "To such a partially periodic system, we combine the efficient scaling behavior\n", + "of three-dimensional mesh-based solvers (typically\n", + "$\\mathcal{O}(N \\log N)$ for P3M) with the Electrostatic Layer Correction (ELC)\n", + "[3].\n", + "The latter corrects for the contributions from the periodic images in the\n", + "constrained direction and its numerical cost grows linear with the number of\n", + "point charges $N$, hence the performance overall depends on the underlying $3-D$\n", + "Coulomb solver.\n", + "The method relies on an empty vacuum slab in the simulation box in the\n", + "$z$-direction perpendicular to slab.\n", + "While in theory this can become relatively small (typically 10% of the box\n", + "length), its choice in practice strongly affects the performance due to the\n", + "tuning of the P3M parameters to obtain the desired accuracy.\n", + "\n", + "We furthermore employ ICC $\\star$ to solve the Poisson equation for an\n", + "inhomogeneous dieletric:\n", + "$$ \\nabla (\\epsilon \\nabla \\phi)=-4\\pi \\rho$$\n", + "\n", + "The image charge formalism can be derived as follows:\n", + "- Integrate the latter expression at the boundary over an infinitesimally wide\n", + "pillbox, which will give the induced surface charge in this infinitesimal\n", + "segment as (Gauss law):\n", + "$$q_{ind} = \\frac{1}{4\\pi} \\oint\\, dA\\, \\cdot \\epsilon\\nabla \\phi = \\frac{A}{4\\pi}(\\epsilon_1\\vec{E}_1 \\cdot \\hat{n}-\\epsilon_2\\vec{E}_2 \\cdot\\hat{n})$$\n", + "- The electric field at the closest proximity of the interface, $\\vec{E}_{1/2}$,\n", + "can be written as a sum of electric field contributions from the surface charge\n", + "$\\sigma$ and the external electric field $\\vec{E}$:\n", + "$$ \\vec{E}_{1/2} =\\vec{E} + 2\\pi/\\epsilon_1\\sigma\\hat{n} $$\n", + "- Combining this with the previous expression, the induced charge can be written in terms of the dielectric mismatch $\\Delta$ and the electric field as:\n", + "$$\\sigma = \\frac{\\epsilon_1}{2\\pi} \\frac{\\epsilon_1-\\epsilon_2}{\\epsilon_1+\\epsilon_2}\\vec{E} \\cdot \\hat{n} =: \\frac{\\epsilon_1}{2\\pi} \\Delta \\, \\vec{E} \\cdot \\hat{n}$$\n", + "\n", + "\n", + "The basic idea of the ICC $^\\star$ formalism now is to employ a discretization\n", + "of the surface by means of spatially fixed ICC particles.\n", + "The charge of each ICC particle is not fixed but rather iterated using the\n", + "expressions for $\\vec{E}_{1/2}$ and $\\sigma$ above until a self-consistent\n", + "solution is found." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. System setup \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We first import all ESPResSo features and external modules." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import espressomd\n", + "import numpy as np\n", + "import espressomd.electrostatics\n", + "import espressomd.electrostatic_extensions\n", + "from espressomd.interactions import *\n", + "\n", + "espressomd.assert_features(['ELECTROSTATICS'])\n", + "\n", + "import matplotlib.pyplot as plt\n", + "from scipy.special import *\n", + "from tqdm import tqdm" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to define the system dimensions and some physical parameters related to\n", + "length, time and energy scales of our system.\n", + "All physical parameters are defined in reduced units of length ($\\sigma=1$;\n", + "Particle size), mass ($m=1$; Particle mass), time ($t=0.01 \\tau$) and\n", + "elementary charge ($e=1$).\n", + "\n", + "Another important length scale is the Bjerrum Length, which is the length at\n", + "which the electrostatic energy between two elementary charges is comparable to\n", + "the thermal energy $k_\\mathrm{B}T$ and thus defines the energy scale in our\n", + "system.\n", + "It is defined as\n", + "$$\\ell_\\mathrm{B}=\\frac{1}{4\\pi\\epsilon_0\\epsilon_r k_\\mathrm{B}T}.$$ \n", + "In our case, if we choose the ion size ($\\sigma$) in simulations to represent a\n", + "typical value for mono-atomar salt, 0.3 nm in real units, then the\n", + "Bjerrum length of water at room temperature, $\\ell_\\mathrm{B}=0.71 \\,\\mathrm{nm}$ is\n", + "$\\ell_\\mathrm{B}\\sim 2$ in simulations units." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#***************************************************\n", + "# System Setup\n", + "#***************************************************\n", + "\n", + "# Box dimensions\n", + "# To construct a narrow slit Lz << (Lx , Ly)\n", + "box_l_x = 100.\n", + "box_l_y = 100.\n", + "box_l_z = 5.\n", + "\n", + "# ICC* with ELC: 2D electrostatics\n", + "ELC_GAP = 6*box_l_z\n", + "\n", + "system = espressomd.System(box_l=[box_l_x, box_l_y, box_l_z+ELC_GAP])\n", + "\n", + "# System Time\n", + "system.time_step = 0.01\n", + "system.cell_system.skin = 0.4\n", + "\n", + "# Elementary charge \n", + "q = np.array([1.0]) \n", + "\n", + "# Interaction Parameters for P3M with ELC\n", + "\n", + "BJERRUM_LENGTH = 2.0 # Electrostatic prefactor passed to P3M ; prefactor=lB KBT/e2 \n", + "ACCURACY = 1e-7 # P3M force accuracy \n", + "CHECK_ACCURACY = 1e-7 # maximim pairwise error in ELC\n", + "\n", + "#Lennard-Jones Parameters\n", + "\n", + "LJ_SIGMA = 1.0\n", + "LJ_EPSILON = 1.0 \n", + "\n", + "#Particle parameters\n", + "\n", + "types = {\"Cation\": 0, \"Anion\": 1 ,\"Electrodes\": 2}\n", + "charges = {\"Cation\": q[0], \"Anion\": -q[0] }\n", + "\n", + "p1=system.part.add(pos=[box_l_x/4.0, box_l_y/2.0, box_l_z/2.0], q=charges[\"Cation\"])\n", + "print(f\"Cation placed at position: {p1.pos}\")\n", + "p2=system.part.add(pos=[3.0*box_l_x/4.0, box_l_y/2.0, box_l_z/2.0], q=charges[\"Anion\"])\n", + "print(f\"Anion placed at position: {p2.pos}\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "solution2": "hidden", + "solution2_first": true + }, + "source": [ + "### Task:\n", + "Set up electrostatics interactions between the ion pairs using P3M and ICC $\\star$. \n", + "#### Hints:\n", + "- First instantiate a P3M object (using\n", + " [*espressomd.electrostatics.P3M(...)*](https://espressomd.github.io/doc/espressomd.html#espressomd.electrostatics.P3M))\n", + " as the 3D Coulomb solver for the system.\n", + "- Since, we are working on a 2D+h partially periodic system, we use ELC in\n", + " combination with P3M. For this purpose, instantiate ELC (using\n", + " [*espressomd.electrostatics.ELC(...)*](https://espressomd.github.io/doc/espressomd.html#espressomd.electrostatics.ELC))\n", + " with p3m as actor, which calls necessary initialization routines. \n", + "- Now we account for dielectric interface by adding ICC $^\\star$.\n", + " To this end, first create an ICC object using\n", + " [*espressomd.electrostatic_extensions.ICC(...)*](https://espressomd.github.io/doc/espressomd.html#espressomd.electrostatic_extensions.ICC).\n", + "- Setting up ICC $^\\star$ requires specifying a fixed number of ICC particles\n", + " and their initial charges.