forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ConvolutionMM2d.cu
503 lines (438 loc) · 16.1 KB
/
ConvolutionMM2d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/AccumulateType.h>
#include <ATen/Dispatch.h>
#include <ATen/div_rtn.h>
#include <ATen/cuda/CUDABlas.h>
#include <ATen/native/ConvUtils.h>
#include <ATen/native/Resize.h>
#include <ATen/native/cuda/im2col.cuh>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_slow_conv2d_forward_native.h>
#include <ATen/ops/_slow_conv2d_backward_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/sum.h>
#endif
namespace at { namespace native {
namespace {
void slow_conv2d_shape_check(
const Tensor& input, const Tensor& grad_output,
const Tensor& weight, const Tensor& bias,
int64_t kH, int64_t kW,
int64_t dH, int64_t dW,
int64_t padH, int64_t padW,
bool weight_nullable) {
TORCH_CHECK(kW > 0 && kH > 0,
"kernel size should be greater than zero, but got kH: ", kH, " kW: ", kW);
TORCH_CHECK(dW > 0 && dH > 0,
"stride should be greater than zero, but got dH: ", dH, " dW: ", dW);
TORCH_CHECK(weight_nullable || weight.defined(),
"weight tensor is expected to be non-nullable");
TORCH_CHECK(!weight.defined() ||
((weight.numel() > 0) && (weight.dim() == 2)),
"non-empty 2D weight tensor expected, but got: ", weight.sizes());
TORCH_CHECK(!bias.defined() || (bias.dim() == 1 && bias.sizes()[0] == weight.sizes()[0]),
"Expected bias to have shape [", weight.sizes()[0], "] but got ", bias.sizes());
const auto in_sizes = input.sizes();
constexpr int ndim = 4;
constexpr int dimf = 1;
constexpr int dimh = 2;
constexpr int dimw = 3;
TORCH_CHECK(in_sizes.size() == ndim, "Expected 4D input tensor, but got ", in_sizes);
// Allow for empty batch size but not other dimensions
const bool valid_empty = c10::multiply_integers(in_sizes.slice(1)) != 0;
TORCH_CHECK(valid_empty, "non-empty input tensor expected but got: ", in_sizes);
int64_t inputHeight = in_sizes[dimh];
int64_t inputWidth = in_sizes[dimw];
int64_t exactInputHeight = inputHeight + 2 * padH;
int64_t exactInputWidth = inputWidth + 2 * padW;
TORCH_CHECK(exactInputHeight >= kH && exactInputWidth >= kW,
"Calculated padded input size per channel: ",
IntArrayRef{exactInputHeight, exactInputWidth},
". Kernel size: ", IntArrayRef{kH, kW},
". Kernel size can't be greater than actual input size");
// NOTE: can't use conv_output_size if the weight isn't defined
auto outputHeight = div_rtn<int64_t>(exactInputHeight - kH, dH) + 1;
auto outputWidth = div_rtn<int64_t>(exactInputWidth - kW, dW) + 1;
TORCH_CHECK(outputWidth >= 1 && outputHeight >= 1,
"Given input size per channel: ",
IntArrayRef{inputHeight, inputWidth},
". Calculated output size per channel: ",
IntArrayRef{outputHeight, outputWidth},
". Output size is too small");
if (weight.defined()) {
const auto w_sizes = weight.sizes();
int64_t nInputPlane = w_sizes[1];
if (w_sizes.size() == 2) {
nInputPlane /= (kH * kW);
}
TORCH_CHECK(in_sizes[dimf] == nInputPlane,
"Expected input dim ", dimf, " to have size ", nInputPlane,
" but got ", in_sizes[dimf]);
}
if (grad_output.defined()) {
const auto gO_sizes = grad_output.sizes();
TORCH_CHECK(gO_sizes.size() == ndim,
"Expected grad_output to have ", ndim,
