-
Notifications
You must be signed in to change notification settings - Fork 374
/
exc_02_15.py
35 lines (27 loc) · 1.01 KB
/
exc_02_15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import spacy
from spacy.matcher import PhraseMatcher
from spacy.tokens import Span
import json
with open("exercises/zh/countries.json", encoding="utf8") as f:
COUNTRIES = json.loads(f.read())
with open("exercises/zh/country_text.txt", encoding="utf8") as f:
TEXT = f.read()
nlp = spacy.load("zh_core_web_sm")
matcher = PhraseMatcher(nlp.vocab)
patterns = list(nlp.pipe(COUNTRIES))
matcher.add("COUNTRY", patterns)
# 创建一个doc并重置其已有的实体
doc = nlp(TEXT)
doc.ents = []
# 遍历所有的匹配结果
for match_id, start, end in matcher(doc):
# 创建一个标签为"GPE"的span
span = ____(____, ____, ____, label=____)
# 覆盖doc.ents并添加这个span
doc.ents = list(doc.ents) + [____]
# 获取这个span的根头词符
span_root_head = ____.____.____
# 打印这个span的根头词符的文本及span的文本
print(span_root_head.____, "-->", span.text)
# 打印文档中的所有实体
print([(ent.text, ent.label_) for ent in doc.ents if ent.label_ == "GPE"])