\n", + " Since the ICC particles are normal ESPResSo particles, they need to be added\n", + " at the interfaces using\n", + " [*system.part.add(..)*](https://espressomd.github.io/doc/espressomd.html?#module-espressomd.particle_data).\n", + "\n", + "*Note* - Refer to section\n", + "[**Dielectric interfaces with the ICC algorithm**](https://espressomd.github.io/doc/electrostatics.html#dielectric-interfaces-with-the-icc-star-algorithm)\n", + "in the **ESPResSo** documentation for the basics of an ICC $^\\star$ setup.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "solution2": "hidden", + "solution2_first": true + }, + "outputs": [], + "source": [ + "p3m = espressomd.electrostatics.P3M(\n", + " prefactor=BJERRUM_LENGTH,\n", + " accuracy=ACCURACY,\n", + " check_neutrality = False,\n", + " mesh = [100,100,150],\n", + " cao = 5\n", + " )\n", + "\n", + "elc = espressomd.electrostatics.ELC(actor=p3m, gap_size=ELC_GAP, maxPWerror=CHECK_ACCURACY)\n", + "\n", + "# Set the ICC line density and calculate the number of\n", + "# ICC particles according to the box size\n", + "nicc = 100 # linear density\n", + "nicc_per_electrode = nicc**2 # surface density\n", + "nicc_tot = 2 * nicc_per_electrode\n", + "iccArea = box_l_x * box_l_y / nicc_per_electrode\n", + "lx = box_l_x / nicc\n", + "ly = box_l_y / nicc\n", + "\n", + "# Lists to collect required parameters\n", + "iccNormals = []\n", + "iccAreas = []\n", + "iccSigmas = []\n", + "iccEpsilons = []\n", + "\n", + "# Add the fixed ICC particles:\n", + "\n", + "# Bottom electrode (normal [0, 0, 1])\n", + "for xi in range(nicc):\n", + " for yi in range(nicc):\n", + " system.part.add(pos=[lx * xi, ly * yi, 0.], q=-0.0001,\n", + " type=types[\"Electrodes\"], fix=[True, True, True])\n", + "iccNormals.extend([0, 0, 1] * nicc_per_electrode)\n", + "\n", + "# Top electrode (normal [0, 0, -1])\n", + "for xi in range(nicc):\n", + " for yi in range(nicc):\n", + " system.part.add(pos=[lx * xi, ly * yi, box_l_z], q=0.0001,\n", + " type=types[\"Electrodes\"], fix=[True, True, True])\n", + "iccNormals.extend([0, 0, -1] * nicc_per_electrode)\n", + "\n", + "# Common area, sigma and metallic epsilon\n", + "iccAreas.extend([iccArea] * nicc_tot)\n", + "iccSigmas.extend([0] * nicc_tot)\n", + "iccEpsilons.extend([100000] * nicc_tot)\n", + "\n", + "iccNormals = np.array(iccNormals, dtype=float).reshape(nicc_tot, 3)\n", + "\n", + "icc = espressomd.electrostatic_extensions.ICC(\n", + " first_id=2,\n", + " n_icc=nicc_tot,\n", + " convergence=1e-3,\n", + " relaxation=0.95,\n", + " ext_field=[0, 0, 0],\n", + " max_iterations=1000,\n", + " eps_out=1.0,\n", + " normals=iccNormals,\n", + " areas=np.array(iccAreas, dtype=float),\n", + " sigmas=np.array(iccSigmas, dtype=float),\n", + " epsilons=np.array(iccEpsilons, dtype=float)\n", + " )\n", + "\n", + "system.electrostatics.solver = elc\n", + "system.electrostatics.extension = icc" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Calculation of the forces" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "r = np.logspace(0,box_l_z/4.,10) \n", + "elc_forces_axial = np.empty((len(r), 2))\n", + "\n", + "for i, x in enumerate(tqdm(r)):\n", + " p1.pos = [0, box_l_y/2.0, box_l_z/2.0]\n", + " p2.pos = [x, box_l_y/2.0, box_l_z/2.0]\n", + "\n", + " system.integrator.run(0)\n", + " elc_forces_axial[i, 0] = p1.f[0]\n", + " elc_forces_axial[i, 1] = p2.f[0]\n", + " \n", + " # reset ICC charges to ensure charge neutrality check passes\n", + " system.part.by_ids(range(2,2+nicc_per_electrode)).q = np.array([-0.0001]*nicc_per_electrode)\n", + " system.part.by_ids(range(2+nicc_per_electrode,2+2*nicc_per_electrode)).q = np.array([0.0001]*nicc_per_electrode) " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3. Analysis and Interpretation of the data\n", + "\n", + "With this we can now compare the force between the two ions to the analytical prediction.\n", + "To evaluate the infinite series we truncate at $n=1000$, which already is well converged." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def analytic_force_centered(r,w):\n", + " x = r/w\n", + " prefactor = BJERRUM_LENGTH / w**2\n", + "\n", + " def summand(x, n):\n", + " return (-1)**n * x/(x**2+n**2)**(3./2)\n", + " \n", + " def do_sum(x):\n", + " max = int(1e3)\n", + " sum = 0\n", + " for n in range(-max+1,max+1):\n", + " sum += summand(x,n)\n", + " return sum\n", + "\n", + " F = do_sum(x) * prefactor\n", + " return F\n", + "\n", + "def coulomb_force(x):\n", + " prefactor = BJERRUM_LENGTH\n", + " E = prefactor / x**2\n", + " return E\n", + "\n", + "def exponential_force(r,w):\n", + " x = r/w\n", + " prefactor = BJERRUM_LENGTH\n", + " E = prefactor * np.sqrt(2) * (1/x)**(3/2) * np.exp(-np.pi*x)\n", + " return E" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig = plt.figure(figsize=(10, 6))\n", + "\n", + "plt.plot(r/BJERRUM_LENGTH, -elc_forces_axial[:,1], color='red' , label=\"sim (p2)\", marker='o', ls='')\n", + "plt.plot(r/BJERRUM_LENGTH, elc_forces_axial[:,0], color='k' , label=\"sim (p1)\", marker='x', ls='')\n", + "\n", + "x = np.logspace(-.25,1.45,100)\n", + "\n", + "plt.plot(x/BJERRUM_LENGTH, analytic_force_centered(x,box_l_z), color='b' , label=\"analytic\", marker='')\n", + "plt.plot(x/BJERRUM_LENGTH, coulomb_force(x), color='green', ls='--', label='Coulomb')\n", + "plt.plot(x/BJERRUM_LENGTH, exponential_force(x,box_l_z), color='red', ls='--', label='Exponential')\n", + "\n", + "plt.xlabel(r'$r \\, [\\ell_\\mathrm{B}]$')\n", + "plt.ylabel(r'$F \\, [k_\\mathrm{B}T / \\sigma$]')\n", + "plt.loglog()\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## References\n", + "\n", + "[1] Tyagi, S.; Süzen, M.; Sega, M.; Barbosa, M.; Kantorovich, S. S.; Holm, C. An Iterative, Fast, Linear-Scaling Method for Computing Induced Charges on Arbitrary Dielectric Boundaries. J. Chem. Phys. 2010, 132 (15), 154112. https://doi.org/10.1063/1.3376011.\n", + " \n", + "[2] Kondrat, S.; Feng, G.; Bresme, F.; Urbakh, M.; Kornyshev, A. A. Theory and Simulations of Ionic Liquids in Nanoconfinement. Chem. Rev. 2023, 123 (10), 6668–6715. https://doi.org/10.1021/acs.chemrev.2c00728.\n", + "\n", + "[3] Tyagi, S.; Arnold, A.; Holm, C. Electrostatic Layer Correction with Image Charges: A Linear Scaling Method to Treat Slab 2D+h Systems with Dielectric Interfaces. J. Chem. Phys. 2008, 129 (20), 204102. https://doi.org/10.1063/1.3021064.\n", + "\n", + "[4] Loche, P.; Ayaz, C.; Wolde-Kidan, A.; Schlaich, A.; Netz, R. R. Universal and Nonuniversal Aspects of Electrostatics in Aqueous Nanoconfinement. J. Phys. Chem. B 2020, 124 (21), 4365–4371. https://doi.org/10.1021/acs.jpcb.0c01967." