forked from ROCm/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
control_ops_grad.py
706 lines (600 loc) · 28.2 KB
/
control_ops_grad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
## @package control_ops_grad
# Module caffe2.python.control_ops_grad
from caffe2.proto import caffe2_pb2
def gen_do_gradient(op, g_output):
"""
Generates gradient Do operator, given forward Do op and a list
of gradient blobs corresponding to forward op's outputs
Returns a gradient op and a list of blobs corresponding to input gradients
"""
from caffe2.python.core import BlobReference
subnet, outer_to_inner_map, inner_to_outer_map, workspace_blob_name = \
_do_op_sanity_check_and_process(op)
assert len(g_output) == len(op.output), \
"Different number of gradient blobs and Do op outputs"
grad_ops, deduped_g_output = dedupe_g_output(op, g_output)
g_output = deduped_g_output
# From the outer net point of view:
# Do is an operator that has some number of inputs and outputs;
# we have to generate a gradient operator that writes into
# corresponding input gradient blobs and has access to inputs, outputs
# and gradient output blobs
# From the inner net point of view:
# Do is an operator with a subnet and blob bindings,
# we need to forward Do's output blob gradients into inner workspace,
# use them to run backward pass generation and forward Do's input blob
# gradients back into outer workspace
op_output = [str(o) for o in op.output]
op_output = op_output[:-1] # remove workspace pointer blob
op_input = [str(i) for i in op.input]
op_input = op_input[:-1] # remove workspace pointer blob
ordered_inner_output_blob_names = [outer_to_inner_map[o] for o in op_output]
backward_pass_initial_grad_map = {}
initial_grad_map = {}
for inner_output_name, outer_grad_output_name in \
zip(ordered_inner_output_blob_names, g_output):
# link inner_output_name to corresponding inner_grad_output_name for
# backward pass generation;
if outer_grad_output_name:
inner_grad_output_name = inner_output_name + "/_DO_OPERATOR_INNER_GRAD_"
backward_pass_initial_grad_map[BlobReference(inner_output_name)] = \
BlobReference(inner_grad_output_name)
initial_grad_map[inner_grad_output_name] = str(outer_grad_output_name)
assert len(initial_grad_map) > 0, "Empty initial gradient map for Do op"
inner_grad_ops, inner_grad_names_map = _gen_subgradient_pass(
subnet, backward_pass_initial_grad_map)
if len(inner_grad_ops) == 0:
return [], []
grad_copy_ops = []
g_input = []
new_op_outputs = []
new_blob_bindings = {}
for outer_input_name in op_input:
inner_input_name = outer_to_inner_map[outer_input_name]
if inner_input_name in inner_grad_names_map:
inner_grad_input_name = inner_grad_names_map[inner_input_name]
outer_grad_input_name = outer_input_name + "_grad"