" dimensions but got shape", gO_sizes);
if (weight.defined()) {
const auto w_sizes = weight.sizes();
TORCH_CHECK(gO_sizes[dimf] == w_sizes[0],
"Expected dim ", dimf, " to have size ", w_sizes[0],
" but got ", gO_sizes[dimf]);
} else if (bias.defined()) {
const auto b_sizes = bias.sizes();
int64_t nOutputPlane = b_sizes.size() == 0 ? 1 : b_sizes[0];
TORCH_CHECK(gO_sizes[dimf] == nOutputPlane,
"Expected grad_output dim ", dimf, " to have size ",
nOutputPlane, " but got ", gO_sizes[dimf]);
}
TORCH_CHECK(gO_sizes[dimh] == outputHeight,
"Expected grad_output dim ", dimh, " to have size ",
outputHeight, " but got ", gO_sizes[dimh]);
TORCH_CHECK(gO_sizes[dimw] == outputWidth,
"Expected grad_output dim ", dimw, " to have size ",
outputWidth, " but got ", gO_sizes[dimw]);
}
}
Tensor new_view_weight_MM2d(const Tensor& weight_) {
auto weight = weight_.expect_contiguous();
const auto w_sizes = weight->sizes();
TORCH_CHECK(w_sizes.size() == 4);
int64_t s1 = w_sizes[0];
int64_t s2 = c10::multiply_integers(w_sizes.slice(1));
return weight->view({s1, s2});
}
void slow_conv2d_forward(
const Tensor &input,
const Tensor &output,
const Tensor &weight_,
const Tensor &bias,
int64_t kH, int64_t kW,
int64_t dH, int64_t dW,
int64_t padH, int64_t padW) {
auto weight = new_view_weight_MM2d(weight_);
slow_conv2d_shape_check(
input, {}, weight, bias, kH, kW, dH, dW, padH, padW, /*weight_nullable*/false);
constexpr int dimf = 1;
constexpr int dimh = 2;
constexpr int dimw = 3;
auto in_sizes = input.sizes();
int64_t batchSize = in_sizes[0];
int64_t nInputPlane = in_sizes[dimf];
int64_t inputHeight = in_sizes[dimh];
int64_t inputWidth = in_sizes[dimw];
int64_t nOutputPlane = weight.sizes()[0];
int64_t outputHeight = (inputHeight + 2*padH - kH) / dH + 1;
int64_t outputWidth = (inputWidth + 2*padW - kW) / dW + 1;
// Resize output
resize_output(output, {batchSize, nOutputPlane, outputHeight, outputWidth});
// Create temporary columns
at::Tensor columns;
const bool requires_columns = (
kW != 1 || kH != 1 || dW != 1 || dH != 1 || padH != 0 || padW != 0);
if (requires_columns) {
columns = at::empty({nInputPlane * kW * kH, outputHeight * outputWidth}, input.options());
}
if (bias.defined()) {
TORCH_CHECK(bias.scalar_type() == input.scalar_type(),
"Expected bias to have type ", input.scalar_type(),
" but got ", bias.scalar_type());
output.copy_(bias.view({-1, 1, 1}));
} else {
output.zero_();
}
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
"slow_conv2d_cuda", [&] {
// For each elt in batch, do:
for (int elt = 0; elt < batchSize; elt ++) {
// Matrix mulitply per output:
auto input_n = input.select(0, elt);
auto output_n = output.select(0, elt);
if (requires_columns) {
// Extract columns:
at::native::im2col(
c10::cuda::getCurrentCUDAStream(),
input_n.data_ptr<scalar_t>(),
nInputPlane, inputHeight, inputWidth,
outputHeight, outputWidth,
kH, kW, padH, padW, dH, dW,
1, 1,
columns.data_ptr<scalar_t>()
);
}
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
int64_t m = nOutputPlane;
int64_t n = outputHeight * outputWidth;
int64_t k = nInputPlane*kH*kW;
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
auto gemm_in_ptr = requires_columns ?