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/doc/tutorials/electrodes/electrodes_part2.ipynb b/doc/tutorials/electrodes/electrodes_part2.ipynb new file mode 100644 index 00000000000..a22fadbbc40 --- /dev/null +++ b/doc/tutorials/electrodes/electrodes_part2.ipynb @@ -0,0 +1,1240 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "# Basic simulation of electrodes in ESPResSo part II:\n", + "# Electrolyte capacitor and Poisson-Boltzmann theory" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "## Prerequisites\n", + "\n", + "To work with this tutorial, you should be familiar with the following topics:\n", + "\n", + "1. Setting up and running simulations in ESPResSo - creating particles,\n", + " incorporating interactions.\n", + " If you are unfamiliar with this, you can go through the respective tutorial\n", + " in the `lennard_jones` folder.\n", + "2. Basic knowledge of classical electrostatics:\n", + " Dipoles, surface and image charges.\n", + "3. Reduced units and how to relate them to physical quantities, see the ESPResSo\n", + " [user guide](https://espressomd.github.io/doc/introduction.html#on-units)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "## Introduction\n", + "\n", + "Ionic liquid (IL) based capacitors have long been established as promising\n", + "candidates in the area of efficient energy storage devices due to their\n", + "extraordinary capacitance, which is why they are also termed super-capacitors.\n", + "Typically, in these setups a fluid consisting of mobile charge carriers is\n", + "placed between two electrodes and thus gets polarized upon application of an\n", + "external potential formic an electric double layer at the interfaces\n", + "[1].\n", + "Electric double-layer capacitors (EDLCs) can be constructed of electrodes of\n", + "various geometries and materials where energy is stored by potential driven\n", + "adsorption of counterions on the surface of the electrodes and forming the\n", + "double layer. \n", + "Thus, conducting, high surface area electrode materials can further maximize the\n", + "energy per volume.\n", + "\n", + "In this tutorial we are going to investigate the ionic layer formation between\n", + "two conducting dielectric walls in presence of an applied voltage **ESPResSo**'s\n", + "\"Electrostatic layer correction with image charges\" (ELC-IC) method\n", + "[2].\n", + "We employ a primitive model of an aqueous salt solution, where the solvent is\n", + "treated implicitly as homogeneous dielectric background.\n", + "Thus, within the limits of a mean-field treatment and for not too small slit\n", + "widths, we can compare our findings against with the analytical Gouy-Chapmann\n", + "solution for a single charged plane since additivity is assumed to hold if the\n", + "potential of both walls is screened sufficiently.\n", + "While this mean-field formalism properly describes the behavior of Coulomb\n", + "fluids composed of monovalent ions at low concentrations in the vicinity of\n", + "weakly charged interfaces, for strongly charged systems, where correlation and\n", + "finite size effects begin to dominate, Poisson-Boltzmann theory falls\n", + "inadequate.\n", + "Our goal in this tutorial is to demonstrate how coarse grained implicit solvent\n", + "simulations can corroborate on some of the approximations and hint on\n", + "extensions/deviations.\n", + "\n", + "The inclusion of dielectric inhomogeneities appearing at the conducting\n", + "interfaces demands to take into account image effects that involve the full\n", + "solution of the Poisson equation on the fly.\n", + "This is dealt in a computational cost-effective way using the ELC-IC method to\n", + "treat the image charge effect in the presence of 2D dielectric bounding\n", + "interfaces. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "## Theoretical Background \n", + "\n", + "### Poisson-Boltzmann Theory\n", + "\n", + "Charged surfaces in contact with a liquid containing free charges (ions) attract\n", + "oppositely charged ions that form a diffusive electric double layer. \n", + "The competition between electrostatic interactions and entropy of ions in\n", + "solution determines the exact distribution of mobile ions close to charged\n", + "membranes.\n", + "Gouy [3] and Chapman [4] derived in the\n", + "early 20th century the analytic solution for the case of a single planar wall\n", + "withing the mean-field approximation of the Poisson Boltzmann (PB) equation. \n", + "In the case of a monovalent electrolyte, double integrating the PB equation and\n", + "employing the corresponding boundary conditions for the charged plane located at\n", + "$z=0$ yields the electrostatic potential:\n", + "$$\\psi(z) = -2\\ln\\left[\n", + " \\frac{1-\\tanh(\\psi_\\mathrm{s}/4)e^{-\\kappa_\\mathrm{D} z}}\n", + " {1+\\tanh(\\psi_\\mathrm{s}/4)e^{-\\kappa_\\mathrm{D}z}} \\right].$$ \n", + "Here, $\\psi_\\mathrm{s}=\\psi(z=0)=$ const is the surface potential considering\n", + "that $\\psi(z\\rightarrow \\infty)=0$ and\n", + "$\\kappa_\\mathrm{D} = \\lambda_\\mathrm{D}^{-1}$ is the inverse Debye screening length given by\n", + "$$ \\lambda_\\mathrm{D} = \\left(\\frac{\\epsilon \\, k_{\\mathrm B} T}{\\sum_{j = 1}^N n_j^0 \\, q_j^2}\\right)^{1/2}, $$\n", + "where $n_j^{(0)}$ and $q_j$ are the equilibrium number density and charge of the\n", + "$j$-th ion species.\n", + "For the monovalent salt this can conveniently be expressed in terms of the\n", + "Bjerrum length $\\ell_\\mathrm{B}$ and the equilibrium salt concentration\n", + "$\\rho^{(0)}=\\sum_j \\rho_j^{(0)}$,\n", + "$$ \\lambda_{\\mathrm D} = \\left(4 \\pi \\, \\ell_\\mathrm{B} \\, \\rho^{(0)}/e\\right)^{-1/2} . $$\n", + "\n", + "The cationic and anionic density profiles then follow from the Boltzmann\n", + "distribution as:\n", + "$$n_{\\pm}(z)=n_\\pm^{(0)}\\left(\\frac{1\\pm\\gamma e^{-\\kappa_\\mathrm{D}z}}\n", + " {1\\mp\\gamma e^{-\\kappa_\\mathrm{D}z}} \\right)^2$$\n", + "Here, $\\gamma$ is associated with the surface potential as\n", + "$\\psi_\\mathrm{s}=-4\\tanh^{-1}(\\gamma)$.\n", + "At large z, where the potential decays to zero, the ionic profiles tend to their\n", + "bulk (reservoir) densities, $n_\\pm(\\infty) = n_\\pm^{(0)}$\n", + "\n", + "The relation between the surface potential and the surface charge induced on the\n", + "electrode is given by the Grahame Equation [5] :\n", + "$$ \\sigma = \\sinh(\\phi_\\mathrm{s}/2) \\sqrt{\\frac{2 n_\\mathrm{b}}{\\pi \\ell_\\mathrm{B}}} $$\n", + "The latter expression thus yields the differential capactitance\n", + "$C=\\frac{\\mathrm{d}\\sigma}{\\mathrm{d}\\phi_\\mathrm{s}}$ within the mean-field\n", + "solution for non-overlapping double layers." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "## ELC-IC for 2D+h periodic systems with dielectric interfaces\n", + "\n", + "In this tutorial we employ a parallel plate capacitor setup with constant\n", + "potential boundary conditions which needs to be treated appropriately by the\n", + "electrostatics solver.\n", + "To simulate two-dimensional a partially periodic system, we combine the efficient\n", + "scaling behavior of three-dimensional mesh-based solvers (typically\n", + "$\\mathcal{O}(N \\log N)$ for P3M) with the Electrostatic Layer Correction (ELC)\n", + "[1].