# It is possible that inner_grad_input_name will need to be
# linked to another outer blob. For example:
#
# // y - param initialized in init_net
# x = ...
# z = ...
# with ops.IfNet(...):
# ops.Add([z, x], y) # inner Do block
# loss = f(..., y, ...)
#
# In this case x, y and z are external for the inner Do block,
# the inputs of the Do block are z and x and the output is y.
# When computing the gradient of input x given the gradient
# of output y it's easy to see that they are equal.
# During the generation of gradient Do operator, we link
# external gradient y (y_grad) to the internal name
# (y/_DO_OPERATOR_INNER_GRAD_) and generate the backward pass
# for the internal Do net. As a result we get gradient operators
# for the gradient Do and gradient map that maps internal Do
# blobs to their computed gradients.
# In this example, gradient map may have blob x linked to
# gradient blob y/_DO_OPERATOR_INNER_GRAD_.
# We should export gradient for x outside of Do, so
# we add a blob mapping from inner gradient blob
# (y/_DO_OPERATOR_INNER_GRAD_) to a new outer name (x_grad).
#
# (Note: since we use transparent blob mapping between outer and
# inner (Do's) workspace, these operations do not involve copying
# but are merely using blobs in outer workspace in the Do's operator
# workspace under (possibly) different names)
#
# At the same time, we need to add a blob mapping from inner name
# y/_DO_OPERATOR_INNER_GRAD_ to the outer blob y_grad
# Hence in this case, we cannot use existing blob mapping scheme
# that requires a bijection between subset of inner blob names and
# a set of all (Do's input and output) outer blob names
# TODO(iliacher): Remove unnecessary blob copying
new_inner_grad_input_name = \
inner_input_name + "/_DO_OPERATOR_INNER_GRAD_COPY_"
grad_copy_ops.append(_prepare_blob_copy_op(
inner_grad_input_name, new_inner_grad_input_name))
new_blob_bindings[new_inner_grad_input_name] = outer_grad_input_name
new_op_outputs.append(outer_grad_input_name)
g_input.append(outer_grad_input_name)
else:
g_input.append(None)
new_op_inputs = []
overwritten_names = set()
saved_local_blob_names = set()
for grad_op in inner_grad_ops:
grad_op_input = [str(i) for i in grad_op.input]
grad_op_output = [str(o) for o in grad_op.output]
for grad_op_input_name in grad_op_input:
if grad_op_input_name in overwritten_names:
continue
# check if this is an external blob
outer_name = inner_to_outer_map.get(grad_op_input_name, None)
if not outer_name:
# check if this is an external gradient blob
outer_name = initial_grad_map.get(grad_op_input_name, None)
if outer_name:
outer_name = str(outer_name)
if outer_name not in new_op_inputs:
new_op_inputs.append(outer_name)
new_blob_bindings[grad_op_input_name] = outer_name
else:
# this is a local blob, we'll get it's value from
# a saved forward op workspace
saved_local_blob_names.add(grad_op_input_name)
overwritten_names.update(grad_op_output)
# add inner gradient copy ops
inner_grad_ops += grad_copy_ops
gradient_do_def = _prepare_gradient_do_op(
fwd_op=op,
fwd_net=subnet,
grad_ops=inner_grad_ops,
inputs=new_op_inputs,
outputs=new_op_outputs,
blob_bindings=new_blob_bindings,
saved_fwd_blobs=saved_local_blob_names,
workspace_blob_name=workspace_blob_name)
grad_ops.append(gradient_do_def)
_do_op_sanity_check_and_process(gradient_do_def)
return grad_ops, g_input
def dedupe_g_output(op, g_output):
# When generation a gradient op it's possible to receive the same gradient
# blob corresponding to different forward op output blobs, Do operator
# requires a bijection between inner and outer names, make sure we do
# deduplication
grad_ops = []
deduped_g_output = []
