-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathsweep.py
115 lines (100 loc) · 4.78 KB
/
sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
from typing import Dict, List, Optional, Tuple
import pandas as pd
import transformers
from datetime import datetime
import os
import tabulate
import torch
from dataclasses import dataclass
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
import numpy as np
import arguments
from arguments import Arguments, simple_parse_args_string
from benchmark import benchmark, load_model_and_tokenizer, process_cli_arguments, setup, BenchmarkArguments
from self_speculation.generator_base import (
GenerationConfig,
)
@dataclass
class SweepArguments:
exit_layer_first: Optional[int] = 1
exit_layer_last: Optional[int] = 15
exit_layer_step: Optional[int] = 1
num_speculations_first: Optional[int] = 1
num_speculations_last: Optional[int] = 6
num_speculations_step: Optional[int] = 1
def sweep(args: Arguments, benchmark_arguments: BenchmarkArguments, generation_config: GenerationConfig, sweep_arguments: SweepArguments):
results: List[Dict] = []
device = "cuda" if torch.cuda.is_available() else "cpu"
setup(args, device=device)
model, tokenizer = load_model_and_tokenizer(args, device=device)
os.makedirs(args.output_dir, exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
csv_fname = f"{args.output_dir}/sweep_{timestamp}.csv"
pdf_fname = f"{args.output_dir}/sweep_{timestamp}.pdf"
for exit_layer in range(sweep_arguments.exit_layer_first, sweep_arguments.exit_layer_last+1, sweep_arguments.exit_layer_step):
for num_speculations in range(sweep_arguments.num_speculations_first, sweep_arguments.num_speculations_last+1, sweep_arguments.num_speculations_step):
generation_config.exit_layer = exit_layer
generation_config.num_speculations = num_speculations
metric_result = benchmark(model, tokenizer, benchmark_arguments, generation_config, args.seed)
results.append({
"exit_layer": exit_layer,
"num_speculations": num_speculations,
"acceptance_rate": metric_result['acceptance_rate']['mean'],
"total_time": metric_result['total_time']['mean'],
"time_per_token": metric_result['time_per_token']['mean'],
"tokens_per_second": metric_result['tokens_per_second']['mean'],
})
df = pd.DataFrame(results)
# Update table every iteration
df.to_csv(csv_fname, index=False)
print(f"exit_layer: {exit_layer}, num_speculations: {num_speculations}, time_per_token: {metric_result['time_per_token']['mean']}")
# Print summary table
print("\n")
header = results[0].keys()
rows = [x.values() for x in results]
print(tabulate.tabulate(rows, header))
# Plot contour plot
plot_contour(df, pdf_fname)
def plot_contour(df, pdf_fname):
## Prepare grid coordinates (assuming exit_layer and num_speculations are integer indices)
grid_x, grid_y = np.mgrid[df['exit_layer'].min():df['exit_layer'].max():100j,
df['num_speculations'].min():df['num_speculations'].max():100j]
## Interpolate missing data
grid_z = griddata((df['exit_layer'], df['num_speculations']), df['tokens_per_second'],
(grid_x, grid_y), method='linear')
## Create the contour plot
plt.figure(figsize=(10, 6))
contour = plt.contourf(grid_x, grid_y, grid_z, levels=20, cmap='viridis')
plt.colorbar(contour)
## Overlay the data points
plt.scatter(df['exit_layer'], df['num_speculations'], color='black', s=25, zorder=5)
plt.title('Tokens Per Second')
plt.xlabel('Exit Layer')
plt.ylabel('Number of Speculations')
## Save the plot
plt.savefig(pdf_fname, format="pdf", dpi=300)
## Show the plot
plt.show()
def process_cli_arguments() -> Tuple[arguments.Arguments, BenchmarkArguments, GenerationConfig, SweepArguments]:
parser = transformers.HfArgumentParser((arguments.Arguments, BenchmarkArguments, GenerationConfig, SweepArguments))
(
general_arguments,
benchmark_arguments,
generation_config,
sweep_arguments,
) = parser.parse_args_into_dataclasses(return_remaining_strings=False)
if general_arguments.model_args:
general_arguments.model_args = simple_parse_args_string(general_arguments.model_args)
else:
general_arguments.model_args = {}
return general_arguments, benchmark_arguments, generation_config, sweep_arguments
if __name__ == "__main__":
args, benchmark_arguments, generation_config, sweep_arguments = process_cli_arguments()
sweep(args, benchmark_arguments, generation_config, sweep_arguments)