\n", + "The latter accounts for the contributions from the periodic images in the\n", + "constrained direction and its numerical cost grows linear with the number of\n", + "point charges $N$, hence the performance overall depends on the underlying $3-D$\n", + "Coulomb solver.\n", + "Furthermore, ELC can be extended straightforward to implement metallic boundary\n", + "conditions (or any other dielectric contrast) by using the method of image charges,\n", + "which is referred to as the “Electrostatic Layer Correction with Image Charges”\n", + "(ELC-IC) approach used in this tutorial.\n", + "\n", + "A voltage difference can be applied between the electrodes by following\n", + "considerations:\n", + "The total potential drop $\\Delta \\phi$ across the simulated system is readily\n", + "obtained from the ion distribution and integrating twice over the one\n", + "dimensional Poisson's equation:\n", + "$$-\\epsilon_{0}\\epsilon_{r}\\phi_\\mathrm{ind}(z)=\\iint_{0}^{z}\\rho(z^{'})(z-z^{'})dz^{'} $$\n", + "Here, the subscript 'ind' indicates that this is the potential due to the\n", + "induced inhomogeneous charge distribution.\n", + "In order to set up a constant potential difference $\\Delta \\phi$, a homogeneous\n", + "electric field is superimposed such that\n", + "$$ \\Delta \\phi = \\Delta \\phi_\\mathrm{ind} + \\Delta \\phi_\\mathrm{bat},$$\n", + "where $\\Delta \\phi_\\mathrm{bat}$ corresponds to the potential of a (virtually)\n", + "applied battery.\n", + "In practice, the linear electric field in $E_z^\\mathrm{(bat)}=-\\phi_\\mathrm{bat}/L_z$\n", + "in the $z$-direction normal to the surface that one needs to apply can be\n", + "calculated straightforward as the corresponding contribution from the induced\n", + "charges is known:\n", + "$$ E_z^\\mathrm{(ind)} = \\frac{1}{\\epsilon_0 \\epsilon_r L^2 L_z} P_z$$\n", + "Here, $L$ denotes the lateral system size, $L_z$ the distance between the plates\n", + "and $P_z = \\sum_i q_i z_i$ is the total dipole moment in $z$-direction due to\n", + "the charges $q_i$.\n", + "Then, to maintain $\\Delta phi$, a force $F_z^\\mathrm{bat} = q E_z^\\mathrm{(bat)}$\n", + "is applied on all charges.\n", + "Since ELC already $P_z$, the constant potential correction requires no\n", + "additional computational effort.\n", + "\n", + "*Note*: Apart from ELC-IC, **ESPResSo** also provides the ICC$\\star$ method\n", + "[2] which employs ab iterative numerical scheme with\n", + "discretized surface particles to solve the boundary integrals at the dieletcric\n", + "interface.\n", + "The tutorial on *Basic simulation of electrodes in ESPResSo part I* addresses this\n", + "in detail." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "## 1. System setup \n", + "\n", + "First we import all ESPResSo features and external modules" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "import espressomd\n", + "import numpy as np\n", + "rng = np.random.default_rng(42)\n", + "\n", + "import espressomd.electrostatics\n", + "import espressomd.electrostatic_extensions\n", + "from espressomd.interactions import *\n", + "import espressomd.observables\n", + "import espressomd.accumulators\n", + "from espressomd import shapes\n", + "\n", + "espressomd.assert_features(['WCA', 'ELECTROSTATICS'])\n", + "\n", + "import matplotlib.pyplot as plt\n", + "from scipy import constants as const\n", + "from tqdm import tqdm\n", + "from scipy.stats import sem" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "We need to define system dimensions and some physical parameters related to\n", + "length, time and energy scales of our system.\n", + "As discussed in previous tutorials, all physical parameters are defined in terms\n", + "of a length $\\sigma$, mass $m$ and time $t$ and unit of charge $q$.\n", + "Since we are not explicitly interested in the dynamics of the system, we set the\n", + "mass to $m=1$ (Particle mass) and time $t=0.01 \\tau$.\n", + "For convenience, we choose the elementary charge as fundamental unit ($q=1e$)\n", + "and $\\sigma = 1 \\,\\mathrm{nm}$.\n", + "\n", + "With this we can now define the fundamental parameters of our system:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "# water at room temperature\n", + "EPSILON_R = 78.4 # Relative dielectric constant of the water\n", + "TEMPERATURE = 300.0 # Temperature in Kelvin\n", + "BJERRUM_LENGTH = const.elementary_charge**2 / (4*np.pi*const.epsilon_0*EPSILON_R*const.Boltzmann*TEMPERATURE) / const.nano\n", + "# BERRUM_LENGTH of water at room temperature is 0.71 nm; electrostatic prefactor passed to P3M KBT/e2 \n", + "\n", + "#Lennard-Jones Parameters\n", + "LJ_SIGMA = 0.3 # Particle size nanometers, not point-like\n", + "LJ_EPSILON = 1.0\n", + "HS_ION_SIZE = 2**(1/6) * LJ_SIGMA\n", + "\n", + "CONCENTRATION = 1e-2 # desired concentration 10 mmol/l\n", + "DISTANCE = 10 # 10 Debye lengths\n", + "N_IONPAIRS = 500\n", + "\n", + "POTENTIAL_DIFF = 5.0\n", + "\n", + "# Elementary charge \n", + "q = np.array([1.0]) \n", + "types = {\"Cation\": 0, \"Anion\": 1 ,\"Electrodes\": 2}\n", + "charges = {\"Cation\": q[0], \"Anion\": -q[0] }" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden", + "solution2_first": true + }, + "source": [ + "### 1.1 Setting up the box dimensions and create system\n", + "\n", + "We want to make use of the optimal performance of **ESPResSo** in this tutorial,\n", + "which is roughly at 1000 particles/core.\n", + "Thus, we fixed above the number of ion pairs to `N_IONPAIRS = 500`.\n", + "\n", + "To be able to employ the analytical solution for the single plate also for the\n", + "double layer capacitor setup, the two electrodes need to be sufficiently far\n", + "away such that the additivity of the two surface potentials holds. In practice,\n", + "a separation of $d=10\\lambda_\\mathrm{D}$ is a good choice, represented by \n", + "`DISTANCE = 10`.\n", + "\n", + "Our choice of $c=10\\,\\mathrm{mmol}$ is a compromise between a sufficiently low\n", + "concentration for the PB theory to hold and not too large distances $d$ such\n", + "that the equilibration/diffusion of the ions is sufficiently fast\n", + "(`CONCENTRATION = 1e-2`).\n", + "\n", + "Note that in order to obtain results that we can interpret easily, we explicitly\n", + "set a unit system using nanometers as length-scale above.\n", + "The corresponding ion size (`HS_ION_SIZE`) of about 0.33 nm is a\n", + "typical value for a simple salt; this, however, is in sharp contrast to the\n", + "mean-field assumption of point-like ions.\n", + "The latter are not easily studied within Molecular Dynamics simulations due to\n", + "the required small time steps and are better suited for Monte-Carlo type\n", + "simulations.\n", + "We instead focus here on analyzing deviations from PB theory due to the finite\n", + "ion size.