init_grad_map = {}
for output_name, grad_name in zip(op.output, g_output):
if not grad_name:
deduped_g_output.append(grad_name)
continue
if output_name in init_grad_map:
deduped_g_output.append(init_grad_map[output_name])
else:
if grad_name not in init_grad_map.values():
init_grad_map[output_name] = grad_name
deduped_g_output.append(grad_name)
else:
deduped_grad_name = output_name + "_" + grad_name + "_DEDUP"
assert deduped_grad_name not in init_grad_map.values()
grad_copy_op = caffe2_pb2.OperatorDef()
grad_copy_op.type = "Copy"
grad_copy_op.input.extend([grad_name])
grad_copy_op.output.extend([deduped_grad_name])
grad_ops.append(grad_copy_op)
deduped_g_output.append(deduped_grad_name)
init_grad_map[output_name] = deduped_grad_name
return grad_ops, deduped_g_output
def gen_while_gradient(op, g_output):
"""
Generates gradient While operator
"""
from caffe2.python.core import BlobReference
assert op.type == "While", "Expected While op"
assert len(op.input) > 0, "Expected at least one input in While op"
assert len(op.output) == len(g_output), \
"Different number of gradient blobs and While op outputs"
grad_ops, deduped_g_output = dedupe_g_output(op, g_output)
g_output = deduped_g_output
init_grad_map = {}
op_output = [str(o) for o in op.output]
for output_name, grad_output_name in zip(op_output, g_output):
if grad_output_name:
init_grad_map[BlobReference(output_name)] = \
BlobReference(grad_output_name)
assert len(init_grad_map) > 0, "Empty initial gradient map for While op"
loop_net = _get_net_argument(op, "loop_net")
assert loop_net, "Expected loop subnet in While op"
assert len(loop_net.op) == 1 and loop_net.op[0].type == "Do", \
"Gradient While op requires single Do op as a loop body"
do_op = loop_net.op[0]
do_args = _get_do_arguments(do_op)
assert "reuse_workspace" not in do_args or not do_args["reuse_workspace"], \
"Gradient While op requires Do loop body op without reuse_workspace set"
assert len(do_op.output) > 0, "Expected Do op with at least one output"
workspace_blob = do_op.output[-1]
loop_grad_net, loop_grad_map, loop_input_names, loop_output_names = \
_gen_subnet_gradient(loop_net, init_grad_map)
assert loop_grad_net, "Failed to get gradient net for loop body in While op"
grad_ops += _prepare_gradient_while_ops(
fwd_op=op,
input_names=loop_input_names,
output_names=loop_output_names,
loop_grad_net=loop_grad_net,
workspace_blob=workspace_blob,
init_grad_map=init_grad_map,
loop_grad_map=loop_grad_map)
op_input = [str(i) for i in op.input]
g_input = [loop_grad_map.get(i, None) for i in op_input]
return grad_ops, g_input
# Constructs gradient While op, arguments:
# fwd_op - forward While op
# input_names - input blob names for a gradient op
# output_names - output blob names for a gradient op
# loop_grad_net - gradient loop body net
# workspace_blob - blob that holds forward workspaces stack
# init_grad_map - initial gradient to forward blob map
# loop_grad_map - gradient blob map for loop's body
def _prepare_gradient_while_ops(
fwd_op, input_names, output_names, loop_grad_net, workspace_blob,
init_grad_map, loop_grad_map):
gradient_while_def = caffe2_pb2.OperatorDef()
gradient_while_def.CopyFrom(fwd_op)
if gradient_while_def.name:
gradient_while_def.name += "_grad"
loop_net_arg = caffe2_pb2.Argument()
loop_net_arg.name = "loop_net"
loop_net_arg.n.CopyFrom(loop_grad_net)
cond_net_arg = caffe2_pb2.Argument()
cond_net_arg.name = "cond_net"
from caffe2.python.core import Net, BlobReference
# Construct condition net - check that there're still forward workspaces
# left using HasScope op
cond_net = Net('gradient_loop_cond_net')