columns.data_ptr<scalar_t>() :
input_n.data_ptr<scalar_t>();
at::cuda::blas::gemm(
'n', 'n',
n, m, k,
scalar_t(1),
gemm_in_ptr, n,
weight.data_ptr<scalar_t>(), k,
scalar_t(1),
output_n.data_ptr<scalar_t>(), n
);
}
});
}
void slow_conv2d_backward(
const Tensor &input,
const Tensor &grad_output,
const Tensor &grad_input,
const Tensor &weight_,
const Tensor &grad_columns,
int kH, int kW,
int dH, int dW,
int padH, int padW) {
Tensor weight = new_view_weight_MM2d(weight_);
slow_conv2d_shape_check(input, grad_output, weight, {},
kH, kW, dH, dW, padH, padW, /*weight_nullable=*/false);
// Params
auto weight_sizes = weight.sizes();
int nInputPlane = weight_sizes[1]/(kW*kH);
int nOutputPlane = weight_sizes[0];
TORCH_INTERNAL_ASSERT(grad_output.is_contiguous());
auto input_sizes = input.sizes();
int64_t inputWidth = input_sizes[3];
int64_t inputHeight = input_sizes[2];
auto output_sizes = grad_output.sizes();
int64_t outputWidth = output_sizes[3];
int64_t outputHeight = output_sizes[2];
// Batch size + input planes
int64_t batchSize = input_sizes[0];
// Resize output
resize_output(grad_input, input_sizes);
TORCH_CHECK(grad_input.is_contiguous(), "grad_input must be contiguous");
// Resize temporary columns
resize_output(grad_columns, {nInputPlane*kW*kH, outputHeight*outputWidth});
TORCH_CHECK(grad_columns.is_contiguous(), "grad_columns must be contiguous");
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
"slow_conv2d_backward_cuda", [&] {
// For each elt in batch, do:
for (int elt = 0; elt < batchSize; elt ++) {
// Matrix mulitply per sample:
auto grad_input_n = grad_input.select(0, elt);
auto grad_output_n = grad_output.select(0, elt);
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
int64_t m = nInputPlane*kW*kH;
int64_t n = grad_columns.sizes()[1];
int64_t k = nOutputPlane;
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
at::cuda::blas::gemm<scalar_t>(
'n', 't',
n, m, k,
scalar_t(1),
grad_output_n.data_ptr<scalar_t>(), n,
weight.data_ptr<scalar_t>(), m,
scalar_t(0),
grad_columns.data_ptr<scalar_t>(), n
);
// Unpack columns back into input:
using acc_t = at::acc_type<scalar_t, true>;
at::native::col2im<scalar_t, acc_t>(
c10::cuda::getCurrentCUDAStream(),
grad_columns.data_ptr<scalar_t>(),
nInputPlane, inputHeight, inputWidth, outputHeight, outputWidth, kH, kW, padH, padW, dH, dW,
1, 1, grad_input_n.data_ptr<scalar_t>()
);
}
});
}
void slow_conv2d_grad_weight(
const Tensor &input,
const Tensor &grad_output,
const Tensor &grad_weight_,
const Tensor &columns,
int64_t kH, int64_t kW,
int64_t dH, int64_t dW,
int64_t padH, int64_t padW) {
TORCH_CHECK(grad_weight_.is_contiguous(), "grad_weight needs to be contiguous");
auto grad_weight = new_view_weight_MM2d(grad_weight_);
slow_conv2d_shape_check(input, grad_output, grad_weight, {},
kH, kW, dH, dW, padH, padW, /*weight_nullable=*/true);
// Params
TORCH_INTERNAL_ASSERT(input.is_contiguous());
TORCH_INTERNAL_ASSERT(grad_output.is_contiguous());
auto input_sizes = input.sizes();
int64_t nInputPlane = input_sizes[1];
int64_t nOutputPlane = grad_output.sizes()[1];
int64_t inputWidth = input_sizes[3];
int64_t inputHeight = input_sizes[2];
int64_t outputWidth = (inputWidth + 2*padW - kW) / dW + 1;
int64_t outputHeight = (inputHeight + 2*padH - kH) / dH + 1;
// Batch size + input planes
int64_t batchSize = input_sizes[0];
// Resize temporary columns
resize_output(columns, {nInputPlane * kH * kW, outputHeight * outputWidth});
const bool requires_columns = (
kW != 1 || kH != 1 || dW != 1 || dH != 1 || padH != 0 || padW != 0);
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(),
"slow_conv2d_grad_weight_cuda", [&] {
// For each elt in batch, do:
for (int elt = 0; elt < batchSize; elt ++) {
// Matrix mulitply per output:
auto grad_output_n = grad_output.select(0, elt);
// Matrix mulitply per output:
auto input_n = input.select(0, elt);
if (requires_columns) {
// Extract columns:
at::native::im2col<scalar_t>(
c10::cuda::getCurrentCUDAStream(),
input_n.data_ptr<scalar_t>(),
nInputPlane, inputHeight, inputWidth,
outputHeight, outputWidth,
kH, kW, padH, padW, dH, dW,
1, 1,
columns.data_ptr<scalar_t>()
);
}
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
int64_t m = nOutputPlane;
int64_t n = nInputPlane*kW*kH;
int64_t k = columns.sizes()[1];
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
auto gemm_in_ptr = requires_columns ?