\n", + "\n", + "The first task now is to write a function \n", + "`get_box_dimension(concentration, distance, n_ionpairs=N_IONPAIRS)`\n", + "that returns the lateral and normal box lengths `box_l_xy` and `box_l_z` (in\n", + "nanometers) for the given parameters.\n", + "\n", + "**Hint:** To account for the finite ion size and the wall interaction it is\n", + "useful to define the effective separation $d^\\prime = d-2\\sigma$, such that the\n", + "concentration is $\\rho = N/(A*d^\\prime)$.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden" + }, + "outputs": [], + "source": [ + "def get_box_dimension(concentration, distance, n_ionpairs=N_IONPAIRS):\n", + " \"\"\" For a given number of particles, determine the lateral area of the box\n", + " to match the desired concentration \"\"\"\n", + "\n", + " # concentration is in mol/l, convert to 1/sigma**3\n", + " rho = concentration * (const.Avogadro / const.liter) * const.nano**3\n", + " debye_length = (4 * np.pi * BJERRUM_LENGTH * rho*2)**(-1./2) # desired Debye length in nm\n", + " l_z = distance * debye_length\n", + " \n", + " box_volume = n_ionpairs / rho\n", + " area = box_volume / (l_z - 2*HS_ION_SIZE) # account for finite ion size in density calculation\n", + " l_xy = np.sqrt(area)\n", + "\n", + " return l_xy, l_z" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "box_l_xy, box_l_z = get_box_dimension(CONCENTRATION,DISTANCE,N_IONPAIRS)\n", + "\n", + "# useful quantities for the following calculations\n", + "DEBYE_LENGTH = box_l_z / DISTANCE # in units of nm\n", + "rho = N_IONPAIRS / (box_l_xy*box_l_xy*box_l_z) # in units of 1/nm^3" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "We now can create the **ESPResSo** system.\n", + "\n", + "Note that for ELC to work properly, we need to add a gap of `ELC_GAP` in the\n", + "non-periodic direction.\n", + "The precise value highly affects the performance due to the tuning of the P3M\n", + "electrostatic solver.\n", + "For $d=10\\lambda$ a value of `ELC_GAP = 6*box_l_z` is a good choice.\n", + "\n", + "We also set the time-step $dt = 0.01 \\tau$, which is limited by the choice of\n", + "$\\sigma$ and $\\tau$ in the repulsive WCA interaction." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "ELC_GAP = 6*box_l_z\n", + "system = espressomd.System(box_l=[box_l_xy, box_l_xy, box_l_z+ELC_GAP])\n", + "system.time_step = 0.01" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden", + "solution2_first": true + }, + "source": [ + "### 1.2 Set up the double-layer capacitor\n", + "\n", + "We now set up an electrolyte solution made of monovalent cations and anions\n", + "between two metallic electrodes at constant potential. \n", + "\n", + "#### 1.2.1 Electrode walls \n", + "\n", + "First, we add two wall constraints at $z=0$ and $z=L_z$ to stop particles from\n", + "crossing the boundaries and model the electrodes.\n", + "\n", + "Refer to \n", + "[espressomd.constraints.ShapeBasedConstraint](https://espressomd.github.io/doc/espressomd.html#espressomd.constraints.ShapeBasedConstraint)\n", + "and its\n", + "[wall constraint](https://espressomd.github.io/doc/constraints.html?highlight=constraint#wall)\n", + "in the documentation to set up constraints and the `types` dictionary for the\n", + "particle type." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden" + }, + "outputs": [], + "source": [ + "# Bottom wall, normal pointing in the +z direction \n", + "floor = espressomd.shapes.Wall(normal=[0, 0, 1])\n", + "c1 = system.constraints.add(\n", + " particle_type=types[\"Electrodes\"], penetrable=False, shape=floor)\n", + "\n", + "# Top wall, normal pointing in the -z direction\n", + "ceil = espressomd.shapes.Wall(normal=[0, 0, -1],\n", + " dist=-box_l_z) \n", + "c2 = system.constraints.add(\n", + " particle_type=types[\"Electrodes\"], penetrable=False, shape=ceil)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden", + "solution2_first": true + }, + "source": [ + "#### 1.2.2 Add particles for the ions\n", + "\n", + "Now, place the ion pairs at random positions between the electrodes.\n", + "\n", + "Note, that unfavorable overlap can be avoided by placing the particles in the\n", + "interval $[\\sigma, d-\\sigma]$ in the $z$-direction only." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden" + }, + "outputs": [], + "source": [ + "offset=HS_ION_SIZE # avoid unfavorable overlap at close to the walls\n", + "Init_part_btw_z1=0+offset \n", + "Init_part_btw_z2=box_l_z-offset\n", + "ion_pos=np.empty((3),dtype=float)\n", + "\n", + "for i in range (N_IONPAIRS):\n", + " ion_pos[0] = rng.random(1) * system.box_l[0]\n", + " ion_pos[1] = rng.random(1) * system.box_l[1]\n", + " ion_pos[2] = rng.random(1) * (Init_part_btw_z2-Init_part_btw_z1) + Init_part_btw_z1\n", + " system.part.add(pos=ion_pos, type=types[\"Cation\"] , q=charges[\"Cation\"])\n", + " \n", + "for i in range (N_IONPAIRS):\n", + " ion_pos[0] = rng.random(1) * system.box_l[0]\n", + " ion_pos[1] = rng.random(1) * system.box_l[1]\n", + " ion_pos[2] = rng.random(1) * (Init_part_btw_z2-Init_part_btw_z1) + Init_part_btw_z1\n", + " system.part.add(pos=ion_pos, type=types[\"Anion\"] , q=charges[\"Anion\"])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden", + "solution2_first": true + }, + "source": [ + "#### 1.2.3 Add interactions:\n", + "For excluded volume interactions, we add a WCA potential. \n", + "\n", + "Refer to the documentation to set up the\n", + "[WCA interaction](https://espressomd.github.io/doc/espressomd.html#espressomd.interactions.WCAInteraction) \n", + "under [Non-bonded](https://espressomd.github.io/doc/inter_non-bonded.html)\n", + "section.\n", + "\n", + "Add the corresponding interaction parameters to the system." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden" + }, + "outputs": [], + "source": [ + "for key, val in types.items():\n", + " for key1, val1 in types.items():\n", + " system.non_bonded_inter[val, val1].wca.set_params(epsilon=LJ_EPSILON, sigma=LJ_SIGMA)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden", + "solution2_first": true + }, + "source": [ + "For the (2D+h) electrostatic with dielectrics we choose the ELC-IC with P3M.\n", + "\n", + "Refer the documentation to set up\n", + "[ELCIC with P3M](https://espressomd.github.io/doc/electrostatics.html#electrostatic-layer-correction-elc)\n", + "under the [electrostatics](https://espressomd.github.io/doc/electrostatics.html)\n", + "section. \n", + "\n", + "As later we will study different potential drops between the electrodes, write a\n", + "function that sets up the electrostatic solver for a given value\n", + "`POTENTIAL_DIFF.`\n", + "This function will take care of tuning the P3M and ELC parameters.\n", + "For our purposes, an accuracy of $10^{-3}$ is sufficient.\n", + "\n", + "Write a function `setup_electrostatic_solver(potential_diff)` that\n", + "returns the ELC instance." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden" + }, + "outputs": [], + "source": [ + "def setup_electrostatic_solver(potential_diff):\n", + "\n", + " delta_mid_top = -1.0 #(Fully metallic case both -1) \n", + " delta_mid_bot = -1.0\n", + "\n", + " accuracy = 1e-3\n", + " check_accuracy = 1e-3\n", + " p3m = espressomd.electrostatics.P3M(prefactor=BJERRUM_LENGTH,\n", + " accuracy=accuracy, \n", + " tune=True,\n", + " )\n", + " \n", + " elc = espressomd.electrostatics.ELC(actor=p3m,\n", + " gap_size=ELC_GAP,\n", + " const_pot=True,\n", + " pot_diff=potential_diff,\n", + " maxPWerror=check_accuracy,\n", + " delta_mid_bot=delta_mid_bot,\n", + " delta_mid_top=delta_mid_top)\n", + " \n", + " return elc" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "Now add the solver to the system:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "system.electrostatics.solver = setup_electrostatic_solver(POTENTIAL_DIFF)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "## 2. Equilibration\n", + "\n", + "### 2.1 Steepest descent\n", + "\n", + "Before we can start the simulation, we need to remove the overlap between\n", + "particles to avoid large forces which would crash the simulation.\n", + "\n", + "For this, we use the steepest descent integrator with a relative convergence\n", + "criterion for forces and energies.\n", + "\n", + "After steepest descent, we switch to a Velocity Verlet integrator and set up a\n", + "Langevin thermostat.\n", + "Note, that we only analyze static properties, thus the damping and temperature\n", + "chosen here only determine the relaxation speed towards the equilibrium\n", + "distribution." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "# Relax the overlaps with steepest descent\n", + "\n", + "system.integrator.set_steepest_descent(f_max=10, gamma=50.0,\n", + " max_displacement=0.02)\n", + "system.integrator.run(250)\n", + "system.integrator.set_vv() # Switch bach to Velocity Verlet \n", + "\n", + "# Add thermostat \n", + "thermostat_seed = np.random.randint(np.random.randint(1000000))\n", + "system.thermostat.set_langevin(kT=1.0, gamma=0.1, seed=thermostat_seed)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "## Equilibrate the ion distribution\n", + "\n", + "Convergence after $t\\sim25$ time units, possible to run up to $t=100$ here...\n", + "This is a total of 10.000 time steps (~1 minute)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "# Equlibration parameters\n", + "STEPS_PER_SAMPLE = 200\n", + "N_SAMPLES_EQUIL = 50\n", + "N_PART = 2* N_IONPAIRS\n", + "\n", + "times = np.zeros(N_SAMPLES_EQUIL)\n", + "e_total = np.zeros_like(times)\n", + "e_kin = np.zeros_like(times)\n", + "\n", + "for i in tqdm(range(N_SAMPLES_EQUIL)):\n", + " times[i] = system.time\n", + " energy = system.analysis.energy()\n", + " e_total[i] = energy['total']\n", + " e_kin[i] = energy['kinetic']\n", + " system.integrator.run(STEPS_PER_SAMPLE)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "# Plot the convergence of the total energy\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(times, e_total, label='total')\n", + "plt.plot(times, e_kin, label='kinetic')\n", + "plt.xlabel('t')\n", + "plt.ylabel('E')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden", + "solution2_first": true + }, + "source": [ + "## 3. Calculate and analyze ion profile\n", + "\n", + "### 3.1 Set up the density accumulators\n", + "\n", + "We now need to set up an \n", + "[espressomd.observables.DensityProfile](https://espressomd.github.io/doc/espressomd.html#espressomd.observables.DensityProfile)\n", + "observable to calculate the anion and cation density profiles.\n", + "\n", + "The time average is obtained through a\n", + "[espressomd.accumulators.MeanVarianceCalculator](espressomd.accumulators.MeanVarianceCalculator).\n", + "\n", + "Write a function `setup_densityprofile_accumulators(bin_width)` that returns the\n", + "`bin_centers` and the accumulators for both ion species in the $z$-range $[0,d]$.\n", + "Since we are not estimating errors in this tutorial, the choice of `delta_N` is\n", + "rather arbitrary and does not affect the results. In practice, a typical value is\n", + "`delta_N=20`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true, + "solution2": "hidden" + }, + "outputs": [], + "source": [ + "def setup_densityprofile_accumulators(bin_width):\n", + "\n", + " Ion_id=[]\n", + " Cations = system.part.select(type=types[\"Cation\"])\n", + " Cations_id=[]\n", + " for i in Cations:\n", + " Cations_id.append(i.id)\n", + " Ion_id.append(i.id)\n", + " \n", + " Anions = system.part.select(type=types[\"Anion\"])\n", + " Anions_id=[]\n", + " for i in Anions:\n", + " Anions_id.append(i.id)\n", + " Ion_id.append(i.id)\n", + " \n", + " n_z_bins = int(np.round((system.box_l[2] - ELC_GAP) / bin_width))\n", + " \n", + " # Accumulator 1 : observable::Density_Profile\n", + " density_profile_cation = espressomd.observables.DensityProfile(ids=Cations_id,\n", + " n_x_bins=1,\n", + " n_y_bins=1,\n", + " n_z_bins=n_z_bins,\n", + " min_x=0,\n", + " min_y=0,\n", + " min_z=0,\n", + " max_x=system.box_l[0],\n", + " max_y=system.box_l[1],\n", + " max_z=system.box_l[2] - ELC_GAP)\n", + " \n", + " density_accumulator_cation = espressomd.accumulators.MeanVarianceCalculator(obs=density_profile_cation, delta_N=20)\n", + " \n", + " \n", + " density_profile_anion = espressomd.observables.DensityProfile(ids=Anions_id,\n", + " n_x_bins=1,\n", + " n_y_bins=1,\n", + " n_z_bins=n_z_bins,\n", + " min_x=0,\n", + " min_y=0,\n", + " min_z=0,\n", + " max_x=system.box_l[0],\n", + " max_y=system.box_l[1],\n", + " max_z=system.box_l[2] - ELC_GAP)\n", + " \n", + " density_accumulator_anion = espressomd.accumulators.MeanVarianceCalculator(obs=density_profile_anion, delta_N=20)\n", + "\n", + " zs = density_profile_anion.bin_centers()[0, 0, :, 2]\n", + " \n", + " return zs, density_accumulator_cation, density_accumulator_anion" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "zs, density_accumulator_cation, density_accumulator_anion = setup_densityprofile_accumulators(bin_width = DEBYE_LENGTH/10.)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "### 3.2 Run the simulation\n", + "\n", + "Now we take some measurement sampling the density profiles." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "N_SAMPLES_PROD = 10\n", + "\n", + "# Add the accumulators\n", + "system.auto_update_accumulators.clear()\n", + "system.auto_update_accumulators.add(density_accumulator_cation)\n", + "system.auto_update_accumulators.add(density_accumulator_anion)\n", + " \n", + "times=[]\n", + "e_total=[]\n", + "for tm in tqdm(range(N_SAMPLES_PROD)):\n", + " system.integrator.run(STEPS_PER_SAMPLE)\n", + " times.append( system.time)\n", + " energy = system.analysis.energy()\n", + " e_total.append( energy['total']) \n", + "\n", + "cation_profile_mean = density_accumulator_cation.mean()[0, 0, :]\n", + "anion_profile_mean = density_accumulator_anion.mean()[0, 0, :]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "### Compare to analytical prediction\n", + "\n", + "Since we assume pair-wise additivity, the total ion density follows from\n", + "$$ \\rho (z) = \\rho_+(z) - \\rho_+ (d-z) + \\rho_-(z) - \\rho_-(d-z) .