cond_init_net = Net('gradient_loop_cond_net_init')
cond_blob = cond_net.NextScopedBlob(cond_net.Name() + '/cond')
cond_init_net.HasScope(workspace_blob, cond_blob)
cond_net.HasScope(workspace_blob, cond_blob)
for blob, init_grad_blob in init_grad_map.items():
blob_name = str(blob)
init_grad_blob_name = str(init_grad_blob)
if blob_name in loop_grad_map and \
loop_grad_map[blob_name] != init_grad_blob_name:
cond_net.Copy(
BlobReference(loop_grad_map[blob_name]), init_grad_blob)
cond_init_net.Copy(
init_grad_blob, BlobReference(loop_grad_map[blob_name]))
cond_net_arg.n.CopyFrom(cond_net.Proto())
del gradient_while_def.arg[:]
gradient_while_def.arg.extend([loop_net_arg, cond_net_arg])
del gradient_while_def.control_input[:]
del gradient_while_def.input[:]
gradient_while_def.input.extend(
[str(cond_blob).encode('utf-8')] + list(input_names))
del gradient_while_def.output[:]
gradient_while_def.output.extend(output_names)
gradient_while_def.is_gradient_op = True
return [o for o in cond_init_net.Proto().op] + [gradient_while_def]
def _get_do_arguments(do_op):
assert do_op.type == "Do", "Expected Do op"
args = {}
for arg in do_op.arg:
if not arg.name:
continue
if arg.name == "net":
assert arg.n, "Expected non empty net argument"
args["net"] = arg.n
elif arg.name == "reuse_workspace":
assert arg.i, "Expected non empty reuse_workspace argument"
args["reuse_workspace"] = bool(arg.i)
elif arg.name == "inner_blobs":
assert arg.strings, "Expected non empty inner_blobs argument"
args["inner_blobs"] = arg.strings
elif arg.name == "outer_blobs_idx":
assert arg.ints, "Expected non empty outer_blobs_idx argument"
args["outer_blobs_idx"] = arg.ints
return args
def gen_if_gradient(op, g_output):
"""
Generates gradient If operator, given forward If op and a list
of gradient blobs corresponding to forward op's outputs
Returns a gradient op and a list of blobs corresponding to input gradients
"""
from caffe2.python.core import BlobReference
assert op.type == "If", "Expected If op"
# first input is the condition blob
assert len(op.input) > 0, "Expected at least one input in If op"
assert len(op.output) == len(g_output), \
"Different number of gradient blobs and If op outputs"
grad_ops, deduped_g_output = dedupe_g_output(op, g_output)
g_output = deduped_g_output
init_grad_map = {} # map from if's output blob to output gradient blob
op_input = [str(i) for i in op.input]
op_output = [str(o) for o in op.output]
for output_name, grad_output_name in zip(op_output, g_output):
if grad_output_name:
init_grad_map[BlobReference(output_name)] = \
BlobReference(grad_output_name)
# shouldn't call without at least one output gradient available
assert len(init_grad_map) > 0, "Empty initial gradient map for If op"
grad_map = {} # map from blob to gradient blob
then_net = _get_net_argument(op, "then_net")
assert then_net, "Expected then subnet in If op"
then_grad_net, then_grad_map, then_input_names, then_output_names = \
_gen_subnet_gradient(then_net, init_grad_map)
assert then_grad_net, "Failed to get gradient net for then in If op"
grad_map.update(then_grad_map)
else_input_names = set()
else_output_names = set()
else_grad_map = {}
else_grad_net = None
else_net = _get_net_argument(op, "else_net")
if else_net:
else_grad_net, else_grad_map, else_input_names, else_output_names = \
_gen_subnet_gradient(else_net, init_grad_map)
assert else_grad_net, "Failed to get gradient net for else in If op"
# consider case: else doesn't update blob's gradient and keeps original
# from init_grad_map, but then updates the gradient
for else_blob, else_grad_blob in else_grad_map.items():
if else_blob in then_grad_map:
then_grad_blob = then_grad_map[else_blob]
