forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Distributions.cu
207 lines (185 loc) · 7.94 KB
/
Distributions.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/native/cuda/Distributions.h>
#include <ATen/Dispatch.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAGeneratorImpl.h>
#include <ATen/native/UnaryOps.h>
#include <ATen/native/cuda/DistributionTemplates.h>
#include <curand.h>
#include <curand_kernel.h>
#include <curand_philox4x32_x.h>
#include <utility>
#include <functional>
#include <ATen/native/Distributions.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/TensorIterator.h>
#include <cstdint>
#include <limits>
#include <utility>
#include <type_traits>
/**
* Note [Register spilling in curand call for CUDA < 10]
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* For CUDA < 10, curandStatePhilox4_32_10_t engine achieves poor performance (60% SOL bandwidth)
* when called to generate one random number at a time. This is because the line
* unsigned ret = (&state->output.x)[state->STATE++];
* in
* QUALIFIERS unsigned int curand(curandStatePhilox4_32_10_t *state)
* in curand_kernel.h dynamically indexes into state.output, preventing the compiler from ever
* storing state.output in registers.
*
* CUDA 10 fixed this problem. However, for backwards compatibility, in the following kernels
* we are using curand distributions that utilize curand4 call. curand4 call doesn't have the
* register spilling problem.
*/
namespace {
template <typename scalar_t>
void poisson_cuda_kernel(
const at::TensorBase &ret,
const at::TensorBase &lambda,
at::PhiloxCudaState philox_args) {
auto functor = [philox_args] __device__(
scalar_t & ret_val, const scalar_t& lambda) {
auto seeds = at::cuda::philox::unpack(philox_args);
curandStatePhilox4_32_10_t state;
curand_init(std::get<0>(seeds),
blockIdx.x * blockDim.x + threadIdx.x,
std::get<1>(seeds),
&state);
ret_val = static_cast<scalar_t>(curand_poisson(&state, lambda));
};
at::cuda::CUDA_tensor_apply2<scalar_t, scalar_t, decltype(functor),
/*max_threads_per_block=*/512,
/*min_blocks_per_sm==*/2>(ret, lambda, functor);
}
struct curand_uniform_wrapper {
curandStatePhilox4_32_10_t &state;
__device__ curand_uniform_wrapper(curandStatePhilox4_32_10_t &state): state(state) {}
__device__ float operator()() {
uint32_t val = curand(&state); //need just bits
constexpr auto MASK = static_cast<uint32_t>((static_cast<uint64_t>(1) << std::numeric_limits<float>::digits) - 1);
constexpr auto DIVISOR = static_cast<float>(1) / (static_cast<uint32_t>(1) << std::numeric_limits<float>::digits);
return (val & MASK) * DIVISOR;
}
};
template <typename scalar_t>
void binomial_cuda_kernel(
at::TensorIteratorBase &iter,
at::PhiloxCudaState philox_args) {
using accscalar_t = at::acc_type<scalar_t, true>;
at::native::distribution_binary_kernel(iter, philox_args,
[] GPU_LAMBDA (curandStatePhilox4_32_10_t& state, scalar_t count, scalar_t prob) {
#if defined(__CUDA_ARCH__) || defined(USE_ROCM)
auto uniform_lambda = curand_uniform_wrapper(state);
BaseSampler<accscalar_t, decltype(uniform_lambda)> standard_uniform(uniform_lambda);
auto sample = sample_binomial<scalar_t, accscalar_t, decltype(uniform_lambda)>(count, prob, standard_uniform);
return static_cast<scalar_t>(sample);
#else
return count; // useless.