$$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "def gouy_chapman_potential(x, debye_length, phi_0):\n", + " kappa = 1./debye_length\n", + " return 2*np.log((1 + np.tanh(1./4*(phi_0) * np.exp(-kappa*x))) \\\n", + " / (1 - np.tanh(1./4*(phi_0) * np.exp(-kappa*x))))\n", + "\n", + "def gouy_chapman_density(x, c0, debye_length, phi_0):\n", + " phi = gouy_chapman_potential(x, debye_length, phi_0)\n", + " return c0/2. * np.exp(-phi)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10, 6))\n", + "plt.plot(zs, cation_profile_mean, color='b', label='cation')\n", + "plt.plot(zs, anion_profile_mean, color='r', label='anion')\n", + "plt.plot(zs, cation_profile_mean + anion_profile_mean, color='k', label='total')\n", + "\n", + "x = np.linspace(HS_ION_SIZE, box_l_z-HS_ION_SIZE, 100)\n", + "plt.plot(x, (gouy_chapman_density(x, CONCENTRATION, DEBYE_LENGTH,-POTENTIAL_DIFF/2.) \\\n", + " + gouy_chapman_density(box_l_z-HS_ION_SIZE-x, CONCENTRATION, DEBYE_LENGTH,POTENTIAL_DIFF/2.))/2., color='r', ls='--')\n", + "plt.plot(x, (gouy_chapman_density(box_l_z-HS_ION_SIZE-x, CONCENTRATION, DEBYE_LENGTH,-POTENTIAL_DIFF/2.) \\\n", + " + gouy_chapman_density(x, CONCENTRATION, DEBYE_LENGTH,POTENTIAL_DIFF/2.) )/2., color='b', ls='--')\n", + "plt.plot(x, (gouy_chapman_density(x, CONCENTRATION, DEBYE_LENGTH,-POTENTIAL_DIFF/2.) \\\n", + " + gouy_chapman_density(box_l_z-HS_ION_SIZE-x, CONCENTRATION, DEBYE_LENGTH,POTENTIAL_DIFF/2.))/2 \\\n", + " + (gouy_chapman_density(box_l_z-HS_ION_SIZE-x, CONCENTRATION, DEBYE_LENGTH,-POTENTIAL_DIFF/2.) \\\n", + " + gouy_chapman_density(x, CONCENTRATION, DEBYE_LENGTH,POTENTIAL_DIFF/2.) )/2., color='k', ls='--', lw=2)\n", + "\n", + "plt.legend()\n", + "plt.xlabel(r'$z\\,\\mathrm{[nm]}$')\n", + "plt.ylabel(r'$\\rho(z)\\,\\mathrm{[mol/l]}$')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "We now check how well the surface charge agrees with Graham equation.\n", + "To this end we calculate \n", + "$$\\sigma = \\int_0^{d/2} \\rho(z) \\,\\mathrm{d}z .$$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "#Test sigma with Graham equation\n", + "sigma_left = np.sum((cation_profile_mean-anion_profile_mean)[:int(len(zs)/2.)]) * (zs[1]-zs[0])\n", + "sigma_right = np.sum((+cation_profile_mean-anion_profile_mean)[int(len(zs)/2.):]) * (zs[1]-zs[0])\n", + "\n", + "def graham_sigma(phi):\n", + " return np.sinh(phi/4.) * np.sqrt(2*rho/(np.pi*BJERRUM_LENGTH))\n", + "sigma_graham = graham_sigma(POTENTIAL_DIFF)\n", + "\n", + "# sigma in e/nm^2\n", + "print('simulation:', sigma_right, 'graham:', sigma_graham, 'relative:', sigma_right/sigma_graham)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "The electric field is readily obtained from the integral \n", + "$$E(z) = \\int_0^{z} \\frac{1}{\\epsilon_0 \\epsilon_r} \\rho(z^\\prime) \\,\\mathrm{d}z^\\prime .$$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "# plot the electric field\n", + "f, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "dz_SI = (zs[1]-zs[0])*const.nano\n", + "chargedensity = (cation_profile_mean-anion_profile_mean)*const.elementary_charge/const.nano**3 \n", + "E_SI = 1/(EPSILON_R*const.epsilon_0)* np.cumsum(chargedensity*dz_SI)\n", + "# integration constant: zero field in the center\n", + "E_SI -= E_SI.min()\n", + "E = E_SI / (const.elementary_charge / (const.Boltzmann * TEMPERATURE) / const.nano)\n", + "ax2 = plt.twinx()\n", + "\n", + "ax.plot(zs,E_SI)\n", + "ax2.plot(zs,E)\n", + "ax.set_xlabel(r'$z\\,\\mathrm{[nm]}$')\n", + "ax.set_ylabel(r'$E_\\mathrm{ind}\\,\\mathrm{[V/m]}$')\n", + "ax2.set_ylabel(r'$E_\\mathrm{ind}\\,\\mathrm{[(k_\\mathrm{B}T/e)/nm]}$')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "And the electric potential from $\\phi(z) = \\int_0^z -E(z^\\prime)\\,\\mathrm{d}z^\\prime$." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "# plot the elecrostatic potential\n", + "f, ax = plt.subplots(figsize=(10, 6))\n", + "ax2 = ax.twinx()\n", + "phi_SI = -np.cumsum(E_SI*dz_SI)\n", + "phi = phi_SI * (const.elementary_charge / (const.Boltzmann * TEMPERATURE))\n", + "ax.plot(zs, phi_SI)\n", + "ax2.plot(zs, phi)\n", + "ax.set_xlabel(r'$z\\,\\mathrm{[nm]}$')\n", + "ax.set_ylabel(r'$\\phi\\,[V]$')\n", + "ax2.set_ylabel(r'$\\phi\\,[k_\\mathrm{B}T/e]$')\n", + "ax2.axhline(-5, ls='--', color='k')\n", + "ax.axhline(-5 / (const.elementary_charge / (const.Boltzmann * TEMPERATURE)))\n", + "ax2.axhline(0, ls='--', color='k')\n", + "ax.axhline(0 / (const.elementary_charge / (const.Boltzmann * TEMPERATURE)))\n", + "ax.set_xlim(0, 10*DEBYE_LENGTH)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "measured_potential_difference = -(phi[-1]+phi[0])\n", + "print('applied voltage', POTENTIAL_DIFF, 'measured voltage', measured_potential_difference,\n", + " 'relative deviation:', 1-measured_potential_difference/POTENTIAL_DIFF)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "## 4. Differential capacitance\n", + "\n", + "With the above knowledge, we can now easily assess the \n", + "differential capacitance of the system, i.e. change the applied voltage\n", + "difference and determine the corresponding surface charge density." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "sigma_vs_phi = []\n", + "MIN_PHI = 0.5\n", + "MAX_PHI = 14\n", + "N_PHI = 10\n", + "N_SAMPLES_EQUIL_CAP = 5\n", + "N_SAMPLES_CAP = 5\n", + "\n", + "# sample from high to low potential to improve sampling\n", + "for potential_diff in tqdm(np.linspace(MIN_PHI, MAX_PHI, N_PHI)[::-1]):\n", + "\n", + " system.electrostatics.solver = setup_electrostatic_solver(potential_diff)\n", + "\n", + " times=[]\n", + " e_total=[]\n", + " sigmas = []\n", + " for tm in range(N_SAMPLES_EQUIL_CAP):\n", + " system.integrator.run(STEPS_PER_SAMPLE)\n", + " times.append( system.time)\n", + " energy = system.analysis.energy()\n", + " e_total.append( energy['total']) \n", + "\n", + " for tm in range(N_SAMPLES_CAP):\n", + "\n", + " zs, density_accumulator_cation, density_accumulator_anion = setup_densityprofile_accumulators(bin_width = DEBYE_LENGTH/10.)