# if both then and else branches have grad blob name for the same
# blob and grad names are different, then one of the branches
# doesn't use blob and has original grad blob name in it's grad map,
# and another branch uses blob and has <blob_name>_grad name
# in it's grad map (might be different from original grad blob)
if then_grad_blob != else_grad_blob:
init_grad_name = init_grad_map[else_blob] \
if else_blob in init_grad_map else None
if then_grad_blob == init_grad_name:
grad_map[else_blob] = else_grad_blob
elif else_grad_blob == init_grad_name:
grad_map[else_blob] = then_grad_blob
else:
raise "Unexpected grad blob name " + else_blob + ", " + \
else_grad_blob + ", " + then_grad_blob
else:
grad_map[else_blob] = else_grad_blob
# make sure gradients of blobs that were not computed
# by the selected if's branch are initialized with zeros
then_other_output_names = \
then_output_names - (then_output_names & else_output_names)
then_other_grad_output_names = set(
[o for o in then_other_output_names if o in then_grad_map.values()])
zero_then = _gen_grad_zero_init_ops(
init_grad_map, then_grad_map, then_other_grad_output_names)
if else_grad_net:
else_grad_net.op.extend(zero_then)
elif len(zero_then) > 0:
else_grad_net = caffe2_pb2.NetDef()
else_grad_net.CopyFrom(then_grad_net)
if else_grad_net.name:
else_grad_net.name += "_auto_else_zero_blobs_"
del else_grad_net.op[:]
else_grad_net.op.extend(zero_then)
del else_grad_net.external_input[:]
del else_grad_net.external_output[:]
else_other_output_names = \
else_output_names - (then_output_names & else_output_names)
else_other_grad_output_names = set(
[o for o in else_other_output_names if o in else_grad_map.values()])
zero_else = _gen_grad_zero_init_ops(
init_grad_map, else_grad_map, else_other_grad_output_names)
then_grad_net.op.extend(zero_else)
output_names = list(then_output_names | else_output_names)
input_names = then_input_names | else_input_names
# make sure condition blob is the first in the list
input_names = [op_input[0]] + list(input_names - set(op_input[0]))
gradient_if_def = _prepare_gradient_if_op(
fwd_op=op,
input_names=input_names,
output_names=output_names,
then_grad_net=then_grad_net,
else_grad_net=else_grad_net)
g_input = [grad_map.get(i, None) for i in op_input]
return grad_ops + [gradient_if_def], g_input
def _gen_subnet_gradient(subnet, init_grad):
grad_ops, grad_names_map = _gen_subgradient_pass(
subnet, init_grad)
output_names = set()
input_names = set()
for grad_op in grad_ops:
for grad_op_input in grad_op.input:
if str(grad_op_input) not in output_names:
input_names.add(str(grad_op_input))
for grad_op_output in grad_op.output:
output_names.add(str(grad_op_output))
gradient_net_def = caffe2_pb2.NetDef()
gradient_net_def.CopyFrom(subnet)
if gradient_net_def.name:
gradient_net_def.name += "_grad"
del gradient_net_def.op[:]
gradient_net_def.op.extend(grad_ops)
del gradient_net_def.external_input[:]
del gradient_net_def.external_output[:]
return gradient_net_def, grad_names_map, input_names, output_names
def _get_net_argument(op, net_name):
for arg in op.arg:
if arg.name and arg.name == net_name:
assert arg.n, "Expected non empty net argument " + net_name
return arg.n
return None
def getNetArgument(op, net_name):
"""A wrapper for external call"""
return _get_net_argument(op, net_name)
def _gen_subgradient_pass(subnet, init_grad):
from caffe2.python.core import IR
subnet_ir = IR(subnet.op)
grad_ops, grad_blob_map = \
subnet_ir.GetBackwardPass(init_grad)
grad_names_map = {}
for b, g in grad_blob_map.items():
grad_names_map[str(b)] = str(g)
return grad_ops, grad_names_map
def _do_op_sanity_check_and_process(op):
