For a given function
$Θ(g(n))$ = {$f(n)$: there exist positive constants$c_1$ ,$c_2$ , and$n_0$ such that$0 \leq c_1g(n) \leq f(n) \leq c_2g(n)$ for all$n \geq n_0$ }
We say that
The definition of
For a given function
$Ο(g(n))$ = {$f(n)$: there exist positive constants$c$ and$n_0$ such that$0 \leq f(n) \leq cg(n)$ for all$n \geq n_0$ }
For a given function
$Ω(g(n))$ = {$f(n)$: there exist positive constants$c$ and$n_0$ such that$0 \leq cg(n) \leq f(n)$ for all$n \geq n_0$ }
From the definitions of the asymptotic notations, it is easy to prove the following important theorem.
Theorem 3.1
For any two functions
$f(n)$ and$g(n)$ , we have$f(n) = Θ(g(n))$ if and only if$f(n) = Ο(g(n))$ and$f(n) = Ω(g(n))$ .
Using asymptotic notations can help eliminate inessential detail and clutter in an equation. For example, the formula
We can interpret equations where asymptotic notations appear on the left-hand side using the rule: No matter how the anonymous functions are chosen on the left of the equal sign, there is a way to choose the anonymous functions on the right of the equal sign to make the equation valid.
For a given function
$ο(g(n))$ = {$f(n)$: for any positive constant$c > 0$ , there exists a constant$n_0 > 0$ such that$0 \leq f(n) < cg(n)$ for all$n \geq n_0$ }
One way to define it is by
$f(n) ∈ ω(g(n))$ if and only if$g(n) ∈ ο(f(n))$
For a given function g(n), we denote by ω(g(n)) the set of functions
$ω(g(n))$ = {$f(n)$: for any positive constant$c > 0$ , there exists a constant$n_0 > 0$ such that$0 \leq cg(n) < f(n)$ for all$n \geq n_0$ }
Transitivity:
$f(n) = Θ(g(n))$ and$g(n) = Θ(h(n))$ imply$f(n) = Θ(h(n))$ $f(n) = Ο(g(n))$ and$g(n) = Ο(h(n))$ imply$f(n) = Ο(h(n))$ $f(n) = Ω(g(n))$ and$g(n) = Ω(h(n))$ imply$f(n) = Ω(h(n))$ $f(n) = ο(g(n))$ and$g(n) = ο(h(n))$ imply$f(n) = ο(h(n))$ $f(n) = ω(g(n))$ and$g(n) = ω(h(n))$ imply$f(n) = ω(h(n))$ Reflexivity:
$f(n) = Θ(f(n))$ $f(n) = Ο(f(n))$ $f(n) = Ω(f(n))$ Symmetry:
$f(n) = Θ(g(n))$ if and only if$g(n) = Θ(f(n))$ Transpose symmetry:
$f(n) = Ο(g(n))$ if and only of$g(n) = Ω(f(n))$ $f(n) = ο(g(n))$ if and only of$g(n) = ω(f(n))$ Analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers a and b:
$f(n) = Ο(g(n)) ≈ a \leq b$ $f(n) = Ω(g(n)) ≈ a \geq b$ $f(n) = Θ(g(n)) ≈ a = b$ $f(n) = ο(g(n)) ≈ a < b$ $f(n) = ω(g(n)) ≈ a > b$