\n", + "\n", + " system.auto_update_accumulators.clear()\n", + " system.auto_update_accumulators.add(density_accumulator_cation)\n", + " system.auto_update_accumulators.add(density_accumulator_anion)\n", + "\n", + " system.integrator.run(STEPS_PER_SAMPLE)\n", + " times.append( system.time)\n", + " energy = system.analysis.energy()\n", + " e_total.append( energy['total']) \n", + "\n", + " cation_profile_mean = density_accumulator_cation.mean()[0, 0, :]\n", + " anion_profile_mean = density_accumulator_anion.mean()[0, 0, :]\n", + "\n", + " sigmas.append(np.sum((cation_profile_mean-anion_profile_mean)[:int(len(zs)/2.)]) * (zs[1]-zs[0]))\n", + "\n", + " sigma_vs_phi.append([potential_diff, np.mean(sigmas), sem(sigmas)]) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "deletable": true, + "editable": true + }, + "outputs": [], + "source": [ + "f, ax = plt.subplots(figsize=(10, 6))\n", + "sigma_vs_phi = np.array(sigma_vs_phi)\n", + "x = np.linspace(0,sigma_vs_phi[:,0].max()*1.3)\n", + "phi_SI = sigma_vs_phi[:,0] / (const.elementary_charge / (const.Boltzmann * TEMPERATURE))\n", + "plt.errorbar(-sigma_vs_phi[:,1]*const.elementary_charge/const.nano**2, phi_SI, xerr=sigma_vs_phi[:,2]*const.elementary_charge/const.nano**2, fmt='o',label='Sim')\n", + "plt.plot(graham_sigma(x)*const.elementary_charge/const.nano**2,\n", + " x / (const.elementary_charge / (const.Boltzmann * TEMPERATURE)), label='Graham')\n", + "x = np.linspace(0,ax.get_ylim()[1])\n", + "plt.plot(EPSILON_R*const.epsilon_0*x/2/(DEBYE_LENGTH*const.nano),x, label='linear PB', ls='--')\n", + "plt.xlabel(r'$\\sigma\\,\\mathrm{[C/m^2]}$')\n", + "plt.ylabel(r'$\\Psi_0\\,\\mathrm{[V]}$')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "deletable": true, + "editable": true + }, + "source": [ + "## References\n", + "\n", + "[1] Conway, B. E. Electrochemical Supercapacitors; Springer US: Boston, MA, 1999. https://doi.org/10.1007/978-1-4757-3058-6.\n", + "\n", + "[2] Tyagi, S.; Arnold, A.; Holm, C. Electrostatic Layer Correction with Image Charges: A Linear Scaling Method to Treat Slab 2D+h Systems with Dielectric Interfaces. J. Chem. Phys. 2008, 129 (20), 204102. https://doi.org/10.1063/1.3021064.\n", + "\n", + "[3] Gouy, G. Constitution of the Electric Charge at the Surface of an Electrolyte. J. phys 1910, 9 (4), 457–467.\n", + "\n", + "[4] Chapman, D. L. A Contribution to the Theory of Electrocapillarity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1913, 25 (148), 475. https://doi.org/10.1080/14786440408634187.\n", + "\n", + "[5] Grahame, D. C. The Electrical Double Layer and the Theory of Electrocapillarity. Chem. Rev. 1947, 41 (3), 441–501. https://doi.org/10.1021/cr60130a002.\n", + "\n", + "[6] Tyagi, S.; Süzen, M.; Sega, M.; Barbosa, M.; Kantorovich, S. S.; Holm, C. An Iterative, Fast, Linear-Scaling Method for Computing Induced Charges on Arbitrary Dielectric Boundaries. J. Chem. Phys. 2010, 132 (15), 154112. https://doi.org/10.1063/1.3376011." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/testsuite/scripts/tutorials/CMakeLists.txt b/testsuite/scripts/tutorials/CMakeLists.txt index e93755f95ab..b79ce7c9638 100644 --- a/testsuite/scripts/tutorials/CMakeLists.txt +++ b/testsuite/scripts/tutorials/CMakeLists.txt @@ -61,6 +61,8 @@ tutorial_test(FILE test_ferrofluid_1.py) tutorial_test(FILE test_ferrofluid_2.py) tutorial_test(FILE test_ferrofluid_3.py) tutorial_test(FILE test_constant_pH__ideal.py) +tutorial_test(FILE test_electrodes_1.py) +tutorial_test(FILE test_electrodes_2.py) tutorial_test(FILE test_constant_pH__interactions.py) tutorial_test(FILE test_widom_insertion.py) diff --git a/testsuite/scripts/tutorials/test_electrodes_1.py b/testsuite/scripts/tutorials/test_electrodes_1.py new file mode 100644 index 00000000000..6724cf8afe6 --- /dev/null +++ b/testsuite/scripts/tutorials/test_electrodes_1.py @@ -0,0 +1,40 @@ +# Copyright (C) 2019-2022 The ESPResSo project +# +# This file is part of ESPResSo. +# +# ESPResSo is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# ESPResSo is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see . + +import unittest as ut +import importlib_wrapper +import numpy as np + +tutorial, skipIfMissingFeatures = importlib_wrapper.configure_and_import( + "@TUTORIALS_DIR@/electrodes/electrodes_part1.py", + script_suffix="@TEST_SUFFIX@") + + +@skipIfMissingFeatures +class Tutorial(ut.TestCase): + + def test_force(self): + msg = 'The force for particle 1 should agree with the analytical expression.' + np.testing.assert_allclose(tutorial.elc_forces_axial[:, 0], + tutorial.analytic_force_centered(tutorial.r / tutorial.BJERRUM_LENGTH, tutorial.box_l_z), rtol=1, err_msg=msg) + msg = 'The force for particle 2 should agree with the analytical expression.' + np.testing.assert_allclose(-tutorial.elc_forces_axial[:, 1], + tutorial.analytic_force_centered(tutorial.r / tutorial.BJERRUM_LENGTH, tutorial.box_l_z), rtol=1, err_msg=msg) + + +if __name__ == "__main__": + ut.main() diff --git a/testsuite/scripts/tutorials/test_electrodes_2.py b/testsuite/scripts/tutorials/test_electrodes_2.py new file mode 100644 index 00000000000..355f69e4b09 --- /dev/null +++ b/testsuite/scripts/tutorials/test_electrodes_2.py @@ -0,0 +1,68 @@ +# Copyright (C) 2019-2022 The ESPResSo project +# +# This file is part of ESPResSo. +# +# ESPResSo is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# ESPResSo is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see . + +import unittest as ut +import importlib_wrapper +import numpy as np +from scipy import constants + +params = {'N_SAMPLES_EQUIL': 25, 'N_SAMPLES_PROD': 5, + 'N_SAMPLES_EQUIL_CAP': 5, 'N_SAMPLES_CAP': 1, + 'MIN_PHI': 1, 'MAX_PHI': 2.5, 'N_PHI': 4} + +tutorial, skipIfMissingFeatures = importlib_wrapper.configure_and_import( + "@TUTORIALS_DIR@/electrodes/electrodes_part2.py", + script_suffix="@TEST_SUFFIX@", **params) + + +@skipIfMissingFeatures +class Tutorial(ut.TestCase): + + def test_potential_difference(self): + # Test that the applied potential difference equals the one from + # integrating Poisson equation (within 30 %) + msg = 'The potential difference is not equal to the one from integrating Poisson equation.' + self.assertAlmostEqual( + tutorial.measured_potential_difference / tutorial.POTENTIAL_DIFF, 1, delta=0.1, msg=msg) + + def test_charge_profile(self): + # Roughly test the profile, deviations are expected!! + charge_profile = ( + tutorial.cation_profile_mean + + tutorial.anion_profile_mean) + analytic = (tutorial.gouy_chapman_density(tutorial.zs, tutorial.CONCENTRATION, tutorial.DEBYE_LENGTH, -tutorial.POTENTIAL_DIFF / 2.) + + tutorial.gouy_chapman_density(tutorial.box_l_z - tutorial.HS_ION_SIZE - tutorial.zs, tutorial.CONCENTRATION, tutorial.DEBYE_LENGTH, tutorial.POTENTIAL_DIFF / 2.)) / 2. + msg = 'The density profile is not sufficiently equal to PB theory.' + np.testing.assert_allclose( + charge_profile, + analytic, + rtol=5e-2, + atol=5e-2, + err_msg=msg) + + def test_capacitance(self): + # For low potentials the capacitance should be in line with Graham/DH + # equilibration limiting (2.5 minutes total) + graham = -tutorial.sigma_vs_phi[:, 0] / ( + constants.elementary_charge / (constants.Boltzmann * tutorial.TEMPERATURE)) + msg = 'The capacitance at low potentials should be in line with Graham/DH.' + np.testing.assert_allclose( + graham, tutorial.sigma_vs_phi[:, 1], atol=.015, err_msg=msg) + + +if __name__ == "__main__": + ut.main()