assert op.type == "Do", "Expected Do op"
subnet = _get_net_argument(op, "net")
assert subnet, "No net argument found in Do op"
inner_blobs = None
outer_blobs_idx = None
for arg in op.arg:
if arg.name and arg.name == "inner_blobs":
assert not inner_blobs, "inner_blobs redefinition"
assert arg.strings and len(arg.strings) > 0, \
"Empty inner_blobs argument in Do op"
inner_blobs = [s.decode('utf-8') for s in arg.strings]
if arg.name and arg.name == "outer_blobs_idx":
assert not outer_blobs_idx, "outer_blobs_idx redefinition"
assert arg.ints and len(arg.ints) > 0, \
"Empty outer_blobs_idx argument in Do op"
outer_blobs_idx = arg.ints
if inner_blobs and outer_blobs_idx:
break
assert inner_blobs, "No inner_blobs argument found in Do op"
assert outer_blobs_idx, "No outer_blobs_idx argument found in Do op"
assert len(inner_blobs) == len(outer_blobs_idx), \
"Arguments inner_blobs and outer_blobs_idx of different length in Do op"
all_inner_blobs = set(inner_blobs)
assert len(all_inner_blobs) == len(inner_blobs), \
"Found duplicates in inner_blobs in Do op"
op_input = [str(i) for i in op.input]
assert len(op_input) > 0, "Expected at least one input blob"
# remove last input blob that holds pointer to workspace
input_workspace_blob_name = op_input[-1]
op_input = op_input[:-1]
op_output = [str(o) for o in op.output]
assert len(op_output) > 0, "Expected at least one output blob"
# remove last output blob that holds pointer to workspace
workspace_blob_name = op_output[-1]
assert input_workspace_blob_name == workspace_blob_name, \
"Expected same input/output workspace blob"
op_output = op_output[:-1]
all_op_input_blob_names = set(op_input)
assert len(all_op_input_blob_names) == len(op_input), \
"Found duplicates in Do op inputs"
all_op_output_blob_names = set(op_output)
assert len(all_op_output_blob_names) == len(op_output), \
"Found duplicates in Do op outputs"
ordered_outer_blob_names = op_input + op_output
all_outer_blob_names = set(ordered_outer_blob_names)
used_outer_blob_names = set()
outer_to_inner_map = {}
inner_to_outer_map = {}
for inner_name, outer_blob_idx in zip(inner_blobs, outer_blobs_idx):
assert outer_blob_idx >= 0 and \
outer_blob_idx < len(ordered_outer_blob_names), \
"Outer blob index is out of bounds in Do op"
outer_name = ordered_outer_blob_names[outer_blob_idx]
assert outer_name not in used_outer_blob_names, \
"Reusage of outer blob name " + outer_name + " in Do op"
used_outer_blob_names.add(outer_name)
outer_to_inner_map[outer_name] = inner_name
inner_to_outer_map[inner_name] = outer_name
assert len(used_outer_blob_names) == len(all_outer_blob_names), \
"Not all outer blob names are used in blob bindings in Do op"
return subnet, outer_to_inner_map, inner_to_outer_map, workspace_blob_name
def _prepare_blob_copy_op(from_name, to_name):
copy_op_def = caffe2_pb2.OperatorDef()
copy_op_def.type = "Copy"
copy_op_def.input.extend([from_name])
copy_op_def.output.extend([to_name])
return copy_op_def
def _prepare_gradient_do_op(
fwd_op, fwd_net, grad_ops, inputs, outputs, blob_bindings, saved_fwd_blobs,
workspace_blob_name):
gradient_net_def = caffe2_pb2.NetDef()
gradient_net_def.CopyFrom(fwd_net)
if gradient_net_def.name:
gradient_net_def.name += "_grad"
del gradient_net_def.op[:]
gradient_net_def.op.extend(grad_ops)
del gradient_net_def.external_input[:]
del gradient_net_def.external_output[:]
gradient_do_def = caffe2_pb2.OperatorDef()
gradient_do_def.CopyFrom(fwd_op)
if gradient_do_def.name and len(gradient_do_def.name) > 0:
gradient_do_def.name += "_grad"
del gradient_do_def.input[:]
gradient_do_def.input.extend(inputs)