#endif
}
);
}
template <typename scalar_t>
void gamma_cuda_kernel(
const at::TensorBase &ret,
const at::TensorBase &alpha,
at::PhiloxCudaState philox_args) {
using accscalar_t = at::acc_type<scalar_t, true>;
auto functor = [philox_args] __device__(
scalar_t & ret_val, const scalar_t& alpha) {
auto seeds = at::cuda::philox::unpack(philox_args);
curandStatePhilox4_32_10_t state;
curand_init(std::get<0>(seeds),
blockIdx.x * blockDim.x + threadIdx.x,
std::get<1>(seeds),
&state);
auto uniform_lambda = [&state] __device__ () {
return curand_uniform(&state);
};
BaseSampler<accscalar_t, decltype(uniform_lambda)> standard_uniform(uniform_lambda);
auto normal_lambda = [&state] __device__ () {
return curand_normal(&state);
};
BaseSampler<accscalar_t, decltype(normal_lambda)> standard_normal(normal_lambda);
auto sample = sample_gamma<scalar_t, accscalar_t, decltype(uniform_lambda), decltype(normal_lambda)>(alpha, standard_uniform, standard_normal);
auto min_value = std::numeric_limits<scalar_t>::min();
ret_val = (min_value > sample) ? min_value : sample;
};
at::cuda::CUDA_tensor_apply2<scalar_t, scalar_t, decltype(functor),
/*max_threads_per_block=*/256,
/*min_blocks_per_sm==*/2>(ret, alpha, functor);
}
} // namespace
namespace at { namespace native {
void launch_dirichlet_kernel(at::TensorIteratorBase &iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16,
iter.input_dtype(), "dirichlet_cuda", [&] {
at::native::gpu_kernel(
iter,
[] GPU_LAMBDA (scalar_t gamma, scalar_t gamma_sum) {
auto ret_val = gamma / gamma_sum;
auto min_value = std::numeric_limits<scalar_t>::min();
auto max_value = 1 - std::numeric_limits<scalar_t>::epsilon();
ret_val = (min_value > ret_val) ? min_value : ret_val;
ret_val = (max_value < ret_val) ? max_value : ret_val;
return ret_val;
});
});
}
void launch_poisson_cuda_kernel(
const TensorBase &ret, const TensorBase &lambda, CUDAGeneratorImpl *gen) {
PhiloxCudaState rng_engine_inputs;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
rng_engine_inputs = gen->philox_cuda_state(20);
}
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, ret.scalar_type(), "poisson_cuda", [&] {
poisson_cuda_kernel<scalar_t>(ret, lambda, rng_engine_inputs);
});
}
void launch_binomial_cuda_kernel(
TensorIteratorBase &iter, CUDAGeneratorImpl *gen) {
PhiloxCudaState rng_engine_inputs;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
rng_engine_inputs = gen->philox_cuda_state(42);
}
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.input_dtype(), "binomial_cuda", [&] {
binomial_cuda_kernel<scalar_t>(iter, rng_engine_inputs);
});
}
void launch_gamma_kernel(
const TensorBase &ret, const TensorBase &alpha, CUDAGeneratorImpl *gen) {
PhiloxCudaState rng_engine_inputs;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
rng_engine_inputs = gen->philox_cuda_state(10);
}
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, ret.scalar_type(), "gamma_cuda", [&] {
gamma_cuda_kernel<scalar_t>(ret, alpha, rng_engine_inputs);
});
}
void launch_standard_gamma_grad_kernel(TensorIteratorBase &iter) {
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.input_dtype(), "_standard_gamma_grad_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
gpu_kernel(iter,
[] GPU_LAMBDA (scalar_t self_val, scalar_t output_val) {
return standard_gamma_grad_one<scalar_t, accscalar_t>(self_val, output_val);
});
});
}
void launch_dirichlet_grad_kernel(TensorIteratorBase &iter) {
AT_DISPATCH_FLOATING_TYPES(iter.input_dtype(), "_dirichlet_grad_cuda", [&] {
using accscalar_t = at::acc_type<scalar_t, true>;
at::native::gpu_kernel(iter,
[] GPU_LAMBDA (scalar_t x_val, scalar_t alpha_val, scalar_t total_val) -> scalar_t {
return dirichlet_grad_one<scalar_t, accscalar_t>(x_val, alpha_val, total_val);
});
});
}
}} // namespace at::native