columns.data_ptr<scalar_t>() :
input_n.data_ptr<scalar_t>();
at::cuda::blas::gemm(
't', 'n',
n, m, k,
scalar_t(1),
gemm_in_ptr, k,
grad_output_n.data_ptr<scalar_t>(), k,
scalar_t(1),
grad_weight.data_ptr<scalar_t>(), n
);
}
});
}
} // namespace (anonymous)
Tensor& slow_conv2d_forward_out_cuda(
const Tensor &self_,
const Tensor &weight_,
IntArrayRef kernel_size,
const c10::optional<Tensor> &bias_,
IntArrayRef stride,
IntArrayRef padding,
Tensor &output) {
TORCH_CHECK(kernel_size.size() == 2);
TORCH_CHECK(stride.size() == 2);
TORCH_CHECK(padding.size() == 2);
auto self = self_.expect_contiguous();
auto weight = weight_.expect_contiguous();
auto bias = [&] {
if (bias_.has_value() && bias_->defined()) {
return bias_->expect_contiguous();
}
return MaybeOwned<Tensor>::owned(c10::in_place);
}();
slow_conv2d_forward(
*self,
output,
*weight,
*bias,
kernel_size[0], kernel_size[1],
stride[0], stride[1],
padding[0], padding[1]
);
return output;
}
Tensor slow_conv2d_forward_cuda(
const Tensor &self,
const Tensor &weight,
IntArrayRef kernel_size,
const c10::optional<Tensor> &bias,
IntArrayRef stride,
IntArrayRef padding) {
auto output = at::empty({0}, self.options());
return slow_conv2d_forward_out_cuda(
self, weight, kernel_size, bias, stride, padding, output);
}
std::tuple<Tensor&, Tensor&, Tensor&> slow_conv2d_backward_out_cuda(
const Tensor& grad_output_,
const Tensor& self_,
const Tensor& weight_,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
Tensor& grad_input,
Tensor& grad_weight,
Tensor& grad_bias) {
auto grad_output = grad_output_.expect_contiguous();
Tensor columns = at::empty({0}, self_.options());
if (grad_input.defined()) {
resize_output(grad_input, self_.sizes());
auto weight = weight_.expect_contiguous();
slow_conv2d_backward(
self_, *grad_output,
grad_input, *weight,
columns,
kernel_size[0], kernel_size[1],
stride[0], stride[1],
padding[0], padding[1]);
}
if (grad_bias.defined()) {
at::sum_out(grad_bias, *grad_output, IntArrayRef{0, 2, 3});
}
if (grad_weight.defined()) {
resize_output(grad_weight, weight_.sizes());
grad_weight.zero_();
auto self = self_.expect_contiguous();
slow_conv2d_grad_weight(
*self,
*grad_output,
grad_weight,
columns,
kernel_size[0], kernel_size[1],
stride[0], stride[1],
padding[0], padding[1]
);
}
return std::tuple<Tensor&, Tensor&, Tensor&>{
grad_input, grad_weight, grad_bias};
}
std::tuple<Tensor, Tensor, Tensor> slow_conv2d_backward_cuda(
const Tensor& grad_output,
const Tensor& self,
const Tensor& weight,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
std::array<bool, 3> output_mask) {
Tensor grad_input;
Tensor grad_weight;
Tensor grad_bias;
if (output_mask[0]) {
grad_input = at::empty({0}, grad_output.options());
}
if (output_mask[1]) {
grad_weight = at::empty({0}, grad_output.options());
}
if (output_mask[2]) {
grad_bias = at::empty({0}, grad_output.options());
}
return native::slow_conv2d_backward_out_cuda(
grad_output,
self,
weight,
kernel_size,
stride,
padding,
grad_input,
grad_weight,
grad_bias);
}
} // namespace native
} // namespace at