# workspace pointer blob
gradient_do_def.input.append(workspace_blob_name)
del gradient_do_def.output[:]
gradient_do_def.output.extend(outputs)
# workspace pointer blob
gradient_do_def.output.append(workspace_blob_name)
net_arg = caffe2_pb2.Argument()
net_arg.name = "net"
net_arg.n.CopyFrom(gradient_net_def)
ordered_new_outer_names = inputs + outputs
inner_blobs = blob_bindings.keys()
new_outer_blobs_idx = [ordered_new_outer_names.index(blob_bindings[b])
for b in inner_blobs]
inner_blobs_arg = caffe2_pb2.Argument()
inner_blobs_arg.name = "inner_blobs"
inner_blobs_arg.strings.extend([b.encode('utf-8') for b in inner_blobs])
outer_blobs_idx_arg = caffe2_pb2.Argument()
outer_blobs_idx_arg.name = "outer_blobs_idx"
outer_blobs_idx_arg.ints.extend(new_outer_blobs_idx)
saved_blobs_arg = caffe2_pb2.Argument()
saved_blobs_arg.name = "saved_fwd_blobs"
saved_blobs_arg.strings.extend(
[b.encode('utf-8') for b in saved_fwd_blobs])
del gradient_do_def.arg[:]
gradient_do_def.arg.extend([
net_arg, inner_blobs_arg, outer_blobs_idx_arg, saved_blobs_arg])
del gradient_do_def.control_input[:]
gradient_do_def.is_gradient_op = True
return gradient_do_def
def _gen_grad_zero_init_ops(init_grad_map, grad_map, grad_output_names):
grad_init_ops = []
for grad_output in grad_output_names:
# get the corresponding output name blob and use it in ConstantFill
# so that grad_output has the same shape
output_name = None
for o, g in grad_map.items():
if g == grad_output:
output_name = o
break
assert output_name, "Unknown gradient output " + grad_output
grad_init_op = None
# make sure that we do not overwrite existing gradients with zeros
if output_name in init_grad_map:
init_grad_name = init_grad_map[output_name]
# in case we use a different gradient blob name, copy gradient
if init_grad_name != grad_output:
grad_init_op = caffe2_pb2.OperatorDef()
grad_init_op.type = "Copy"
grad_init_op.input.extend([str(init_grad_name)])
grad_init_op.output.extend([str(grad_output)])
else:
grad_init_op = caffe2_pb2.OperatorDef()
grad_init_op.type = "ConstantFill"
grad_init_op.input.extend([output_name])
grad_init_op.output.extend([grad_output])
value_arg = caffe2_pb2.Argument()
value_arg.name = "value"
value_arg.f = 0.0
grad_init_op.arg.extend([value_arg])
if grad_init_op:
grad_init_ops.append(grad_init_op)
return grad_init_ops
def _prepare_gradient_if_op(
fwd_op, input_names, output_names, then_grad_net, else_grad_net):
gradient_if_def = caffe2_pb2.OperatorDef()
gradient_if_def.CopyFrom(fwd_op)
del gradient_if_def.input[:]
gradient_if_def.input.extend(input_names)
del gradient_if_def.output[:]
gradient_if_def.output.extend(output_names)
then_net_arg = caffe2_pb2.Argument()
then_net_arg.name = "then_net"
then_net_arg.n.CopyFrom(then_grad_net)
gradient_args = [then_net_arg]
if else_grad_net:
else_net_arg = caffe2_pb2.Argument()
else_net_arg.name = "else_net"
else_net_arg.n.CopyFrom(else_grad_net)
gradient_args.append(else_net_arg)
del gradient_if_def.arg[:]
gradient_if_def.arg.extend(gradient_args)
if gradient_if_def.name:
gradient_if_def.name += "_grad"
del gradient_if_def.control_input[:]
gradient_if_def.is_gradient_op = True
return gradient_if_def
def disambiguate_grad_if_op_output(grad_op, idx, new_grad_output):
then_net = _get_net_argument(grad_op, "then_net")
old_grad_out_match = grad_op.output[idx]
for op in then_net.op:
for i, out in enumerate(op.output):
if out == old_grad_out_match:
op.output[i] = new_grad_output
else_net = _get_net_argument(grad_op, "else_net")
if else_net:
for op in else_net.op:
for i, out in enumerate(op.output):
if out == old_grad_out_match:
op.output[i] = new_grad_output
grad_op.output[idx] = new_grad_output